• No results found

IV. RESULTS  AND  DISCUSSION

2.4.2.4.   Identification  of  stress  response  masses

2.4.2.4.  Identification  of  stress  response  masses  

As   for   the   growth   curves   metabolomes,   all   masses   found   to   be   increased   or   decreased   in   each   of   the   different   stress   responses   were   crosschecked   using   the   MassTRIX   database,   and   the   annotation   was   done   using   the   published   genome   of   the   M31   strain   as   a   reference   (Mongodin   et   al.,   2005).   The   metabolome   modifications   occurring   under   the   different   stress   conditions   assayed   rendered   similar   percentages   of   annotable  metabolites.  Only  13%  of  the  total  stress  discriminative  masses  (increased  or  decreased)  could  be   identified,   whereas   the   rest   remained   unidentified.   Of   the   annotated   masses,   28%   could   be   associated   to   glycerolipid,   glycerophospholipid   and   fatty   acid   metabolisms,   and   to   the   biosynthesis   of   unsaturated   fatty   acid   pathways,   being   the   most   important   those   shown   in   Tables   18,   19,   and   20.   Although   the   rest   of   the   identified  metabolites  were  associated  to  alpha-­‐linolenic  acid  (13%),  glyoxylate  and  dicarboxylate  (9%)  and   cyano-­‐aminoacids  (6%)  metabolisms,  and  44%  were  distributed  in  different  metabolic  pathways  (Table  S2,   S3,   S4).   These   metabolites   did   not   allow   us   to   speculate   about   a   clear   physiological   response   of  S.   ruber   during  the  stress  conditions.

 

 

However,  the  analysis  of  metabolites  associated  to  lipids  and  phospholipids  showed  that  all  three  stresses   produced  a  different  transition  on  the  fatty  acid  saturation/unsaturation  ratios  and  in  the  length  of  their  acyl   chains.   These   results   are   consistent   with   the   fact   that,   under   environmental   stress   conditions,  specific   alterations   in   the   membrane   lipid–fatty   acid   composition   are   required   for   survival   of   the   cell   and,   concurrently,  the  membrane  lipids  are  suggested  to  serve  as  endogenous  reserves  providing  carbon/energy   for  maintenance  requirements  (DiRusso  &  Nystrom,  1998)..  To  mantain  the  membrane  fluidity  and  functions,   enzymatic  remodeling  or  degradation  of  fatty  acids  and  lipids  can  occur  (DiRusso  &  Nystrom,  1998)..  In  this   sense,   glycerophospholipids   can   alter   their   acyl   chain   structure   by   changing   the   ratio   of   (1)   saturation   to   unsaturation,  (2)  cis  to  trans  unsaturation,  (3)  branched  to  unbranched  structures  and  type  of  branching,  and   (4)  acyl  chain  length  (Denich  et  al,  2003)(Figure  26).  These  alterations  can  occur  simultaneously  to  achieve   the  desired  level  of  fluidity,  in  this  case,  during  anoxia,  phospholipids  with  a  high  number  of  double  bonds   (such  as  1-­‐Acyl-­‐sn-­‐glycerol  3-­‐phosphate  (R=C23:10);  Table  18)  decreased  in  intensity  (especially  in  the  cellular   soluble  and  insoluble  fractions),  while  phospholipids  with  a  low  number  of  double  bonds  (such  as  1-­‐Acyl-­‐sn-­‐

glycerol  3-­‐phosphate  (R=C12:5))  increased  (mainly  in  the  extracellular  fraction).  These  results  were  consistent   with  the  description  of  the  masses  shown  in  Table  17,  where  the  number  of  masses  that  increased  during   anoxia  was  higher  in  the  extracellular  fraction.  Similarly,  during  dilution  stress  the  phospholipids  with  a  high   number  of  double  bonds  decreased  in  intensity  or  remained  undetected  (especially  in  the  cellular  soluble  and   insoluble  fractions),  while  phospholipids  with  a  low  number  of  double  bonds  increased  (Table  19).    

 

 

-­‐110-­‐

 

 

Table   18.   Proposed   elemental   composition   of   common   masses   increased   or   decreased   under   oxygen   stress   conditions   (16   h)   and   identified   by   the   Masstrix   database.  The  intensity  of  masses  and  the  metabolic  pathways  involved  are  also  specified.  *  R=Cn:N;  indicates  the  characteristics  of  acyl  chains,  where  Cn  is  the  number   of  carbons  (length)  comprising  the  chains  and  N  the  number  of  double  bonds.  UD=  under  detection  limit;  S=  detected  under  stress  condition;  I=  increased  value  with   respect  to  the  control;  D=  decreased  value  with  respect  to  the  control.  Values  in  brackets  represent  number  of  times.      

 

Detection   Cellular  

fraction   Exp  m/z   Proposed  

composition   Proposed  name   Intensity    

of  peak   Metabolic  pathways  involved   Decreased   CI   387.13678   C14H24N2O9   N-­‐Acetylmuramoyl-­‐Ala  (H+  replaced  by  Na+)   UD   Peptidoglycan  biosynthesis   Decreased   CS   447.12901   C18H25NO10P   2-­‐Acyl-­‐sn-­‐glycero-­‐phosphoserine(R=C10:4)*   UD   Glycerophospholipid  metabolism   Decreased   CS   404.18218   C18H30NO7P   1-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphocholine(R=C9:4)   UD   Glycerophospholipid  metabolism   Decreased   CS   404.18218   C18H30NO7P   2-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphocholine(R=C9:4)   UD   Glycerophospholipid  metabolism   Decreased   CS   443.20527   C19H35NO7P   2-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphoethanolamine  

(R=C13:2)  (H+  replaced  by  Na+)   UD   Glycerophospholipid  metabolism   Decreased   CI   446.22852   C19H38NO7P   1-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphocholine(R=C10:1)  

(H+  replaced  by  Na+)   UD   Glycerophospholipid  metabolism  

Decreased   CI   446.22852   C19H38NO7P   2-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphocholine(R=C10:1)  

(H+  replaced  by  Na+)   UD   Glycerophospholipid  metabolism  

Decreased   CS   412.17283   C20H27O9   sn-­‐3-­‐D-­‐Galactosyl-­‐sn-­‐2-­‐acylglycerol  (R=C10:5)   UD   Glycerolipid  metabolism   Decreased   CS   507.12640   C21H25NO10P   2-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphoserine  (R=C13:6)  

(H+  replaced  by  Na+)   UD   Glycerophospholipid  metabolism  

Decreased   CS   502.21295   C27H34O7P   1-­‐Acyl-­‐sn-­‐glycerol  3-­‐phosphate  (R=C23:10)   D  (0.8)   Glycerolipid  and  Glycerophospholipid   metabolism  

Decreased   CI   529.31653   C27H47NO7P   2-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphoethanolamine  

(R=C21:4)   UD   Glycerophospholipid  metabolism  

Decreased   CS   548.29451   C28H45O9   sn-­‐3-­‐D-­‐Galactosyl-­‐sn-­‐2-­‐acylglycerol  (R=C18:4)  

(H+  replaced  by  Na+)   UD   Glycerolipid  metabolism  

Decreased   CS   631.25129   C30H43NO10P   2-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphoserine  (R=C22:7)  

(H+  replaced  by  Na+)   UD   Glycerophospholipid  metabolism  

 

 

-­‐111-­‐

 

 

Table  18.  Proposed  elemental  composition  of  common  masses  increased  or  decreased  under  oxygen  stress  conditions  (16  h)  and  identified  by  the  Masstrix   database.  

 

Detection   Cellular  

fraction   Exp  m/z   Proposed  

composition   Proposed  name   Intensity    

of  peak   Metabolic  pathways  involved   Decreased   CI   699.40732   C34H63NO10P   2-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphoserine  (R=C26:1)    

(H+  replaced  by  Na+)   UD   Glycerophospholipid  metabolism  

Decreased   CS   723.40814   C36H63NO10P   2-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphoserine  (R=C28:3)  

(H+  replaced  by  Na+)   UD   Glycerophospholipid  

metabolism  

Increased   CI   358.11679   C16H22O7P   1-­‐Acyl-­‐sn-­‐glycerol  3-­‐phosphate  (R=C12:5)   I(2)   Glycerolipid  and  Glycerophospholipid   metabolism  

Increased   CS   296.19776   C17H27O4   1-­‐Acylglycerol  (R=C13:3)   S   Glycerolipid  metabolism  

Increased   E   451.16090   C18H29NO10P   2-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphoserine  (R=C10:2)   I(1.5)   Glycerophospholipid  metabolism   Increased   E   307.26076   C18H36O2   Octadecanoic  acid  (H+  replaced  by  Na+)   I  (3)   Unsaturated  fatty  acids  biosynthesis   Increased   E   329.24518   C20H34O2   (8Z,11Z,14Z)-­‐Icosatrienoic  acid  (H+  replaced  by  Na+)   S   Unsaturated  fatty  acids  biosynthesis   Increased   E   391.35464   C24H48O2   Tetracosanoic  acid  (H+  replaced  by  Na+)   I  (4)   Unsaturated  fatty  acids  biosynthesis   Increased   CI   575.28350   C25H47NO10P   2-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphoserine  (R=C17:0)  

(H+  replaced  by  Na+)   I  (3)   Glycerophospholipid  metabolism  

Increased   CI   522.35542   C26H52NO7P   1-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphocholine  (R=C17:1)   I  (8)   Glycerophospholipid  metabolism   Increased   CI   522.35542   C26H52NO7P   2-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphocholine  (R=C17:1)   I  (8  )   Glycerophospholipid  metabolism   Increased   E   664.52743   C36H74NO7P   1-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphocholine  (R=C27:0)   S   Glycerophospholipid  metabolism   Increased   E   664.52743   C36H74NO7P   2-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphocholine  (R=C27:0)   S   Glycerophospholipid  metabolism   Increased   E   658.49988   C37H69O9   sn-­‐3-­‐D-­‐Galactosyl-­‐sn-­‐2-­‐acylglycerol  (R=C27:1)   S   Glycerolipid  metabolism  

Results  and  Discussion:  Chapter  2  

 

-­‐112-­‐

 

 

The   opposite   situation   was   observed   for   temperature   stress,   where   compounds   with   a   high   number   of   double   bonds   increased   or   were   detected   only   under   stress   (for   example,   1-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐

phosphocholine   (R=C18:6)).   Saturated   compounds,   such   as   1-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphocholine   (R=C10:1),   were  reduced  or  remained  undetected  (Table  20).  In  this  case,  all  identified  compounds  corresponded  to  CS   and   CI   fractions,   which   disagree   with   the   observation   that   membrane   proteins,   lipopolysaccharide,   glycerophospholipids  and  enzymes  could  be  released  during  temperature  stress  (Denich  et  al.,  2003),  since   these  kind  of  compounds  were  not  recognized  in  the  extracellular  fraction.  

 

               

Figure   26:   Possible   glycerophospholipids   modifications   during   environmental   changes.  The   fluidity   of   biological   membranes   is   influenced   by   changes   in   the   phospholipids   composition   that   involve   modifications   in   the   polar   head   groups   (where   R   could   be   serine,   choline,   ethanolamine,   glycerol,   or   inositol)   and   variations   in   the   length   and/or   saturation  level  of  their  fatty  acids  chains  (Denich  et  al.,  2003).    

   

A  similar  response  was  observed  in  the  changes  of  the  length  of  the  acyl-­‐chains  of  phospholipids  under  all   stress  conditions.  For  example,  compounds  with  long  acyl-­‐chains  (R=C26  to  C28),  such  as  2-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐

phosphoserine   (R=C28:3),   decreased   in   intensity   or   remained   undetected,   whereas   compounds   with   short   acyl-­‐chains  (R=C10  to  C17)  increased  (Tables  18  and  19).  Exceptions  to  this  rule  were  1  and  2-­‐Acyl-­‐glycero-­‐3-­‐

phosphocholine,  with  short  acyl-­‐chains  and  low  unsaturation  (R=C10:1)  that  remained  undetected  during  all   stress   conditions   (Tables   18,   19   and   20);   and   the   1   and   2-­‐Acyl-­‐glycero-­‐3-­‐phosphocholine   with   long   but   saturated  acyl  chains  (R=C27:0)  that  were  detected  only  under  oxygen  depletion  (Table  18).  

In  this  sense,  fatty  acids  with  short  chains  have  lower  melting  points  than  longer  chain  length.  In  addition,   longer  chains  promotes  the  packaging  of  the  acyl  chains  making  the  membrane  environment  more  gel-­‐like   (Russell,   1989).   Shorter   chains,   especially   those   with   less   than   12   carbons,   cannot   form   hydrophobic   interactions  with  other  lipids  and  proteins,  increasing  the  fluidity  and  inestability  due  to  the  motion  of  the   free  acyl  chans  ends  (Denich  et  al.,  2003).  

Results  and  Discussion:  Chapter  2  

 

-­‐113-­‐

 

 

Thereby,  different  interactions  between  these  compounds  would  lead  to  adopt  an  optimal  membrane  fluidity   preventing   the   collapse   of   the   cells   under   adverse   conditions   since   the   adaptation   to   fluctuating   fluidity   conditions  through  chain  lenght  alterations  can  only  be  conducted  in  growing  cells  (Russell,  1989).  

Also,  during  oxygen  depletion,  cell  envelope  components  such  as  N-­‐Acetylmuramoyl-­‐Ala,  involved  in  the  first   steps  of  biosynthesis  of  peptidoglycan,  decreased  (Table  20).  The  peptidoglycan  of  the  cell  wall  is  the  primary   stress-­‐bearing   structure   that   dictates   cell   shape,   and   cell   shape   can   be   also   altered   either   genetically   or   environmentally   (Huang   et   al.,   2008).     The   decrease   in   these   compounds   could   also   be   related   to   modificacions  in  the  membrane  composition  which  might  have  forced  the  cells  to  change  shape  as  part  of   the  adaptation  process  to  the  new  environment  or  simply,  cells  were  unable  to  synthetize  these  compounds   in  absent  of  oxygen,  which  also  coud  influence  the  cell  structure.  

                                         

 

 

-­‐114-­‐

 

 

Table   19.  Proposed   elemental   composition   of   common   masses   increased   or   decreased   under   dilution   stress   conditions   (16   h)   and   identified   by   the   Masstrix   database.  The  intensity  of  masses  and  the  metabolic  pathways  involved  are  also  specified.  *  R=Cn:N;  indicates  the  characteristics  of  acyl  chains,  where  Cn  is  the  number   of  carbons  (length)  comprising  the  chains  and  N  the  number  of  double  bonds.  UD=  under  detection  limit;  S=  detected  under  stress  condition;  I=  increased  value  with   respect  to  the  control;  D=  decreased  value  with  respect  to  the  control.  Values  in  brackets  represent  the  number  of  times.      

 

Detection     Cellular  

fraction   Exp.  m/z   Proposed  

composition   Proposed  name   Intensity  

of  peak   Metabolic  pathways  involved   Decreased   CS   447.12901   C18H25NO10P   2-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphoserine  (R=C10:4)*   UD   Glycerophospholipid  metabolism   Decreased   CI   446.22852   C19H38NO7P   1-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphocholine  (R=C10:1)  

(H+  replaced  by  Na+)   UD   Glycerophospholipid  metabolism  

Decreased   CI   446.22852   C19H38NO7P   2-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphocholine  (R=C10:1)  

(H+  replaced  by  Na+)   UD   Glycerophospholipid  metabolism  

Decreased   CS   412.17283   C20H27O9   sn-­‐3-­‐D-­‐Galactosyl-­‐sn-­‐2-­‐acylglycerol  (R=C10:5)   UD   Glycerolipid  metabolism   Decreased   CS   507.12640   C21H27NO10P   2-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphoserine  (R=C13:6)  

(H+  replaced  by  Na+)   UD   Glycerophospholipid  metabolism  

Decreased   CS   537.17354   C23H33NO10P   2-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphoserine  (R=C15:5)  

(H+  replaced  by  Na+)   UD   Glycerophospholipid  metabolism  

Decreased   CI   503.20478   C24H35NO7P   2-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphoethanolamine  

(R=C18:7)  (H+  replaced  by  Na+)   UD   Glycerophospholipid  metabolism   Decreased   CS   575.28344   C25H47NO10P   2-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphoserine  (R=C17:0)  

(H+  replaced  by  Na+)   UD   Glycerophospholipid  metabolism  

Decreased   CS   502.21295   C27H34O7P   1-­‐Acyl-­‐sn-­‐glycerol  3-­‐phosphate  (R=C23:10)   UD   Glycerolipid  and  

Glycerophospholipid  metabolism   Decreased   CI   529.31653   C27H47NO7P   2-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphoethanolamine  

(R=C21:4)   UD   Glycerophospholipid  metabolism  

Decreased   CS   631.25137   C30H43NO10P   2-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphoserine  (R=C22:7)  

(H+  replaced  by  Na+)   D  (0.2)   Glycerophospholipid  metabolism  

 

 

-­‐115-­‐

 

 

Table  19.  Proposed  elemental  composition  of  common  masses  increased  or  decreased  under  dilution  stress  conditions  (16  h)  and  identified  by  the  Masstrix   database  

 

Detection     Cellular  

fraction   Exp.  m/z   Proposed  

composition   Proposed  name   Intensity  

of  peak   Metabolic  pathways  involved   Decreased   CS   596.38499   C33H56O7P   1-­‐Acyl-­‐sn-­‐glycerol  3-­‐phosphate  (R=C29:5)   UD   Glycerolipid  and  

Glycerophospholipid  metabolism   Decreased   CS   723.40814   C36H63NO10P   2-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphoserine  (R=C28:3)  

(H+  replaced  by  Na+)   UD   Glycerophospholipid  metabolism  

Increased   CI   302,06374   C8H16NO9P   N-­‐Acetyl-­‐D-­‐glucosamine  6-­‐phosphate   S   Aminosugars  metabolism  and   Phosphotransferase  system  (PTS)   Increased   CI   302,06374   C8H16NO9P   N-­‐Acetyl-­‐D-­‐mannosamine  6-­‐phosphate   S   Aminosugars  metabolism   Increased   CI   302,06374   C8H16NO9P   N-­‐Acetyl-­‐alpha-­‐D-­‐glucosamine  1-­‐phosphate   S   Aminosugars  metabolism   Increased   CI   302,06374   C8H16NO9P   N-­‐Acetyl-­‐D-­‐galactosamine  6-­‐phosphate   S   Galactose  metabolism  and  

Phosphotransferase  system  (PTS)   Increased   CI   358,11683   C16H22O7P   1-­‐Acyl-­‐sn-­‐glycerol  3-­‐phosphate  (R=C12:5)   I(2)   Glycerolipid  metabolism

Glycerophospholipid  metabolism    

         

 

 

-­‐116-­‐

 

 

Table  20.  Proposed  elemental  composition  of  common  masses  increased  or  decreased  under  temperature  stress  conditions  (16  h)  and  identified  by  the  Masstrix   database.  The  intensity  of  masses  and  the  metabolic  pathways  involved  are  also  specified.  *  R=Cn:N;  indicates  the  characteristics  of  acyl  chains,  where  Cn  is  the  number   of  carbons  (length)  comprising  the  chains  and  N  the  number  of  double  bonds.  UD=  under  detection  limit;  S=  detected  under  stress  condition;  I=  increased  value  with   respect  to  the  control.  Values  in  brackets  represent  the  number  of  times.    

Detection     Cellular  

fraction   Exp  m/z   Proposed  

composition   Proposed  name   Intensity  

of  peak   Metabolic  pathways  involved   Decreased   CS   447.12901   C18H25NO10P   2-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphoserine  (R=C10:4)   UD   Glycerophospholipid  metabolism   Decreased   CS     446.22842   C19H38NO7P   1-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphocholine  (R=C10:1)    

(H+  replaced  by  Na+)   UD   Glycerophospholipid  metabolism  

Decreased   CI   446.22842   C19H38NO7P   2-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphocholine  (R=C10:1)    

(H+  replaced  by  Na+)   UD   Glycerophospholipid  metabolism  

Decreased   CS   507.12640   C21H27NO10P   2-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphoserine  (R=C13:6)    

(H+  replaced  by  Na+)   UD   Glycerophospholipid  metabolism  

Decreased   CI   503.20478   C24H35NO7P  

2-­‐Acyl-­‐sn-­‐glycero-­‐3   phosphoethanolamine   (R=C18:7)    

(H+  replaced  by  Na+)  

UD   Glycerophospholipid  metabolism   Decreased   CI   554.33586   C28H52O7P   1-­‐Acyl-­‐sn-­‐glycerol  3-­‐phosphate  (R=C24:2)    

(H+  replaced  by  Na+)   UD   Glycerolipid  and  Glycerophospholipid  

metabolism  

Decreased   CI   554.33586   C30H50O7P   1-­‐Acyl-­‐sn-­‐glycerol  3-­‐phosphate  (R=C26:5)   UD   Glycerolipid  and  Glycerophospholipid   metabolism  

Decreased   CS   723.40814   C36H63NO10P   2-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphoserine  (R=C28:3)    

(H+  replaced  by  Na+)   UD   Glycerophospholipid  metabolism  

Increased   CI   216.13584   C11H19O4   1-­‐Acylglycerol  (R=C7:1)   I  (3)   Glycerolipid  metabolism  

Increased   CI   358.11682   C16H22O7P   1-­‐Acyl-­‐sn-­‐glycerol  3-­‐phosphate  (R=C12:5)   I  (3)   Glycerolipid  and  Glycerophospholipid   metabolism  

Increased   CS   296.19782   C17H27O4   1-­‐Acylglycerol  (R=C13:3)   S   Glycerolipid  metabolism  

Increased   CI   425.15708   C18H29NO7P   2-­‐Acyl-­‐sn-­‐glycero-­‐phosphoethanolamine  (R=C12:4)    

(H+  replaced  by  Na+)   S   Glycerophospholipid    metabolism  

 

 

-­‐117-­‐

 

 

Table  20.  Proposed  elemental  composition  of  common  masses  increased  or  decreased  under  temperature  stress  conditions  (16  h)  and  identified  by  the  Masstrix   database  

 

Detection     Cellular  

fraction   Exp  m/z   Proposed  

composition   Proposed  name   Intensity  

of  peak   Metabolic  pathways  involved   Increased   CI   443.20501   C19H35NO7P   2-­‐Acyl-­‐sn-­‐glycero-­‐phosphoethanolamine  (R=C13:2)    

(H+  replaced  by  Na+)   I  (3)   Glycerophospholipid  metabolism  

Increased   CS   497.14391   C22H27NO10P   2-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphoserine  (R=C14:7)   I  (1.5)   Glycerophospholipid  metabolism   Increased   CS   450.27458   C22H42O7P   1-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphate  (R=C18:1)   S   Glycerolipid  and  Glycerophospholipid  

metabolism  

Increased   CS   450.27458   C27H39O4   1-­‐Acylglycerol  (R=C23:7)  (H+  replaced  by  Na+)   S   Glycerolipid  metabolism   Increased   CS   504.30932   C25H46NO7P   1-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphocholine  (R=C16:3)   S   Glycerophospholipid  metabolism   Increased   CS   504.30932   C25H46NO7P   2-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphocholine  (R=C16:3)   S   Glycerophospholipid  metabolism   Increased   CI   575.28348   C25H47NO10P   2-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphoserine  (R=C17:0)  

(H+  replaced  by  Na+)   I(3)   Glycerophospholipid  metabolism  

Increased   CS   526.29135   C27H44NO7P   1-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphocholine  (R=C18:6)   S   Glycerophospholipid  metabolism   Increased   CS   526.29135   C27H44NO7P   2-­‐Acyl-­‐sn-­‐glycero-­‐3-­‐phosphocholine  (R=C18:6)   S   Glycerophospholipid  metabolism    

     

Results  and  Discussion:  Chapter  2  

 

-­‐118-­‐

 

 

Finally,   the   identification   of   discriminative   masses   extracted   from   the   statistical   model,   which   defined   a   differentiation   between   the   control  versus   T16   and   T40,   showed   similar   characteristics   of   the   identified   masses  at  16  h  (Table  20).  Thus,  from  temperature  metabolome  composition  analysis  between  16  and  40  h,   only   7%   of   the   total   masses   that   increased   or   decreased   could   be   annotated,   remaining   unidentified   the   majority   of   them.   Of   the   annotated   masses,   39%   of   them   could   be   associated   to   metabolic   pathways   involving  fatty  acids  whereas  the  rest  of  metabolites  were  associated  to  pathways  involving  aminoacids  (6%),   alpha-­‐linolenic  (3%),  and  sugars  metabolisms  (2%)  (Table  S5).  However,  an  increase  of  unsaturated  fatty  acids   and   a   decrease   of   compounds   as   12-­‐methyltetradecanoic   acid,   involved   in   the   two   component   system,   responsible  for  the  biofilm  formation,  mobility  and  virulence,  were  observed  at  low  temperature  (Table  21).  

Both  kind  of  compounds  could  be  related  to  modifications  in  the  cell  membrane,  but  they  could  also  act  as   diffusible   signaling   factors   (DSF)   mediating   an   additional   metabolic   response   to   low   temperature   (Ryan   &  

Dow,  2008).  Compounds  as  12-­‐methyltetradecanoic  and  hexadecanoic  acid  (Table  21)  have  been  identified   as   main   compounds   in   the   whole   fatty   acid   pattern   of  Actinobacteria  isolated   from   Antartic   snow,   which   could   provide   new   insights   into   the   physiological   adaptation   of   this   microorganisms   to   extreme   low   temperatures  (Antony  et  al.,  2009).  On  the  other  hand,  by  two  component  system,  both  compounds  could   also  act  as  communication  molecules  allowing  S.  ruber  cells  to  monitor  the  environment  for  other  cells  and  to   alter  its  behavior  at  a  population-­‐wide  scale  in  response  to  changes  (Waters  &  Bassler,  2005).  Rigidification  of   the  membrane  appears  to  be  the  primary  signal  perceived  by  a  bacterium  when  exposed  to  low  temperature.  

The   perception   and   transduction   of   the   signal   occurs   through   a   two-­‐component   signal   transduction   pathway,typically   comprising   paired   histidine   protein   kinase   (HK)   and   response   regulator   (RR)   proteins   implicated   in   comunication   molecules   perception,   joining   them     as   ligands   and   initiating   the   metabolic   response   (Shivaji   &   Prakash,   2010).   Thus,   a   possible   strategy   adopted   by  S.   ruber   in   order   to   adapt   to   prolonged  cold  incubation  (40  h)  could  involve  both,  changes  in  the  fatty  acid  composition  as  well  as  changes   in  the  cell  communication,  which  could  lead  to  increase  the  final  resistence  of  cells,  changing  the  culturability   pattern  (Antony  et  al.,  2009;  Weichart  &  Kjelleberg,  1996).  

         

 

 

-­‐119-­‐

 

 

Table   21.   Some   proposed   elemental   composition   of   common   masses   increased   or   decreased   under   temperature   stress   conditions   (40h)   and   identified   by   the   Masstrix  database.  The  intensity  of  masses  and  the  metabolic  pathways  involved  are  also  specified.  UD=  under  detection  limit;  I=  increased  value  with  respect  to  the   control;  D=  decreased  value  with  respect  to  the  control.  Values  in  brackets  represent  the  number  of  times.      

 

Detection   Cellular  

fraction   Exp.  m/z   Proposed  

composition   Proposed  name   Intensity  

of  peak   Metabolic  pathways  involved  

Decreased   E   215.13877   C10H18N2O3   Dethiobiotin   D(0.7)   Biotin  metabolism  

Decreased   E   221.09205   C11H12N2O3   5-­‐Hydroxy-­‐L-­‐tryptophan   UD   Tryptophan  metabolism   Decreased   E   237.08690   C11H12N2O4   L-­‐Formylkynurenine     D(0.5)   Tryptophan  metabolism  

Decreased   CI   336.08574   C11H17N3O7S   S-­‐Formylglutathione   UD   Methane  and  Microbial  metabolism  in   diverse  environments  

Decreased   E   243.23178   C15H30O2   12-­‐Methyltetradecanoic  acid   D(0.2)   Two  component  system  

Decreased   CI   241.25253   C16H32O   Hexadecanal   UD   Fatty  acids  metabolism  

Decreased   E   400,34218   C23H45NO4   L-­‐Palmitoylcarnitine   UD   Fatty  acid  metabolism  

Decreased   CI   611.35530   C34H52O8   beta-­‐D-­‐Glucuronoside  (H+  replaced  by  Na+)   D(0.5)   Starch  and  sucrose  metabolism  and     Pentose  and  glucuronate  

interconversions  

Decreased   E   760,48704   C41H72NO8P   Phosphatidylethanolamine;  (H+  replaced  by  Na+)   UD   Glycerophospholipid  metabolism   Increased   CS   173.02102   C3H9O6P   sn-­‐Glycerol  3-­‐phosphate   I(0.5)   Glycerolipid  and  Glycerophospholipid  

metabolism  

Increased   E   330.99530   C6H14O10P2   (R)-­‐5-­‐Diphosphomevalonate  (H+  replaced  by  Na+)   I(0.6)   Unsaturated  fatty  acids  biosynthesis   Increased   CS   173.02102   C8H6O3   alpha-­‐Oxo-­‐benzeneacetic  acid  (H+  replaced  by  Na+)   I(0.5)   Amino  acid  metabolism  

 

 

-­‐120-­‐

 

 

Table  21.  Some  proposed  elemental  composition  of  common  masses  increased  or  decreased  under  temperature  stress  conditions  (40h)  and  identified  by  the   Masstrix  database.  

 

Detection   Cellular  

fraction   Exp.  m/z   Proposed  

composition   Proposed  name   Intensity  

of  peak   Metabolic  pathways  involved   Increased   CS   173.02102   C8H6O3   2-­‐Carboxybenzaldehyde  (H+  replaced  by  Na+)   I(0.5)   Nafhthalene  and  anthracene  

degradation  

Increased   E   251.19807   C14H28O2   Tetradecanoic  acid  (H+  replaced  by  Na+)   I(0.2)   Unsaturated  fatty  acids  biosynthesis   Increased   E   279.22946   C16H32O2   Hexadecanoic  acid  (H+  replaced  by  Na+)   I(2)   Unsaturated  fatty  acids  biosynthesis   Increased   E   335.29206   C20H40O2   Icosanoic  acid  (H+  replaced  by  Na+)   I(2)   Unsaturated  fatty  acids  biosynthesis    

                 

Results  and  Discussion:  Chapter  2  

 

-­‐121-­‐