• No results found

IV. RESULTS  AND  DISCUSSION

2.5.2.   SDS-­‐PAGE  of  inner  membrane  proteins

Results  and  Discussion:  Chapter  2  

 

-­‐125-­‐

 

 

The   resulting   accumulation   of   abnormal   membrane   proteins   would   disturb   the   membrane   structure   and   function,  eventually  compromising  cellular  integrity  and  viability  (Akiyama,  2009).    

Inner  membrane  proteins  from  all  stress  samples  were  extracted  and  separated  in  12%  poliacrylamide  gels.  

As  with  outer  membrane  proteins,  during  stress  conditions  drastic  changes  in  the  protein  patterns  compared   with   the   optimal   conditions   were   not   observed   in   a   range   from   250   to   25   kDa;   this   observation   was   also   repeated  during  30  days-­‐prolonged  stress.  However,  M8  temperature  pattern  showed  some  specific  proteins   bands  different  to  the  control  and  to  the  other  stress  conditons  (Figure  28).  Proteins  bands  around  150,  120,   60,  and  25  kDa  were  detected  only  during  temperature  stress  (black  arrows,  Fig.  28),  whereas  a  band  around   90  kDa  was  observed  in  control,  anoxia,  and  dilution  patterns,  but  not  in  the  temperature  one.  In  the  same   way,   a   band   of   45   kDa   was   detected   in   control,   anoxia,   and   temperature   patterns   but   not   during   dilution   stress   (dotted   arrows,   Fig.   28).   Moreover,   in   M31   the   main   change   was   observed   in   the   anoxia   protein   pattern,   where   two   bands   of   about   65   and   60   kDa   detected   in   the   control   condition,   disappeared.     In   addition,  the  same  band  of  65  kDa  was  not  clearly  detected  in  the  dilution  and  temperature  protein  patterns   (dotted   arrows,   Fig.   28).   As   in   the   OMPs   analysis,   protein   banding   differences   between   strains   could   be   related   to   the   expression   of   specific-­‐strain   genes,   but   also   to   the   the   number   of   related-­‐membrane   genes   present   in   each   strain   (Peña   et   al.,   2010).   This   fact   might   be   also   associated   to   the   changes   in   intensity   observed  between  both  strains  at  low  temperature  (Fig.  28).  These  changes,  could  be  related  to  the  increase   in  the  expression  of  some  proteins  in  M8  (from  60  to  150  kDa),  and  to  the  decrease  in  the  expression  of  all   proteins  observed  in  M31  (Fig.  28).    

The  inner  membrane  has  a  more  complex  protein  system  than  the  outer  membrane,  including  transporters,   channels,   receptors   and   enzymes   involved   in   the   synthesis   and   metabolism   of   membrane   constituents   (Akiyama,  2009).  The  analysis  of  inner  membrane  proteins  showed  differences  of  some  proteins,  expressed   during   low   temperature   (M8)   whereas   during   anoxia   and   dilution   stress   not   significant   changes   were   observed.   These   not   significant   changes   could   be   related   to   the   fact   that   under   stress   conditions,   the   production   of   low   molecular   weight   stress   proteins   increases   (Denich   et   al.   2003),   but   due   to   the   used   experimental   conditions,   these   kind   of   proteins   could   not   be   detected.   In   addition,   the   structural   or   conformational   adaptacion   of   proteins   in   response   to   stress   conditions   can   not   be   detected   by   SDS-­‐PAGE   (Denich   et   al,   2003).   On   the   other   hand,   exposure   to   temperatures   above   but   close   to   0   °C   is   usually   associated  to  an  active  response  by  bacteria,  typically  the  synthesis  of  specific  proteins  or  cold  shock  proteins   (CSPs),   leading   to   a   transient   metabolic   adaptation,   statibilizing   proteins   involved   in   the   structure   and   function  of  nucleics  acids  (Panoff  et  al.,  1998).  

 

 

Results  and  Discussion:  Chapter  2  

 

-­‐126-­‐

 

 

Specifically,  transfers  of  mesophilic  bacteria  from  the  optimal  growth  temperature  to  a  lower  temperature   still  allows  growth  but  leads  to  a  relatively  rapid  decrease  in  the  synthesis  of  ‘‘housekeeping’’  proteins  and   the  synthesis  of  CSPs  ,  which  are  low  molecular  weight  (less  than  10  kDa)  and  could  not  be  detected  by  this   study  (Jiang  et  al,  1997;(Panoff  et  al.,  1998)Panoff  et  al.,  1998).  Despite  this,  these  results  suggested  that  the   stress  response  of  inner  membrane  in  S.  ruber  might  be  associated  to  conformational  or  functional  changes   of   proteins   more   than   significant   changes   in   the   membrane-­‐protein   composition,   so   the   transmembrane   transferring   of   molecules   and   other   functions   of   the   membrane-­‐bound   proteins   are   not   affected   and   cells   preserve  their  viability.

 

 

 

         

         

   

Figure  28:  Pattern  of  inner  membrane  proteins  in  S.  ruber  during  optimal  and  stress  conditions  (16h).  Inner  membrane   associated-­‐proteins   fractions   of   M8   and   M31   strains   were   separated   in   12   %   SDS–polyacrylamide  gels   by   Tris-­‐glycine   buffer  and  stained  with  Coomassie  blue.  Arrows  indicate  the  proteins  bands  that  were  different  (black)  and  the  missing   protein  bands  (dotted)  respect  to  the  rest  of  protein  band  patterns.  M:  molecular  weight  standard;  C:  control  or  optimal   condition;  O:  oxygen  depletion;  D:  dilution;  T:  temperature.  

   

2.6.  Lipopolysaccharide  (LPS)  analysis  of  strains  during  stress  conditions

 

As   mentioned   before,   the   cell   envelope   is   the   initial   target   of   physical   (e.g.,   hyperthermia,   osmolarity),   chemical  (e.g.,  ethanol,  pH,  detergent)  or  biological  (e.g.,  adhesion,  infection)  stresses.  These  stresses  may   alter  envelope  components  by  inducing  numerous  alterations,  each  of  which  may  be  perceived  by  different   pathways  of  stress  response,  and  may  contribute  to  adapt  the  cell  to  different  aspects  of  the  stress  damage.  

 

 

Results  and  Discussion:  Chapter  2  

 

-­‐127-­‐

 

 

Lipopolysaccharides  (LPS)  are  amphiphilic  macromolecules  composed  of  a  hydrophilic  heteropolysaccharide   (formed   by   core   oligosaccharide   and   O-­‐specific   polysaccharide   or   O-­‐chain)   covalently   linked   to   a   lipophilic   moiety  termed  lipid  A  which  anchors  these  macromolecules  to  the  outer  membrane  (Silipo  et  al.,  2005).    LPS   is   the   major   component   of   the  outer   membrane  of  Gram-­‐negative  bacteria,   contributing   greatly   to   the   structural   integrity   of   the   bacteria,   and   protecting   the   membrane   from   certain   kinds   of   chemical   attack   (Ghuysen  &  Hakenbeck,  1994).

 

To   supplement   the   metabolomic   observations,   and   considering   the   contribution   of   LPS   in   the   membrane   integrity,   changes   in   the   LPS   pattern   of  S.   ruber   strains   during   stress   conditions   were   also   analyzed   in   the   different  cultures  by  a  modification  of  the  method  described  by  Hitchcock  and  Brown  (Hitchcock  &  Brown,   1983),  and  by  the  Busse  method  (Busse  et  al.,  1989).  LPS  was  checked  using  SDS-­‐PAGE  (12%)  visualizing  gels   with  silver  staining  according  to  Tsai  and  Frasch  (Tsai  &  Frasch,  1982).  

Unfortunately,   none   of   the   used   methods   yielded   good   results   and   LPS   patterns   never   had   the   good   resolution   for   suggesting   a   specific   response   under   stress   conditions.   Metagenomic   analyses   in   hyper-­‐

halophiles,  showed  that  genomics  islands  (related  to  the  biosynthesis  of  polysaccharide  compounds  wall  cell)   shared  a  number  of  similarities  with  gene  clusters  of  pathogenic  Gram  negative  bacteria  (Pašic  et  al.,  2009).    

Based   on   this   information,   standard   protocols   described   for   Salmonella   (Hitchcock   &   Brown,   1983)   and   Pseudomonas  (Busse  et  al.,  1989)  were  used,  but  perhaps  due  to  the    halophilic  characteristics  of  S.  ruber,   they  were  unsuccessful.  LPS  studies  in  halophilic  marine  bacteria  have  been  carried  out  using  acetone-­‐dried   cells,  where  the  LPS  is  extracted  with  a  mixture  of  phenol/  chloroform/petroleum  eter  (2:5:8  v/v/v)  and  then   liofilized  to  be  analyzed  by  electrophoresis  (Silipo  et  al.,  2005).  

Although  LPS  are  the  major  components  of  their  outer  leaflet,  very  little  is  known  about  the  role  of  these   molecules  in  the  adaptation  mechanisms  of  extremophiles,  and  LPS  from  halophilic  bacteria  frequently  show   unusual  chemical  features  most  likely  due  to  their  external  environment  (Pieretti  et  al.,  2010;  Silipo  et  al.,   2005).     Thus,   even   though   a   metagenomic   study   has   shown   that   genomic   islands   shared   a   number   of   similarities  with  O-­‐polysaccharide  gene  clusters  of  pathogenic  Gram  negative  bacteria,  S  ruber  lacks  core  LPS   genes   which   would   indicate   that   these   external   polysaccharides   might   be   anchored   by   a   non-­‐canonical   structure   (Pašic   et   al.,   2009)   and   it   is   possible   that   standard   protocols   used   in   this   work   are   not   the   most   indicated  to  their  detection.  

Due  to  the  complexity  of  a  specific  protocol  for  the  study  of  LPS  in  certain  microorganisms,  we  could  not  find   the   right   procedure   during   this   work.   Nonetheless,   it   would   be   useful   to   standarize   a   specific   protocol   to   study  membrane  compounds,  as  LPS,  in  halophilic  or  other  extreme  microorganisms.  

Results  and  Discussion:  Chapter  2  

 

-­‐128-­‐

 

 

2.7.  Matrix  assisted  laser  desorption/ionization-­‐time-­‐of-­‐flight  mass  spectrometry  analysis  of  strains  during   stress    

Matrix   assisted   laser   desorption/ionization-­‐time-­‐of-­‐flight   mass   spectrometry   (MALDI-­‐TOF   MS),   is   a   fast,   reliable   and   cost-­‐effective   technique   that   has   the   potential   to   replace   and/or   complement   conventional   phenotypic   identification   for   most   bacterial   strains   (Sauer   &   Kliem,   2010).     The   great   advantage   of   the   method  is  that  the  analyses  can  be  done  using  a  minute  amount  of  biomass  from  a  given  colony,  mixed  with   the  matrix  solution  and  transferred  to  the  MALDI-­‐TOF  mass  spectrometer,  without  previous  treatments  or   time-­‐consuming  extractions  (Muñoz  et  al.,  2011).  The  MS  profiles,  in  part,  reflecting  the  heterogeneity  of  cell   ribosomal  proteins,  produce  stable  phenotypic  characterizations  that  have  been  used  previously  to  identify   clinical  microorganisms   (Seng   et  al.,   2010),   environmental   strains   (Ruelle   et   al.,   2004),   and   moderately   halophilic   microorganisms   (Munoz   et   al.,   2011).   This   technique   was   used   to   study   the   main   phenotypical   changes  of  strains  under  the  different  stress  conditions  from  the  whole  cell  and  to  evaluate  whether  these   were   consistent   with   the   results   previously   obtained   by   other   techniques.   In   order   to   extract   the   main   patterns   of   variation,   to   identify   groups   or   clusters   of   samples,   two   different   multivariate   exploratory   techniques  were  applied:  partial  least  square  discriminative  analysis  (PLS-­‐DA)  and  cluster  analysis  (Ramette,   2007b)   that   were   used   to   explore   whether   the   different   stress   conditions   involve   changes   in   the   whole   protein  pattern  of  each  strain.    

 

2.7.1.Statistical  analysis  

All  pure  culture  samples  were  submitted  to  whole-­‐cell  MALDI-­‐TOF  MS  analysis.  Each  sample  was  measured   twice   in   order   to   confirm   the   reproducibility   of   the   individual   profiles.   From   all   obtained   spectra,   the   averaged  value  of  masses  was  calculated  for  each  sample,  which  finally  yielded  a  matrix  composed  by  341   masses.  In  order  to  test  for  significant  differences  between  different  stress  conditions  PLS-­‐DA  models  with   Orthogonal  Signal  Correction  (OSC)  were  first  applied  to  analyze  this  group  of  masses  and  evaluate  whether   any   of   the   variables   (time   or   stress   conditions)   was   related   to   the   intensity   of   masses   detected   in   each   sample.  The  inspection  of  this  model  showed  a  dependence  of  intensity  with  time  (Figure  29)  where  stress   samples  at  16  and  40  h  were  those  that  presented  more  differences  respect  to  the  control  masses.  However,   protein  intensity  patterns  obtained  from  temperature  stress  at  16  and  40  h  in  M8  were  less  significant  and   more   similar   to   control   patterns   than   in   M31   strain   (Fig.29).   Differences   in   the   protein   patterns   between   strains  had  already  been  observed  in  the  previous  sections  when  analyzing  membrane  proteins.    

   

Results  and  Discussion:  Chapter  2  

 

-­‐129-­‐

 

 

Again,  these  differences  could  be  explained  by  the  genomic  differences  existing  between  them,  but  also  by   the   different   metabolic   stress   response   observed   in   the   metabolomic   analysis,   where   metabolomic   composition   of   M31   were   less   related   to   the   control   condition   than   the   M8   metabolome   (see   Fig.   24).  

Differences   of   intensities   in   the   ”proteome”   under   stress   conditions   is   not   trivial   due   to   the   response   to   imposed  stress  in  bacteria  is  accomplished  by  changes  in  the  patterns  of  gene  expression  which  is  directly   related  to  the  protein  expression  (Marles-­‐Wright  &  Lewis,  2007).  Thereby,  osmotic  stress  in  some  halophilic   organisms  could  involve  an  inhibition  in  the  protein  synthesis  and  amino  acid  uptake  during  initial  phase  of   adaptation  to  the  new  conditions,  whereas  during  the  adaptation  period,  changes  in  the  patterns  of  proteins   coulb  be  observed  (Ventosa  et  al.,  1998),  which  may  explain  the  higher  intensity  differences  of  the  masses   observed  at  40  h  during  all  stress  conditions  (Fig.29).  Consequently  bacteria  have  developed  sophisticated   responses,   modulated   by   the   re-­‐modelling   of   protein   complexes   and   by   phophorylation-­‐dependent   signal   transduction   systems,   to   adapt   to   and   to   survival   a   variety   of   adverse   changes   (Marles-­‐Wright  &   Lewis,   2007).  

                         

Figure  29:  Orthogonal  PLS  model  from  all  stress  and  control  samples  analyzed  by  MALDI-­‐TOF  MS  The  model  shows  a   dependence  on  the  intensity  of  masses  with  the  time  of  stress  (with  Q2(cum)=0.2;  R2Y(cum)=0.52),  being  higher  at  40  h   and  well  differentiated  respect  to  the  control  condition  under  all  stress  conditions  which  are  indicated  as  O  (Oxygen),D   (Dilution),  and  T  (Temperature)  in  M8  and  M31  strains.  Control  conditions  are  labelled  in  yellow  whereas  different  times   are  labelled  in  red  (2h),  orange  (16h)  and  brown  (40h).    

Results  and  Discussion:  Chapter  2  

 

-­‐130-­‐