• No results found

IV. RESULTS  AND  DISCUSSION

2.2.1.   Growth  kinetics

CHAPTER  2:  Survival  and  response  to  adverse  conditions  in  S.  ruber  M8  and  M31  strains    

2.1.  Background  

As   described   in   the   previous   chapter,   the   use   of   the   metabolomic   approach   by   high-­‐field   ion   cyclotron   Fourier   transform   mass   spectrometry   (ICR-­‐FT/MS)   allowed   to   discern   biogeographical   patterns   in   S.   ruber   populations   worldwide   distributed.   This   permitted   a   non-­‐targeted   search   for   special   metabolic   traits   considered  as  relevant  in  the  organism’s  phenotype,  showing  a  higher  resolution  power  than  the  molecular   techniques  previously  applied  in  S.  ruber  population  studies  (Antón  et  al.,  2008;  Rosselló-­‐Mora  et  al.,  2008).  

In  this  chapter,  a  combination  of  conventional  cultivation  methods,  molecular  techniques  and  a  metabolomic   approach   were   applied   to   study   the   main   growth   features   of   the   closest  S.   ruber   strains     (M8   and   M31)   hitherto   isolated   and   sequenced   (Peña   et   al.,   2010).   Special   attention   has   been   focused   on   the   changes   occurring  in  the  transition  from  the  exponential  growth  to  the  stationary  phase,  and  the  response  to  three   major  different  environmental  stresses  in  which  S.  ruber  may  be  exposed  in  its  natural  hypersaline  habitat  :  i)   oxygen   depletion,   ii)   dilution   of   salts   present   in   the   culture   medium,   and   iii)   decrease   in   the   incubation   temperature.    

 

2.2.  Growth  curves  

Growth  curves  are  widely  used  in  Microbiology  to  study  the  increase  in  population  size  or  biomass  of  a  given   microorganism.   In   liquid   culture,   most   of   bacterial   growth   displays   a   characteristic   four-­‐phase   pattern   of   growth.  The  initial  lag  phase  comprises  a  period  of  slow  growth  in  which  the  bacteria  are  adapting  to  the  new   incubation  conditions.  This  phase  is  followed  by  a  logarithmic  phase  in  which  the  growth  is  optimum  and  the   cell   numbers   increase   at   ever   increasing   rates   with   time.     After,   a   stationary   phase   occurs,   when   culture   enters  in  a  steady-­‐state  equilibrium  in  which  the  rate  of  cell  growth  is  balanced  by  the  rate  of  cell  death.  The   death  phase  occurs  because  of  a  loss  of  limiting  nutrients  (due  to  their  incorporation  into  cells  during  log-­‐

phase   growth)   or   a   build-­‐up   of   toxins   (due   to   their   release   during   log-­‐phase   growth,   e.g.,   fermentative   products).  

 

2.2.1.  Growth  kinetics  

Kinetic  of  growth  was  followed  through  optical  density  measurements  (OD600)  that  were  plotted  versus  time   (expressed   in   hours),   as   shown   in   Fig.   18.   Both   strains   behaved   differently   in   their   OD   changes.   The   exponential  phase  for  both  organisms  started  72  hours  after  inoculation  and  occurred  during  approximately   144  h  (M8  strain)  to  168  h  (M31  strain).    

Results  and  Discussion:  Chapter  2  

 

-­‐86-­‐

 

 

In  addition,  during  the  exponential  phase,  both  strains  showed  different  generation  times  of  9.3  h  for  M8  and   10.1  hours  for  M31.  These  values  differ  from  previous  observations  in  which  generation  times  ranged  from   14   to   18   hours   (Antón   et   al.,   2002),   but   the   differences   may   be   related   to   the   higher   yeast   extract   concentration  used  in  our  study  (0.2%)  in  comparison  to  the  previous  one  (0.1%).      

The  higher  OD  reached  during  the  exponential  growth  was  at  168  h  and  216  h  for  M8  and  M31,  respectively.  

Besides,  OD  measures  decreased  when  the  cells  entered  into  the  stationary  phase,  which  occurred  at  216  h   (M8  strain)  and  240  h  (M31  strain)  after  inoculation  (Fig.  18).    

                   

Figure  18:  Growth  curves  of  Salinibacter  ruber  M8  (squares)  and  M31  (circles).  Growth  was  monitored  at  OD600  (empty   symbols)  and  by  DAPI  counts  (filled  symbols).  Data  are  represented  as  log  OD  and  log  (cells  mL-­‐1)  with  time.  Plotted  points   are  an  average  of  two  independent  measurements.    

   

2.2.2.  Variations  of  cell  numbers  and  FISH-­‐detectable  cells  along  the  growth  curve  

In   parallel   to   OD   measures,   the   increase   in   absolute   cell   counts   during   the   growth   was   followed   by   DAPI   staining   and   expressed   as   log   cell   mL-­‐1  versus   time   (Fig.   18).   Although   both   cultures   were   inoculated   approximately  with  the  same  amount  of  cells  (109  mL-­‐1),  the  highest  OD  reached  by  M8  corresponded  to  5.5  x  

1010  cells  mL-­‐1,  whereas  the  maximum  value  of  M31  corresponded  to  5  ±  0.05  x  1010  cells  mL-­‐1  (Fig.  18  and  

Table   11).   However,   the   lower   OD   value   together   with   higher   cell   counts   observed   in   M31   strain   can   be   explained   by   the   formation   of   cell   aggregates   that   bias   the   OD   measures,   a   phenomenon   that   was   not   observed  for  M8  (data  not  shown).  In  the  stationary  phase,  the  cell  numbers  decreased  to  2.1  ±  0.19  x  1010   and  3.1  ±  0.04  x  1010  cells  mL-­‐1  in  M8  and  M31,  respectively  (Fig.  18  and  Table  11).    

   

Results  and  Discussion:  Chapter  2  

 

-­‐87-­‐

 

 

In  addition,  FISH  analyses  were  performed  by  using  the  EHB-­‐412  probe  in  order  to  evaluate  the  fraction  of   cells   that   may   show   a   decrease   in   the   intensity   signal   as   a   response   to   a   reduction   in   their   ribosome’   s   content  along  the  time  (Amann  et  al.,  1995).    As  expected,  during  exponential  phase  both  strains  showed   values  that  were  close  to  100%  of  the  total  cell  counts  (Table  11)  whereas  during  stationary  phase  the  FISH-­‐

detectable  cells  decreased  to  about  87-­‐91%  respect  to  the  total  cells  counts  obtained  by  DAPI  (Table  11).    

Differences  among  these  two  strains  regarding  growth  kinetics  have  been  already  reported  by  competition   experiments,  suggesting  direct  competition  between  the  two  closely  related  populations  (Peña  et  al.,  2010).  

Under  standard  conditions,  M8  cells  outcompeted  M31  cells  since  in  salt-­‐saturated  medium  the  density  of   M31   cells   in   mixed   cultures   was   roughly   up   to   30-­‐fold   higher   than   M8   cells,   while   in   pure   cultures   these   difference  was  only  two  fold  (Peña  et  al.,  2010).    

                                           

 

Results  and  Discussion:  Chapter  2  

 

-­‐89-­‐

 

 

2.2.3.  Culturability  along  the  growth  curve  

The  culturable  fraction  (CFUs  counts)  at  the  highest  development  of  the  exponential  phase  was  equivalent  to   44%   and   53%   of   the   corresponding   DAPI   counts   in   M8   and   M31,   respectively   (Table   11).   This   is   a   known   phenomenon  that  has  been  previously  reported  in  other  sort  of  samples  (e.g.  Amann  et  al.,  1995;  Hoefel  et   al.,  2003;  Marques  et  al.,  2005).  As  mentioned  before,  during  exponential  phase  about  98%  of  cells  may  be   all  metabolically  active  as  indicated  by  the  high  rate  of  hybridization  with  the  specific  FISH  probe.  Thus,  the   observed   discrepancy   in   counts   may   be   related   to   the   culturing   procedure   itself.   For   example,   studies   of   resuscitation  of  Vibrio  vulnificus  showed  that  the  plating  medium  itself  could  be  a  factor  of  nonculturability.  

Besides,  the  elevated  nutrient  content  may  be  toxic  in  some  manner  and  might  prevent  colony  development   onto  solid  media  (Whitesides  &  Oliver,  1997).  Also  factors  as  aeration,  salinity  and  cell  washing  have  been   reported  to  influence  the  culturability  (Oliver  et  al.,  1991).    

As  expected,  the  differences  between  CFUs  and  total  counts  were  more  dramatic  in  the  stationary  phase,   where  just  9%  of  the  DAPI  stained  cells  grew  onto  plate,  whereas  the  FISH  counts  just  dropped  to  90%  (Table   11).  The  decreased  in  CFU  counts  in  the  stationary  phase  can  be  explained  by  cell  death  (Nyström,  2004).  

However,   due   to   the   still   high   number   of   FISH   detectable   cells,   it   cannot   be   excluded   that   an   important   proportion   of   them   remained   under   a   viable   but   non   culturable   state   (Oliver,   2005),   still   with   an   active   metabolism  (Marques  et  al.,  2005),  or  even  under  a  dormant  phenotype  (Bloomfield  et  al.,  1998).  Given  the   high  number  of  FISH  detectable  cells,  a  live/dead  test  commercial  kit  was  not  used  because  they  relay  on  the   cell   membrane   integrity   (Boulos   et   al.,   1999),   and   viability   or   death   may   not   be   always   related   to   compromised  membranes  (Kramer  et  al.,  2009).    

   

2.3.  Stress  dynamics  

Changes   in   environmental   conditions   impose   a   variety   of   stress   for   microorganisms,   which   in   turn   have   developed   different   strategies   to   survive.   Bacteria   must   sense   the   changes   and   then   respond   with   appropriate   alterations   in   gene   expression   and   protein   activity,   which   also   involve   changes   in   the   characteristics  of  cells  populations.  To  study  the  response  of  S.  ruber  to  different  stress  conditions,  M8  and   M31  strains  were  grown  under  optimal  conditions  until  reach  the  exponential  phase.  At  this  point,  cultures   were   divided   into   four   aliquots,   one   was   kept   as   control   and   the   remaining   three   were   submitted   to   differents  stresses  as  mentioned  in  Materials  and  Methods  section.    

 

Results  and  Discussion:  Chapter  2  

 

-­‐90-­‐

 

 

In  this  regard,  it  should  be  noted  that  due  to  the  low  buffering  capacity  of  the  used  medium,  the  effect  of   bubbling  with  N2:CO2  in  the  cultures  in  order  to  achieve  the  oxygen  depletion  was  also  accompanied  by  a  pH   drop   from   7.2   to   5.8.   After   different   times   under   stress   incubation,   the   dynamics   of   each   strain   under   different  stresses  was  followed  by  quantification  of  cells  numbers,  quantification  of  FISH-­‐hybridized  cells,  and   changes  in  the  culturability.  

 

2.3.1.  Cells  abundances  and  FISH-­‐detectable  cells  numbers  under  stress  conditions    

As  it  can  be  seen  in  Fig.  19,  both  strains  responded  similarly  and  all  stresses  promoted  a  continuous  decrease   in   the   total   cell   numbers   observed   by   DAPI,   in   some   cases   to   nearly   the   half   of   the   initial   value.   Oxygen   depletion  and  dilution  promoted  a  similar  effect  on  the  decrease  of  cell  counts,  whereas  during  temperature   stress,  this  effect  was  less  pronounced  and  cells  did  not  always  show  an  abrupt  drop.  As  example,  during  the   first  two  hours  of  treatment,  the  most  remarkable  changes  were  on  M31  cells,  which  showed  a  much  higher   sensitivity  to  both  stresses  than  M8.  This  decrease  in  the  number  of  cells  respect  to  the  control  condition  was   about  20%  (M8)  and  40%  (M31)  for  oxygen  depletion,  and  40%  (M8)  and  60%  (M31)  for  osmotic  stress.  At   this  point,  it  is  important  to  note  that  the  changes  observed  under  anoxia  may  not  be  only  due  to  the  oxygen   depletion,  but  also  to  the  decrease  of  the  pH  value  from  7.2  to  5.8  since  in  previous  experiments  S.  ruber   showed  a  decrease  in  the  growth  yields  when  the  pH  was  reduced  to  6.0  (Antón  et  al.,  2002).  On  the  other   hand,  during  the  first  two  hours  of  temperature  stress,  M8  cells  showed  a  lower  sensitivity  than  M31  cells   (about  10%  versus  30%),  a  trend  that  remained  during  all  tested  stress  conditions  (Fig.  19).  

Although  the  number  of  cells  decreased  in  all  sampled  points  and  stress  conditions  studied,  the  fraction  of   FISH  detectable  cells  did  not  decrease  so  strongly,  and  in  the  worst  case,  the  detection  rates  dropped  about   13%  with  respect  to  the  control  condition  (Fig.  19).  

 

2.3.2.  Culturability  changes  in  stress  conditions  

The  reduction  in  cell  abundances  observed  by  DAPI  were  mirrored  by  the  culturable  numbers  (CFU),  the  last   showing   more   abrupt   changes.   The   differences   between   total   cell   counts   and   CFU   were   already   apparent   after   2   h   under   every   stress   conditions   with   respect   to   the   control,   with   a   significant   loss   of   culturability.  

During  this  period,  the  culturability  of  M8  cells  decreased  in  each  stress  condition.  M31  seemed  to  be  mostly   influenced  by  the  dilution  stress,  being  less  susceptible  to  the  oxygen  and  temperature  conditions  during  the   same  period  of  incubation  (Fig.  19).    

 

Results  and  Discussion:  Chapter  2  

 

-­‐91-­‐

 

 

Actually,  this  strain  has  been  shown  to  outcompete  M8  in  high  salt  concentrations,  but  less  fit  in  lower  ionic   strength  (Peña  et  al.,  2010),  a  fact  that  would  be  in  accordance  with  its  higher  sensitivity  to  the  dilution  of   the  culture  media.    

Dilution  and  oxygen  promoted  an  abrupt  drop  in  the  culturability  in  both  strains,  which  reached  the  minimal   values  after  40  h,  but  they  retained  similar  FISH  detection  rates,  as  occurred  in  the  exponential–stationary   phase   transition.   However,   the   temperature   effect   showed   a   different   dynamics.   Both   strains   strongly   reduced  their  culturability,  reaching  the  minimal  values  just  after  16  h,  but  this  culturability  reduction  was   recovered   when   the   incubation   time   was   prolonged   for   40   h   under   low   temperature,   at   which   point   the   initial  rates  were  not  only  recovered,  but  also  increased  to  100%  of  the  DAPI  counts  (Fig.  18).  Besides,  this   phenomenon  was  observed  even  when  the  incubation  at  low  temperature  was  prolonged  up  to  30  days  (see   below).    

Figure  19:  Culturability  and  cell  counts  of  M8  and  M31  strains  under  different  stress  conditions.  All  points  correspond   to  the  average  of  two  independent  measurements.  In  the  graph  it  is  represented  the  number  of  total  cells  determined  by   DAPI  staining  and  the  FISH  hybridized  cells  (expressed  as  cells  mL-­‐1  with  time),  and  the  number  of  cells  grown  on  agar   plates  expressed  as  CFU  mL-­‐1  with  time.    

   

2.3.4.  Cells  numbers,  FISH  counts,  and  culturability  changes  during  prolonged  temperature  stress  conditions   Both  strains  responded  similarly  to  the  prolonged  temperature  stress,  promoting  a  slight  decrease  of  total   cell  numbers  observed  by  DAPI  which  was  not  accompanied  by  a  decrease  in  the  fraction  of  FISH-­‐detectable   cells  (Fig.  20).    

Results  and  Discussion:  Chapter  2  

 

-­‐92-­‐

 

 

Contrary  to  previous  observations,  the  prolonged  incubation  at  4ºC  promoted  an  increase  in  the  number  of   FISH   hybridized   cells   respect   to   control   condition   (Fig.   20).   On   the   other   hand,   the   culturability   under   prolonged  low  temperature  showed  the  same  behavior  observed  at  40  h  of  stress,  increasing  the  culturability   to  100%  (Fig.  20).  The  minor  changes  in  the  number  of  cells,  accompanied  with  an  increase  in  the  ribosome   content  as  well  as  the  recovery  of  culturability  under  low  temperature,  supports  the  previous  hypothesis  that   under  low  temperature  incubation,  S.  ruber  may  generate  a  survival  strategy  to  re-­‐adapt  to  low  temperatures   probably  by  adopting  a  dormant  state.      

As   mentioned   before,   cells   could   display   increased   stability   after   extended   cold   incubation   (Weichart   &  

Kjelleberg,  1996),  which  could  promote  the  change  to  cultivable  phenotype  as  observed  in  Figs  19  and  20.  A   recovery   of   the   culturable   fraction   is   a   phenomenon   that   has   been   observed   in   species   such   as  Vibrio   parahaemolyticus   (Coutard  et   al.   2007)   in   which   a   proportion   of   viable   but   non-­‐culturable   cells   (VBNC)   subjected   to   low   temperatures   remained   viable   after   a   temperature   upshift,   suggesting   the   re-­‐growth   of   these  cells  rather  than  resuscitation  of  all  bacteria  of  the  initial  inoculum  (Coutard  et  al.  2007).  In  addition,   the  use  of  exponential  cultures  to  study  the  stress  response  could  have  effects  in  the  culturability,  since  the   growth   phase   prior   to   cold   incubation   has   been   identified   as   the   major   determinant   for   maintenance   the   culturability   at   low   temperatures   in   species   as  Vibrio   vulnificus   (Oliver   et   al.,   1991).   Thus,   S.   ruber   may   generate   a   survival   strategy   to   re-­‐adapt   to   the   new   environmental   conditions,   which   would   promote   a   readjustment  of  their  cellular  machinery  to  shift  the  non-­‐culturable  state  to  a  culturable  state.  

                     

Figure  20:  Culturability  and  cell  counts  of  M8  and  M31  strains  under  prolonged  temperature  decrease  (30  days).  All   points   correspond   to   the   average   of   two   independent   measurements,   and   represent   the   number   of   total   cells   determined  by  DAPI  staining  and  FISH  (expressed  as  cells  mL-­‐1  vs  time),  and  the  number  of  cells  grown  on  agar  plates   (expressed  as  CFU  mL-­‐1  vs  time).    

Results  and  Discussion:  Chapter  2  

 

-­‐93-­‐

 

 

2.4.  Metabolome  comparisons  

As   in   the   previous   chapter,   in   order   to   study   the   changes   during   the   different   phases   of   growth   and   the   response   to   adverse   conditions,   standard   microbiological   techniques   were   supplemented   with   a   metabolomic   study   of   chemical   extracts   of   M8   and   M31   strains   by   using   high-­‐field   ICR-­‐FT/MS.   Different   metabolomic  comparisons  were  performed  in  order  to  characterize  the  metabolic  response  in  both  strains.  

 

2.4.1.  Common  metabolome  composition  in  both  strains  along  the  different  phases  of  the  growth  curve   The  complete  set  of  metabolomes  during  the  growth  curve  measurements  of  both  strains  rendered  a  total  of   18,054   unique   masses   signals   at   S/N=1,   from   which   7,174   were   attributed   to   distinct   elementary   compositions  containing  the  elements  C,  H,  O,  N  and  S    (Table  12).  These  7,174  masses  corresponded  to  the   total  masses  used  for  the  statistical  analyses,  which  provide  all  information  about  the  significant  differences   between  different  growth  phases  that  allowed  the  metabolomic  discrimination  of  exponential  and  stationary   phases  of  growth  (Barker  et  al.  2003;  Bylesjö  et  al.  2006;  Trygg  and  Wold  et  al.  2002a,  b).    

Besides,  in  order  to  study  the  changes  during  the  stationary  phase,  the  common  metabolome  composition   during   this   phase   was   also   analyzed,   rendering   a   total   of   11,138   unique   masses,   from   which   4,167   were   attributed   to   distinct   elementary   compositions   (C,   H,   O,   N,S)   (Table   13).   Lastly,   the   common   stationary   metabolome  was  also  considered  to  analyze  the  masses  that  increased  or  decreased  in  intensity  during  this   phase  of  growth  (see  below).  

 

2.4.1.1.  Statistical  analysis  and  models  

Different   multivariate   techniques,   from   unsupervised   principal   component   analysis   (PCA)   to   supervised   partial  least  square  discriminative  analysis  (PLS-­‐DA),  were  used  in  order  to  reduce  the  different  datasets  and   extrapolate  informative  masses  from  the  different  experimental  conditions  (Barker  et  al.  2003;  Bylesjö  et  al.  

2006;  Trygg  and  Wold  et  al.  2002a,  b).  A  multiple  regression  analysis  on  the  different  phases  of  the  growth   curve  revealed  a  clear  separation  among  the  growth  states.  PLS-­‐DA  models  with  Orthogonal  Signal  Correction   (OSC)  were  first  applied  to  the  three  cellular  fractions  analysed  (see  M  y  M).  The  inspection  of  the  models   created  for  E,  CS,  and  CI  fractions  showed  differences  between  different  states  of  growth  (Fig.  S1,  S2).    

       

Results  and  Discussion:  Chapter  2  

The  number  of  common  masses  considered  for  growth  phase  discrimination  after  statistical  analysis  is  also  specified.  

 

Results  and  Discussion:  Chapter  2   three  dependent  variables  (Y1=initial  phase,  Y2=exponential  phase  and  Y3=stationary  phase)  was  always  highly  significant   (p<0.001  for  all)  showing  three  different  groups  corresponding  to  the  initial,  exponential  and  stationary  growth  phases,   all  of  them  analyzed  in  positive  mode.  The  model  was  validated  with  200  permutations,  revealing  the  absence  of  over   fitting.  

 

2.4.1.2.  Analysis  of  discriminative  masses  

The   numbers   of   discriminative   masses   in   each   cellular   fraction   were   between   800   and   990,   where   the  

Results  and  Discussion:  Chapter  2  

 

-­‐96-­‐

 

 

However,   the   most   relevant   markers   for   the   common   discriminative   masses   of   the   stationary   phase   metabolomes   were   mainly   CHO   and   CHON   compounds,   with   both   high   (H:C)   and   low   (O:C)   ratios   (Figure   22b).   Probably   these   compounds   are   aliphatic   in   structure   and   associated   to   some   peptides   and   carbohydrates  and  mainly  saturated  and  unsaturated  lipids,  which  could  be  involved  in  the  composition  of   cell  membrane  (Hertkorn  et  al.,  2007).  Also  during  stationary  phase,  CHO  and  CHON  compounds  that  contain   sulphur   (S)   were   poorly   represented   and   could   be   related   to   a   decrease   of   biosynthetic   processes   requiringing   sulphur,   such   as   amino   acids,   proteins   and   vitamins   (Nyström,   2004;   Sekowska   et   al.,   2000).  

Some  studies  in  Campilobacter  jejuni  and  marine  bacterial  strains  have  showed  changes  in  membrane  fatty   acid  composition  when  the  cells  enter  in  the  stationary  phase,  thereby  increasing  the  surface  hydrophobicity   (Martínez-­‐Rodriguez   &   Mackey,   2005;   Syakti   et   al.,   2006).   These   changes   appear   to   represent   a   restricted   physiological   response   to   the   conditions   existing   in   halophilic   stationary   phase   cultures,   due   to   the   hydrophilic  cell  surface  that  makes  the  cell  more  attractive  to  water  molecules  in  a  water-­‐poor  environment.    

 

Also,  the  hydrated  cell  surface  may  help  the  cell  to  obtain  cytoplasmic  water  and  thereby  prevent  desiccation   (Martínez-­‐Rodriguez  &  Mackey,  2005;  Ventosa,  2006).  

Finally,  we  retrieved  all  the  m/z  values  that  showed  intensities  with  increasing  or  decreasing  values  during   the  stationary  phase  (and  with  respect  to  the  exponential  phase).  In  this  regard,  the  analysis  of  the  stationary   phase   metabolome   showed   about   230   masses   with   increased   intensities   and   325   with   decreased   values,   which   were   concentrated   mainly   in   the   insoluble   cellular   fraction   and   extracellular   fraction   respectively   (Table  13).  Those  masses  were  considered  as  the  most  discriminative  for  the  assay  and  were  used  for  the   metabolite  annotation,  because  it  would  explain  the  most  abrupt  changes  respect  to  the  exponential  phase   (see  below).    

                   

Results  and  Discussion:  Chapter  2   metabolites  of  general  metabolome  databases  (www.metabolome.jp,  www.genome.jp/kegg)  shown  in  grey  in  the  figure.  

(b)  All   discriminating   m/z   values   of   the   stationary   phase   of   the   M8   and   M31   strains   coloured   as   a   function   of   their   elementary  composition,  where  most  discriminative  metabolites  contain  CHO  (only  a  few  metabolites  contain  sulphur  or   nitrogen).  

Results  and  Discussion:  Chapter  2  

 

-­‐98-­‐

 

 

For  the  transition  to  the  stationary  phase,  only  14%  of  the  total  discriminative  masses  could  be  annotated,   with   the   majority   of   them   remaining   unidentified.   Of   the   annotated   masses,   approximately   34%   could   be   associated  to  the  aminosugar  and  aminoacids  metabolisms,  whereas  29%  were  involved  in  the  glycerolipid   and  glycerophospholipid  metabolism  pathways,  being  the  most  important  those  shown  in  Table  14.  Although   the   rest   of   the   identified   metabolites   were   associated   to   cyano-­‐aminoacids   (17%)   and   nitrogen   (10%)   metabolisms,   and   10%   were   distributed   in   different   metabolic   pathways   (Table   S1),   these   metabolites   not   allowed  us  to  speculate  about  a  clear  physiological  response  of  S.  ruber  during  the  stationary  phase.

Altogether,  the  results  suggested  that  the  most  representative  changes  were  related  to  modifications  on  the   composition   of   the   cell   envelope.   For   example,   during   exponential   phase   we   could   identify   compounds   involved  in  the  synthesis  of  peptidoglycan  (N-­‐Acetyl-­‐D-­‐glucosamine,  N-­‐Acetyl-­‐D-­‐mannosamine  and  N-­‐Acetyl-­‐

D-­‐galactosamine),  that  remained  undetected  in  the  extracellular  fraction  during  the  stationary  phase  (Table   14).  The  decrease  of  these  compounds  during  stationary  phase  could  be  related  to  the  size  of  most  bacteria   that  is  considerably  reduced  upon  entry  into  stationary  phase,  being  the  peptidoglycan  a  polymeric  structure   responsible   for   maintaining   cell   shape,   as   well   as   counteracting   the   osmotic   pressure   of   the   cytoplasm   (Nyström,   2004).   Also,   it   can   affect   the   cell   wall   turnover   and   recycling   of   Gram-­‐negative   bacteria   such   as   Escherichia  coli,  in  which  all  of  the  amino  acids  and  amino  sugars  of  peptidoglycan  are  recycled,  making  them   available   for   the   cell   to   resynthesize   more   peptidoglycan   or   to   use   as   an   energy   source   during   stationary   phase  (Park  &  Uehara,  2008).  

Moreover  during  stationary  phase,  changes  in  the  saturation/unsaturation  ratio  and  in  the  length  of  the  acyl-­‐

chain  of  main  membrane  fatty  acids,  such  as  glycerolipids  and  glycerophospholipids  were  recognized  (Table   14).  Studies  in  marine  bacterial  pure  cultures  strains  show  that  the  composition  of  the  phospholipid  fatty  acid   could  be  strongly  influenced  by  both,  the  carbon  source  and  the  growth  phase  (Syakti  et  al.,  2006).  In  some   halophilic   bacteria,   these   changes   may   include   the   increase   in   the   proportion   of   charged   phospholipids   at  

chain  of  main  membrane  fatty  acids,  such  as  glycerolipids  and  glycerophospholipids  were  recognized  (Table   14).  Studies  in  marine  bacterial  pure  cultures  strains  show  that  the  composition  of  the  phospholipid  fatty  acid   could  be  strongly  influenced  by  both,  the  carbon  source  and  the  growth  phase  (Syakti  et  al.,  2006).  In  some   halophilic   bacteria,   these   changes   may   include   the   increase   in   the   proportion   of   charged   phospholipids   at