• No results found

IV. RESULTS  AND  DISCUSSION

2.7.2.   Clustering  analysis

2.7.2.  Clustering  analysis  

 

The   set   of   341   masses   was   evaluated   by   building   a   similarity   dendrogram   elaborated   with   all   data,   but   considering  only  the  presence/absence  of  the  masses  (Figure  30).  Although  M8  and  M31  strains  formed  their   own   clusters,   inter-­‐cluster   similarities   differences   were   observed.   According   to   metabolomic   analyses,   M8   and  M31  shared  about  90%  of  characters.  Also,  as  in  PLS-­‐DA  models,  samples  under  dilution  stress  showed   the   less   similarity   respect   to   the   control   conditions,   and   were   grouped   in   a   separate   cluster,   whereas   temperature  and  oxygen  at  40  h  appeared  on  a  branch  close  to  the  control  condition  in  both  strains  (Fig  30).  

Despite   this   analysis   considers   only   the   presence   of   masses   and   not   their   intensity   values,   the   fact   that   dilution   samples   were   grouped   in   an   independent   cluster   is   consistent   with   the   previous   metabolomic   analyses  where  the  osmotic  stress  was  the  stress  condition  with  more  significance  than  the  others  conditions   (see   Fig.   24).   As   mentioned   in   previous   sections,  S.   ruber   requires   at   least   15%   for   their   optimal   growth   (Antón  et  al.  2002),  so  the  growth  at  lower  salinity  could  involve,  among  others,  inactivation  of  membrane-­‐

bound   enzymes   which   are   sensitive   to   the   salt   concentration   in   the   medium,   requiring   high   salt   concentration  for  their  optimal  activity  (Ventosa  et  al.,  1998).  In  addition,  many  intracellular  enzymes  could   be  inactive  since  most  S.  ruber  enzymes  have  their  optimal  activity  at  high  concentrations  of  intracellular  K+,   which  would  be  affected  at  low  salinities  (Oren  &  Mana,  2002).  Also,  the  fact  that  temperature  and  oxygen  at   40   h   appears   close   to   the   control   suggests   that   in   both   cases   several   adaptative   processes   can   occur   to   modify  their  physiological  properties,  distinguishing  them  from  the  rest  of  samples  but  not  from  the  control   condition   (Fig.   28).   Thus,   at   low   temperature,   cells   could   be   in   a   viable   state   (Coutard   et   al.,   2007)   as   has   been  proven  by  the  culturabilty  changes  (Figs  19  and  20)  whereas  cells  could  survive  to  the  lack  oxygen  and   low  pH  by  photophosphorylation  processes,  as  ocurrs  in  Halobacteria  (Hartmann  et  al.,  1980).  

 

Thus,   MALDI-­‐TOF   MS   analysis   permited   the   determination   of   the   phenotypic   response   under   stress   conditions  in  the  S.  ruber  strains.  This  phenotyphical  response  in  most  cases  coincided  with  the  metabolomic   analysis,  becoming  in  a  rapid  tool  for  phenotypic  screening  and  recognition  of  transient  metabolic  states.  

Results  and  Discussion:  Chapter  2  

 

-­‐131-­‐

 

 

   

               

Figure   30:   MALDI-­‐TOF   similarity   dendrogram   based   on   binary   data.  Dendogram   showing   the   Euclidean   distance   by   considering  the  presence-­‐absence  of  masses.  The  control  condition  is  marked  with  an  asterisk.  Dotted  boxes  show  the   clear   similarity   of   diluted   samples   which   are   in   an   independent   cluster   of   the   control,   whereas   grey   boxes   show   the   similarity  of  low  temperature  sample  (40  hr)  respect  to  control  condition  in  M8,  which  was  not  observed  in  M31.  

 

2.8.  Conclusions  

 

A   metabolomic   study   by   means   of   high   resolution   mass   spectrometry   (ICR-­‐FT/MS)   was   performed   to   understand  whether  the  modifications  of  the  environmental  conditions  were  mirrored  by  a  metabolic  change   of   the  S.   ruber   cells,   in   a   similar   approach   previously   used   for   a   biogeographycal   study   (Chapter   1).   In   addition,   the   study   was   complemented   by   means   of   some   physiological   data   as   culturablity,   total   cell   numbers,  and  FISH-­‐detectable  cells  (as  an  indication  of  its  ribosomal  content).  During  the  stationary  phase,   only  9%  of  the  DAPI  stained  cells  grew  onto  the  culture  plates,  whereas  the  FISH  counts  only  dropped  to  90%.  

Gradual  loss  of  bacterial  culturability  during  stationary  phase  could  be  the  result  of  the  enhancing  the  cell   capacity  to  manage  oxidative  stress,  increasing  the  oxidized  proteins  and  loosing  gradually  the  ability  of  cells   to  reproduce  (Nyström,  2001).  But,  another  model  suggests  that  the  apparent  loss  of  viability  of  starved  cells   is   a   programmed   and   adaptive   response   in   which   the   cells   enter   a   reversible   non-­‐culturable   state   i.e.   the   theory   of   the   induction   of   viable   but   non-­‐culturable   (VBNC)   cells   (Nyström,   2001).   Bacteria   enter   into   this  

“dormant”   state   in   response   to   one   or   more   environmental   stresses   which   might   otherwise   ultimately   be   lethal  to  the  cell  (Oliver,  1999).  

 

Results  and  Discussion:  Chapter  2  

 

-­‐132-­‐

 

 

Similarly,  all  stress  conditions  implied  an  abrupt  drop  in  the  culturability  of  both  strains,  reaching  the  minimal   values  after  16  h,  but  they  retained  similar  FISH  detection  rates  as  occurred  in  the  exponential–stationary   phase  transition.  Contrarily  to  the  anoxia  and  dilution  stresses,  the  prolonged  incubation  for  about  40  h  at   low   temperature   implied   a   100%   recovery   of   culturability.   This   fact   could   not   be   correlated   to   the   metabolomic  changes  observed,  since  the  differentiation  between  T16  and  T40  was  not  possible.  In  addition,   this  phenomenon  was  observed  even  when  the  time  of  incubation  at  low  temperature  was  prolonged  up  to   30   days   (Fig.   20)   suggesting   that,   under   low   temperature   incubation,  S.   ruber   may   generate   a   survival   strategy  to  re-­‐adapt  to  the  new  environmental  conditions,  increasing  the  stability  of  cells  after  extended  cold   incubation  (Weichart  &  Kjelleberg,  1996)  and  recovering  the  culturability  as  occurred  in  species  such  as  V.  

parahaemolyticus    (Coutard  et  al.,  2007).  

 

In  all  the  cases,  the  qualitative  metabolome  composition  of  both  strains  in  the  same  metabolic  conditions   was   at   least   95%   identical,   and   only   <5%   of   the   metabolites   were   unique   in   one   or   another   strain.   This   is   consistent  with  the  fact  that  M8  and  M31  shared  around  90%  of  their  genes,  or  in  other  words,  there  are   10%  strain-­‐specific  genes  (Peña  et  al.,  2010).  In  this  sense,  previous  metabolomic  analysis  have  indicated  that   the  cellular  soluble  and  extracellular  fractions  of  M8  contained  more  metabolites  involved  in  amino  acids,   carbohydrates   and   fatty   acids   pathways   than   the   equivalent   fractions   of   M31   (Peña   et   al.,   2010).   In   this   thesis,  isolating  the  common  masses  and  focusing  on  those  that  were  quantitatively  characteristic  (increased   and/or  decreased  in  their  relative  intensities),  the  degree  of  dissimilarity  of  the  metabolomes  was  defined.  

Among  all  conditions  assayed,  and  particularly  in  the  proposed  models  (Fig.  21  and  Fig.  23),  the  metabolome   composition   during   anoxia   showed   less   significant   differences   respect   to   the   control   state,   whereas   the   dilution  and  temperature  stresses,  and  the  transition  from  the  exponential  to  the  stationary  phase,  showed   clearer  common  metabolome  shifts.  However,  the  reduced  modifications  of  the  metabolome  under  oxygen   depletion   in   the   soluble   cellular   fraction   (Fig.   23)   did   not   imply   that   there   was   no   response   to   anoxia,   as   significant  differences  to  the  control  state  were  found  in  the  extracellular  fraction  (Table  17  and  Figures  S3-­‐

S4).  In  this  regard,  the  changes  observed  may  not  be  only  due  to  the  oxygen  depletion  of  the  media,  but  also   to  a  decrease  in  the  pH  from  7.2  to  5.8.  Salinibacter  ruber  showed  a  decrease  in  the  growth  yields  when  pH   was   reduced   to   6.0   (Antón   et   al.,   2002).   The   strict   aerobic   nature   of  S.   ruber,   together   with   the   growth   inhibition   due   to   acidification,   suggest   that   the   changes   in   the   metabolomic   composition   of   the   soluble   cellular   fraction   may   be   also   related   to   the   difficulties   in   its   energy   gain   yields   for   maintaining   an   active   metabolism  since  the  ions,  in  particular  the  proton  and  /or  the  sodium  electrochemical  gradients  across  the   membrane,  are  crucial  for  the  bioenergetic  conditions.    

Results  and  Discussion:  Chapter  2  

 

-­‐133-­‐

 

 

The  effect  of  1  unit  pH  difference  between  cytoplasm  and  external  medium  is  59  mV  at  25ºC,  and  70mV  at   80ºC  and  a  large  difference  of  pH  (Δ  pH)  can  only  be  maintained  with  a  membrane  that  has  very  low  proton   permeability   (Konings   et   al.,   2002).   However,   as   in  Halobacteria,  the   energy   production   in   the   absence   of   oxygen   could   be   accomplished   by   photophosphorylation   (Hartmann   et   al.,   1980).  S.   ruber   retinal   proteins   (xanthorhodopsin)   located   in   the   cell   membrane   could   mediate   the   first   step   in   energy   transduction,   the   conversion   of   light   energy   into   a   electrochemical   gradient,   emerging   apparently   in   response   to   environmental  conditions  (Balashov  &  Lanyi,  2007).  

 

ICR-­‐FT/MS  approach  has  been  suitable  to  visualize,  in  a  high  dynamic  range  and  with  precision,

 

thousands  of   relevant  metabolites  out  of  the  immense  chemical  diversity  that  was  dynamically  changing  during  the  stress   situations.   However,   accurate   metabolite   identification   and   differentiation   at   the   isomer   level   can   only   be   undertaken   using   classical   analytical   chemistry   approaches.   Altogether,   the   changes   in   the   balance   of   molecules  involved  in  the  cell  membrane  components,  which  maintain  an  optimal  fluidity  and  viscosity  of  the   membrane,   were   more   important   than   those   occurring   intracellularly.   In   this   regard,   other   significant   membrane  changes  such  as  outer  and  inner  protein-­‐membrane  and  LPS  patterns  were  not  detected  during   stress   conditions.   Only   specific   differences   between   strains   were   observed   which   not   rule   out   that   other   changes,  at  functional  level  of  these  compounds  may  be  occurring.  In  this  regard,  MALDI-­‐TOF   MS   analysis   showed   small   phenotypic   differences   in   the   protein   pattern   during   the   different   studied   stress   conditions.  

Specific  differences  in  the  protein  patterns  among  both  strains  are  consistent  with  their  genomic  differences   and  also  with  previous  studies  which  showed  that  the  main  metabolomic  differences  among  M8  and  M31   strains  are  related  to  molecules  released  to  the  medium  or  loosely  attached  to  the  cell  surface  that  could   have  been  released  during  the  sampling  processing  (Peña  et  al.,  2010).  Nevertheless,  metagenomic  analysis   of  saturated  brines  revealed  the  presence  of  three  highly  variable  regions  or  metagenomic  islands  in  the  S.  

ruber  genome.  These  regions  were  constituted  by  genes  involved  in  cell  surface  polysaccharide  biosynthesis   of  the  cell  wall  and  DNA-­‐related  enzymes,  which  suggested  that  the  variation  at  the  level  of  cell  envelopes  in   an  environment  devoid  of  grazing  pressure  probably  reflecting  a  global  strategy  of  survival,  for  example  to   escape  phage  predation  (Pašic  et  al.,  2009).    

       

Results  and  Discussion:  Chapter  2  

 

-­‐134-­‐

 

 

Environmental  changes  may  have  diverse  effects  on  the  function  of  membrane  associated  enzymes,  including   those  required  for  the  synthesis  of  envelope  components,  such  as  lipid  A  and  peptidoglycan  (DiRusso  et  al.,  

 

 

 

 

 

 

 

 

 

 

CHAPTER  3  

 

 

 

 

 

 

 

 

 

 

Results  and  Discussion:  Chapter  3  

 

-­‐137-­‐  

 

CHAPTER  3:  Dispersal  mechanisms  of  extremely  halophilic  microorganisms