• No results found

LetX be a smooth variety, andE,F vector bundles onX of rankse, f respec-tively. Assume there is a mapφ:E → F. The Porteous (or Thom-Porteous) formula applies in this case, and describes the Chow class of thedegeneracy loci Mk(φ). Here,Mk(φ) is the locus onX whereφhas rank≤k.

Theorem B.3.1 ([3264, see chapter 12]). Assume thatMk(φ)has codimension (ek)(fk), andk=e−1< f. Then

The fraction of Chern classes is purely formal. The Porteous formula is actually a large generalization of this, but the above version is all we need.

Bibliography

[3264] David Eisenbud and Joe Harris.3264 and all that—a second course in algebraic geometry. Cambridge University Press, Cambridge, 2016, pp. xiv+616.isbn: 978-1-107-60272-4.doi:

10.1017/CBO9781139062046.

[Abr+99] D. Abramovich et al. “Torification and Factorization of Birational Maps”. In:ArXiv Mathematics e-prints (Apr. 1999). eprint:

math/9904135.

[Ame07] E. Amerik. “A computation of invariants of a rational self-map”.

In:ArXiv e-prints(July 2007). arXiv: 0707.3947[math.AG]. [Ara12] Donu Arapura.Algebraic geometry over the complex numbers.

Universitext. Springer, New York, 2012, pp. xii+329.isbn:

978-1-4614-1808-5.doi:10.1007/978-1-4614-1809-2. [BD85] A. Beauville and R. Donagi. “La variété des droites d’une

hypersurface cubique de dimension 4”. In:C.R. Acad. Sc. Paris Sér I (1985), pp. 703–706.

[Bea+16] A. Beauville et al.Rationality Problems in Algebraic Geometry.

Lecture Notes in Mathematics, No. 2172. Springer-Verlag, New York-Heidelberg, 2016, pp. xvi+496.isbn: 978-3-319-46208-0.

[BH03] F. Berchtold and J. Hausen. “Cox rings and combinatorics”. In:

ArXiv Mathematics e-prints(Nov. 2003). eprint:math/0311105.

[CC09] F. Cools and M. Coppens. “Star points on smooth hypersurfaces”.

In:ArXiv e-prints(Mar. 2009). arXiv:0903.2005[math.AG]. [CCS97] G. Canonero, M. V. Catalisano, and M. E. Serpico. “Inflection

points of cubic hypersurfaces”. In:Boll. Un. Mat. Ital. B (7)11.1 (1997), pp. 161–185.

[CD02] Ciro Ciliberto and Vincenzo Di Gennaro. “Boundedness for surfaces on smooth fourfolds”. In:J. Pure Appl. Algebra 173.3 (2002), pp. 273–279.issn: 0022-4049.doi:

10.1016/S0022-4049(02)00040-3.url:

https://doi.org/10.1016/S0022-4049(02)00040-3.

[CG72] C. Herbert Clemens and Phillip A. Griffiths. “The intermediate Jacobian of the cubic threefold”. In:Ann. of Math. (2)95 (1972), pp. 281–356.issn: 0003-486X.doi:10.2307/1970801.url:

http://dx.doi.org/10.2307/1970801.

Bibliography

[CLS11] David A. Cox, John B. Little, and Henry K. Schenck.Toric varieties. Vol. 124. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2011, pp. xxiv+841.isbn:

978-0-8218-4819-7.doi:10.1090/gsm/124.url:

https://doi.org/10.1090/gsm/124.

[CMP17] James Carlson, Stefan Müller-Stach, and Chris Peters.Period mappings and period domains. Vol. 168. Cambridge Studies in Advanced Mathematics. Second edition of [ MR2012297].

Cambridge University Press, Cambridge, 2017, pp. xiv+562.isbn:

978-1-316-63956-6.

[Col86] Alberto Collino. “The Abel-Jacobi isomorphism for the cubic fivefold”. In:Pacific J. Math.122.1 (1986), pp. 43–55.issn:

0030-8730.url:http://projecteuclid.org/euclid.pjm/1102702120.

[CP15] Izzet Coskun and Artie Prendergast-Smith. “Eckardt loci on hypersurfaces”. In:Comm. Algebra 43.8 (2015), pp. 3083–3101.

issn: 0092-7872.doi:10.1080/00927872.2014.910798.url:

https://doi.org/10.1080/00927872.2014.910798.

[Deb+10] O. Debarre et al. “Pseudoeffective and nef classes on abelian varieties”. In:ArXiv e-prints(Mar. 2010). arXiv:1003.3183 [math.AG].

[DF12] V. Di Gennaro and D. Franco. “Noether-Lefschetz Theory with base locus”. In:ArXiv e-prints (May 2012). arXiv:1205.4528 [math.AG].

[Dol12] Igor V. Dolgachev.Classical algebraic geometry. A modern view.

Cambridge University Press, Cambridge, 2012, pp. xii+639.isbn:

978-1-107-01765-8.doi:10.1017/CBO9781139084437. url:

https://doi.org/10.1017/CBO9781139084437.

[FL82] William Fulton and Robert Lazarsfeld. “Positivity and excess intersection”. In:Enumerative geometry and classical algebraic geometry (Nice, 1981). Vol. 24. Progr. Math. Birkhäuser, Boston, Mass., 1982, pp. 97–105.

[Ful98] William Fulton.Intersection theory. Second. Vol. 2. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics].

Springer-Verlag, Berlin, 1998, pp. xiv+470.url:

https://doi.org/10.1007/978-1-4612-1700-8.

[GH94] Phillip Griffiths and Joseph Harris. Principles of algebraic geometry. Wiley Classics Library. Reprint of the 1978 original.

John Wiley & Sons, Inc., New York, 1994, pp. xiv+813.isbn:

0-471-05059-8.url:https://doi.org/10.1002/9781118032527.

[Gre84] Mark L. Green. “Koszul cohomology and the geometry of projective varieties”. In:J. Differential Geom. 19.1 (1984), pp. 125–171.issn:

0022-040X.url:http://projecteuclid.org/euclid.jdg/1214438426.

[GS14] S. Galkin and E. Shinder. “The Fano variety of lines and rationality problem for a cubic hypersurface”. In:ArXiv e-prints (May 2014). arXiv:1405.5154[math.AG].

Bibliography [Har77] Robin Hartshorne.Algebraic geometry. Graduate Texts in

Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977.

isbn: 0-387-90244-9.

[Har95] Joe Harris.Algebraic geometry. Vol. 133. Graduate Texts in Mathematics. A first course, Corrected reprint of the 1992 original.

Springer-Verlag, New York, 1995, pp. xx+328.isbn: 0-387-97716-3.

[Has00] Brendan Hassett. “Special cubic fourfolds”. In:Compositio Math.

120.1 (2000), pp. 1–23. issn: 0010-437X.url:

https://doi.org/10.1023/A:1001706324425.

[Has16] B. Hassett. “Cubic fourfolds, K3 surfaces, and rationality questions”. In:ArXiv e-prints (Jan. 2016). arXiv:1601.05501 [math.AG].

[Has98] Brendan Hassett. “Special cubic fourfolds”. In: (1998).url:https:

//www.math.brown.edu/~bhassett/papers/cubics/cubiclong.pdf.

[HK06] K. Hulek and R. Kloosterman. “The L-series of a cubic fourfold”.

In:ArXiv Mathematics e-prints(Jan. 2006). eprint:math/0601207. [HT99] B. Hassett and Y. Tschinkel. “Rational curves on holomorphic

symplectic fourfolds”. In:ArXiv Mathematics e-prints(Oct. 1999).

eprint:math/9910021.

[IM08] Atanas Iliev and Laurent Manivel. “Cubic hypersurfaces and integrable systems”. In:Amer. J. Math.130.6 (2008),

pp. 1445–1475.issn: 0002-9327. doi:10.1353/ajm.0.0032.url:

https://doi.org/10.1353/ajm.0.0032.

[Kol96] János Kollár.Rational curves on algebraic varieties. Vol. 32.

Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 1996, pp. viii+320.isbn:

3-540-60168-6.doi:10.1007/978-3-662-03276-3.url:

https://doi.org/10.1007/978-3-662-03276-3.

[KUT17] K. Kohn, B. I. Utstøl Nødland, and P. Tripoli. “Secants, bitangents, and their congruences”. In:ArXiv e-prints(Jan. 2017). arXiv:

1701.03711[math.AG].

[Lan94] J. M. Landsberg. “On second fundamental forms of projective varieties”. In:Invent. Math. 117.2 (1994), pp. 303–315.issn:

0020-9910.doi:10.1007/BF01232243.url:

https://doi.org/10.1007/BF01232243.

[Lat16] R. Laterveer. “A remark on the motive of the Fano variety of lines of a cubic”. In:ArXiv e-prints(Nov. 2016). arXiv:1611.08818 [math.AG].

103

Bibliography

[Laz04] Robert Lazarsfeld.Positivity in algebraic geometry. I. Vol. 48.

Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Classical setting: line bundles and linear series.

Springer-Verlag, Berlin, 2004, pp. xviii+387.isbn: 3-540-22533-1.

doi:10.1007/978-3-642-18808-4.url:

https://doi.org/10.1007/978-3-642-18808-4.

[M2] Daniel R. Grayson and Michael E. Stillman.Macaulay2, a software system for research in algebraic geometry. Available at

http://www.math.uiuc.edu/Macaulay2/.

[Man96] Laurent Manivel. “Théorèmes d’annulation sur certaines variétés projectives”. In:Comment. Math. Helv.71.3 (1996), pp. 402–425.

issn: 0010-2571.doi:10.1007/BF02566427.url:

https://doi.org/10.1007/BF02566427.

[Mat86] Hideyuki Matsumura.Commutative ring theory. Vol. 8. Cambridge Studies in Advanced Mathematics. Translated from the Japanese by M. Reid. Cambridge University Press, Cambridge, 1986, pp. xiv+320.isbn: 0-521-25916-9.

[Mbo17] R. Mboro. “Remarks on the CH_2 of cubic hypersurfaces”. In:

ArXiv e-prints(Jan. 2017). arXiv:1701.04488[math.AG]. [MO18] Giovanni Mongardi and John Christian Ottem. “Curve classes on

irreducible holomorphic symplectic varieties”. To appear shortly.

2018.

[Mor84] David R. Morrison. “Algebraic cycles on products of surfaces”. In:

Proc. Algebraic Geometry Symposium. T¯ohoku University, 1984, pp. 194–210.

[Nue17] Howard Nuer. “Unirationality of moduli spaces of special cubic fourfolds and K3 surfaces”. In:Algebr. Geom.4.3 (2017),

pp. 281–289.issn: 2214-2584.doi:10.14231/AG-2017-015. url:

https://doi.org/10.14231/AG-2017-015. [Po11] Francesco Polizzi

(https://mathoverflow.net/users/7460/francesco-polizzi).viewing the second fundamental form as a tensor. MathOverflow.

URL:https://mathoverflow.net/q/55709 (version: 2011-02-18).

eprint:https://mathoverflow.net/q/55709.url:

https://mathoverflow.net/q/55709.

[Sai74] B. Saint-Donat. “Projective Models of K - 3 Surfaces”. In:

American Journal of Mathematics 96.4 (1974), pp. 602–639.issn:

00029327, 10806377.url:http://www.jstor.org/stable/2373709.

[Shi79] Tetsuji Shioda. “The Hodge conjecture for Fermat varieties”. In:

Math. Ann. 245.2 (1979), pp. 175–184.issn: 0025-5831.doi:

10.1007/BF01428804.url: https://doi.org/10.1007/BF01428804.

[Voi02a] C. Voisin. “K-correspondences and intrinsic pseudovolume forms”.

In:ArXiv Mathematics e-prints(Dec. 2002). eprint: math/0212110.

Bibliography [Voi02b] Claire Voisin.Hodge theory and complex algebraic geometry. I.

Vol. 76. Cambridge Studies in Advanced Mathematics. Translated from the French original by Leila Schneps. Cambridge University Press, Cambridge, 2002, pp. x+322.isbn: 0-521-80260-1.url:

https://doi.org/10.1017/CBO9780511615344.

[Voi03] Claire Voisin.Hodge theory and complex algebraic geometry. II.

English. Vol. 77. Cambridge Studies in Advanced Mathematics.

Translated from the French by Leila Schneps. Cambridge University Press, Cambridge, 2003, pp. x+351.isbn: 978-0-521-71802-8.

[Voi06] C. Voisin. “On the Chow ring of certain algebraic hyper-K\“ahler manifolds”. In:ArXiv Mathematics e-prints(Feb. 2006). eprint:

math/0602400.

[Voi86] C. Voisin. “Theoreme de Torelli pour les cubiques de P5 .” In:

Inventiones mathematicae86 (1986), pp. 577–602.url:

http://eudml.org/doc/143409.

105