• No results found

IV. RESULTS  AND  DISCUSSION

1.3.3.   Discriminative  analysis  of  Mediterranean  strains

   

1.3.3.Discriminative  analysis  of  Mediterranean  strains    

An  independent  experiment  was  performed  to  evaluate  the  metabolomic  composition  of  four  replicates   from  five  Mediterranean  strains:  P13  and  P18  from  Alicante,  M8  and  M31  from  Majorca,  and  IL3  from  

Results  and  Discussion:  Chapter  1

 

elaborated  to  the  discriminative  analysis  of  the  Mediterranean  strains.  The  soluble  cellular  fraction  was   chosen  as  representative  in  the  OPLS-­‐DA  model,  which  rendered  equivalent  but  clearer  results  than  PLS-­‐

DA,   showing   a   clear   separation   between   the   three   groups   of   strains   (Fig.   17).   Therefore,   these   differences  observed  between  different  strains  may  be  attributed  to  strain-­‐specific  metabolisms  rather   than  sample-­‐to  sample  variations.   pathways  (confirmed  by  KEGG  and  Japanese  metabolome  database).  

   

In   contrast   to   previous   results   (Peña   et   al.,   2005),   when   searching   for   discriminative   phenotypes   at   a   more  reduced  geographical  scale  using  the  ICR-­‐FT/  MS  approach,  a  phenotypic  segregation  in  individual   locations  was  observed  (Fig.  17a).  The  main  discriminative  metabolomics  profile  features  were  different   from  those  giving  resolution  at  a  larger  geographical  scale.    

 

A  

B  

Results  and  Discussion:  Chapter  1

 

-­‐81-­‐  

 

In  such  cases,  geographical  differences  were  associated  to  strain-­‐specific  compositions  of  N-­‐containing   molecules   (Fig.   17b).   The   confrontation   of   their   exact   masses   with   the   KEGG   and   the   Japanese   metabolome  database  (www.metabolome.jp)  indicated  that  the  discriminative  molecules  were  involved   primarily   in   the   core   metabolism   (that   is,   carbohydrate,   amino   acid,   and   fatty   acid   biosynthesis   and   metabolism).  

   

1.4.Conclusions  

These  findings  revealed  that  intraspecific  metabolic  diversity  of  S.  ruber  can  be  readily  detected  by  the   ICR-­‐FT/MS   approach   and   that   such   diversity   can   be   associated   to   different   geographical   patterns   at   different  metabolic  levels,  which  could  not  be  revealed  by  standard  genetic  methods  previously  used  to   assess  biogeography  of  prokaryotes  (Ramette  &  Tiedje,  2007;  Whitaker  et  al.,  2003).  

 

MLSA  approach,  based  on  different  gene  data  sets,  did  not  resolve  putative  genetic-­‐geographic  patterns,   as  the  genetic  divergence  may  be  too  subtle  for  the  given  selection  of  genes.  However,  one  must  take   into  account  that,  despite  the  fact  that  large  sets  of  concatenated  genes  tend  to  reflect  the  organismal   phylogeny  (Soria-­‐Carrasco  et  al.,  2007),  perhaps  only  full  genome  sequences  may  reflect  geographical   isolation  in  the  strain  collection  of  S.  ruber.  This  could  result  in  accordance  with  the  taxa  segregation   that   correlates   with   the   average   nucleotide   or   amino-­‐acid   identity   of   shared   genes   (Konstantinidis   &  

Tiedje,  2005).However,  the  still  sparse  database  of  full  genomes,  makes  the  metabolomic  approach  a   fast   and   less   expensive   alternative   for   revealing   prokaryotic   biogeography,   with   the   added   value   of   being  discriminative  at  different  levels  at  the  geographical  scale.  

It  seems  clear  that  different  studied  regions  led  to  the  isolation  of  strains  sharing  common  metabolic   traits,   such   as,   the   distinct   production   of   sulfonolipid   derivates.   However,   differences   were   generally   related   to   quantitative   composition   yields,   rather   than   qualitative   production   of   distinct   compounds.  

Nevertheless,   at   the   molecular   level,   these   facts   could   be   also   attributed   to   transcriptional   or   posttranscriptional   regulations   rather   than   composition   changes   in   genes   at   the   genomic   level.   In   addition,   the   metabolic   differences   correlated   with   the   geographical   areas,   influenced   perhaps   by   environmental  conditions  such  as  climate  and  distance,  since  Peruvian  and  Mediterranean  strains  were   found  as  the  most  different.    

   

Results  and  Discussion:  Chapter  1

 

-­‐82-­‐  

 

The  major  forces  for  these  differences  may  be  related  to  their  distinct  response  to  the  environmental   conditions  of  the  sites  where  they  had  been  isolated,  since,  for  example,  the  Peruvian  salterns  are  not   only  over  10,000  km  away  from  the  rest  of  the  sampling  sites,  but  they  are  also  at  an  altitude  of  3,500   m.    

At  this  site,  the  temperature  changes  and  solar  radiation  are  clearly  different  from  those  at  sea  level.    

Thus,  discriminative  metabolites  identified  as  terpenoids  or  fatty  acids  might  be  related  to  membrane   components,   being   the   latter   the   most   adaptable   molecules   in   response   to   environmental   conditions   (Denich  et  al.,  2003;  Sajbidor,  1997).  In  brief,  ICR-­‐FT/MS  approach  showed  to  have  a  higher  resolution   power   for   revealing   fine-­‐scale   diversity,   bearing   a   great   potential   for   the   study   of   biogeographical   patterns  in  many  other  non-­‐extremophilic  microorganisms.  

                                           

 

 

 

 

 

 

 

 

 

 

CHAPTER  2  

 

 

 

 

 

 

 

 

 

 

Results  and  Discussion:  Chapter  2  

 

-­‐85-­‐

 

 

CHAPTER  2:  Survival  and  response  to  adverse  conditions  in  S.  ruber  M8  and  M31  strains    

2.1.  Background  

As   described   in   the   previous   chapter,   the   use   of   the   metabolomic   approach   by   high-­‐field   ion   cyclotron   Fourier   transform   mass   spectrometry   (ICR-­‐FT/MS)   allowed   to   discern   biogeographical   patterns   in   S.   ruber   populations   worldwide   distributed.   This   permitted   a   non-­‐targeted   search   for   special   metabolic   traits   considered  as  relevant  in  the  organism’s  phenotype,  showing  a  higher  resolution  power  than  the  molecular   techniques  previously  applied  in  S.  ruber  population  studies  (Antón  et  al.,  2008;  Rosselló-­‐Mora  et  al.,  2008).  

In  this  chapter,  a  combination  of  conventional  cultivation  methods,  molecular  techniques  and  a  metabolomic   approach   were   applied   to   study   the   main   growth   features   of   the   closest  S.   ruber   strains     (M8   and   M31)   hitherto   isolated   and   sequenced   (Peña   et   al.,   2010).   Special   attention   has   been   focused   on   the   changes   occurring  in  the  transition  from  the  exponential  growth  to  the  stationary  phase,  and  the  response  to  three   major  different  environmental  stresses  in  which  S.  ruber  may  be  exposed  in  its  natural  hypersaline  habitat  :  i)   oxygen   depletion,   ii)   dilution   of   salts   present   in   the   culture   medium,   and   iii)   decrease   in   the   incubation   temperature.    

 

2.2.  Growth  curves  

Growth  curves  are  widely  used  in  Microbiology  to  study  the  increase  in  population  size  or  biomass  of  a  given   microorganism.   In   liquid   culture,   most   of   bacterial   growth   displays   a   characteristic   four-­‐phase   pattern   of   growth.  The  initial  lag  phase  comprises  a  period  of  slow  growth  in  which  the  bacteria  are  adapting  to  the  new   incubation  conditions.  This  phase  is  followed  by  a  logarithmic  phase  in  which  the  growth  is  optimum  and  the   cell   numbers   increase   at   ever   increasing   rates   with   time.     After,   a   stationary   phase   occurs,   when   culture   enters  in  a  steady-­‐state  equilibrium  in  which  the  rate  of  cell  growth  is  balanced  by  the  rate  of  cell  death.  The   death  phase  occurs  because  of  a  loss  of  limiting  nutrients  (due  to  their  incorporation  into  cells  during  log-­‐

phase   growth)   or   a   build-­‐up   of   toxins   (due   to   their   release   during   log-­‐phase   growth,   e.g.,   fermentative   products).