• No results found

Geodesic Webs of Hypersurfaces

N/A
N/A
Protected

Academic year: 2022

Share "Geodesic Webs of Hypersurfaces"

Copied!
11
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

arXiv:0812.2126v1 [math.DG] 11 Dec 2008

2008 ã.,Â. Â. îëüäáåðã, Â. Â. Ëû÷àãèí

Àííîòàöèÿ

 äàííîé ðàáîòå ìû èçó÷àåì ãåîìåòðè÷åñêèå ñòðóêòóðû, ñâÿçàííûå ñ ãåîäåçè÷åñêèìè

òêàíÿìè ãèïåðïîâåðõíîñòåé. Ìû ïîêàçûâàåì, ÷òî ñ êàæäîé ãåîäåçè÷åñêîé

( n + 2)

-òêàíüþ

ãèïåðïîâåðõíîñòåé íà

n

-ìåðíîì ìíîãîîáðàçèè åñòåñòâåííûì îáðàçîì ñâÿçàíû åäèíñòâåí-

íàÿïðîåêòèâíàÿñòðóêòóðàè,ïðèóñëîâèèîòìå÷åííîãîñëîåíèÿ,åäèíñòâåííàÿàèííàÿ

ñòðóêòóðà.Ïðîåêòèâíàÿñòðóêòóðàâûäåëÿåòñÿòðåáîâàíèåì,÷òîáûñëîèâñåõñëîåíèéòêàíè

áûëèâïîëíåãåîäåçè÷åñêèìè,ààèííàÿñòðóêòóðàäîïîëíèòåëüíûìòðåáîâàíèåì,÷òîáû

îäíàèçóíêöèéòêàíèáûëààèííîé.

Ýòè ñòðóêòóðû ïîçâîëÿþò îïðåäåëèòü äèåðåíöèàëüíûå èíâàðèàíòû ãåîäåçè÷åñêèõ

òêàíåé, à òàêæå äàòü ãåîìåòðè÷åñêè ïðîçðà÷íûåîòâåòû íà êëàññè÷åñêèåâîïðîñû òåîðèè

òêàíåé,òàêèåêàêïðîáëåìàëèíåàðèçàöèèèòåîðåìàðîíâàëëà.

1 Ââåäåíèå

 äàííîé ðàáîòå ìû èçó÷àåì ãåîìåòðè÷åñêèå ñòðóêòóðû, ñâÿçàííûå

ñ ãåîäåçè÷åñêèìè òêàíÿìè ãèïåðïîâåðõíîñòåé. Ìû ïîêàçûâàåì, ÷òî ñ

êàæäîé ãåîäåçè÷åñêîé

(n + 2)

-òêàíüþ ãèïåðïîâåðõíîñòåé íà

n

-ìåðíîì

ìíîãîîáðàçèè åñòåñòâåííûì îáðàçîì ñâÿçàíû åäèíñòâåííàÿ ïðîåêòèâ-

íàÿ ñòðóêòóðà è, ïðè óñëîâèè îòìå÷åííîãî ñëîåíèÿ, åäèíñòâåííàÿ

àèííàÿ ñòðóêòóðà. Ïðîåêòèâíàÿ ñòðóêòóðà âûäåëÿåòñÿ òðåáîâàíè-

åì, ÷òîáû ñëîè âñåõ ñëîåíèé òêàíè áûëè âïîëíå ãåîäåçè÷åñêèìè, à

àèííàÿ ñòðóêòóðàäîïîëíèòåëüíûì òðåáîâàíèåì, ÷òîáû îäíà èç

óíêöèé òêàíè áûëà àèííîé.

Ýòè ñòðóêòóðû ïîçâîëÿþò îïðåäåëèòü äèåðåíöèàëüíûå èíâàðè-

àíòû ãåîäåçè÷åñêèõ òêàíåé, à òàêæå äàòü ãåîìåòðè÷åñêè ïðîçðà÷íûå

New Jersey Institute of Tehnology, USA; Tromso University, Tromso, Norway; email:

vladislav.goldberggmail.om,lyhaginyahoo.om

(2)

ëèíåàðèçàöèè è òåîðåìà ðîíâàëëà.

Ýòà ðàáîòà ÿâëÿåòñÿíåïîñðåäñòâåííûì ïðîäîëæåíèåì ðàáîò [1℄,[2℄,

[3℄ àâòîðîâ ïî ãåîäåçè÷åñêèì òêàíÿì íà ïëîñêîñòè.  [8℄ àíàëîãè÷íûé

âîïðîñîñóùåñòâîâàíèèïðîåêòèâíûõñòðóêòóð ðàññìîòðåíäðóãèììå-

òîäîì, êîòîðûé, êàê ïèøåò ñàì àâòîð, íå ÿâëÿåòñÿ èíâàðèàíòíûì. Â

äàííîé ðàáîòå â îòëè÷èå îò [2℄ ìû èñïîëüçóåì ÿçûê äèåðåíöèàëü-

íûõîðì,êîòîðûé ïîçâîëÿåòçíà÷èòåëüíî óïðîñòèòüîðìóëûè äàòü

ÿâíûå âûðàæåíèÿ äëÿ èíâàðèàíòîâ ãåîäåçè÷åñêîé òêàíè.

2 Àèííûå ñâÿçíîñòè

Ïóñòü

M = M n

ãëàäêîå ìíîãîîáðàçèå ðàçìåðíîñòè

n

,

àèííàÿ

ñâÿçíîñòüáåçêðó÷åíèÿâêîêàñàòåëüíîìðàññëîåíèè

T M

è

d ∇

êîâàðèàíòíûé äèåðåíöèàë :

d : Ω 1 (M ) → Ω 1 (M ) ⊗ Ω 1 (M ).

Ýòîò äèåðåíöèàë ìîæåò áûòü ïðåäñòàâëåí â âèäå

d = d ⊕ d s ,

ãäå

d

äèåðåíöèàë äå àìà, à

d s : Ω 1 (M ) → S 2 (Ω 1 )(M )

ñèììåòðè÷åñêàÿ ÷àñòü äèåðåíöèàëà

d

.

3 åîäåçè÷åñêèå ñëîåíèÿ è ïðîåêòèâíûå ñòðóêòóðû

Íåîáðàùàþùàÿñÿ â íóëü äèåðåíöèàëüíàÿ 1-îðìà

ω 6 = 0

çàäàåò

ñëîåíèå êîðàçìåðíîñòè îäèí, åñëè

ω ∧ dω = 0

. Ñëîè ýòîãî ñëîåíèÿ

(3)

áóäóòâïîëíåãåîäåçè÷åñêèìèâñâÿçíîñòè

òîãäàèòîëüêîòîãäàêîãäà

(ñì. [2℄)

d s ω = θ · ω,

(1)

ãäå

θ

íåêîòîðàÿ äèåðåíöèàëüíàÿ 1-îðìà.

Ìû íàçûâàåì óíêöèþ

f

âïîëíå ãåîäåçè÷åñêîé â ñâÿçíîñòè

, åñëè

åå ïîâåðõíîñòè óðîâíÿ

f = const .

ÿâëÿþòñÿ âïîëíå ãåîäåçè÷åñêèìè â ñâÿçíîñòè

, è óíêöèþ

f

ìû íàçûâàåì àèííîé â ñâÿçíîñòè

,

åñëè

d s df = 0.

(2)

àçìåðíîñòü ïðîñòðàíñòâà ðåøåíèé óðàâíåíèÿ (2) áóäåì íàçûâàòü

àèííûì ðàíãîì ñâÿçíîñòè

.

Çàìåòèì, ÷òî àèííûé ðàíã ñâÿçíîñòè

ðàâåí ðàçìåðíîñòè ìíî- ãîîáðàçèÿ

M

òîãäà è òîëüêî òîãäà, êîãäà ñâÿçíîñòü

ïëîñêàÿ.

Äâå ñâÿçíîñòè

è

ïðîåêòèâíî ýêâèâàëåíòíû òîãäà è òîëüêî òîãäà, êîãäàîíèèìåþò îäíè è òå æå ãåîäåçè÷åñêèåèëè (ñì.[10℄)êîãäà

d s (ω) − d s ′ (ω) = ρ · ω

äëÿ íåêîòîðîé 1-îðìû

ρ

è âñåõ 1-îðì

ω

. Áîëåå òîãî, ñîîòíîøåíèå (1) ïîêàçûâàåò, ÷òî ïðîåêòèâíî ýêâèâàëåíòíûå ñâÿçíîñòè èìåþò îäíè

è òå æå âïîëíå ãåîäåçè÷åñêèåñëîåíèÿ.

4 Òêàíè

Ïîä

d

-òêàíüþ êîðàçìåðíîñòè îäèí ìû ïîíèìàåì íàáîð

d

ñëîåíèé êî-

ðàçìåðíîñòè îäèí íà

M

, åñëè ñëîåíèÿ çàäàíû äèåðåíöèàëüíûìè 1-îðìàìè

ω i , i = 1 , . . . , d

, è êàæäûå

n

èç íèõ ëèíåéíî íåçàâèñèìû.

Ìû îáîçíà÷èì ÷åðåç

< ω 1 , . . . , ω d >

òàêóþ

d

-òêàíü.

(4)

Äëÿ çàäàííîé ñâÿçíîñòè

ìû ãîâîðèì, ÷òî

d

-òêàíü ÿâëÿåòñÿ ãåî-

äåçè÷åñêîé, åñëè ñëîè âñåõ ñëîåíèé òêàíè ÿâëÿþòñÿ âïîëíå ãåîäåçè÷å-

ñêèìè â ñâÿçíîñòè

.

Íàáîðû

< ω 1 , . . . , ω d >

è

< s 1 ω 1 , . . . , s d ω d >

çàäàþò îäíó è òó æå

d

-òêàíü, åñëè

s 1 6= 0, . . . , s d 6= 0

, ãäå

s i ∈ C (M )

.

Ïóñòüîðìû

ω 1 , . . . , ω d

çàäàþò

d

-òêàíü.Âûáåðåì

n

èçíèõ, ñêàæåì,

ω 1 , . . . , ω n

, çà áàçèñ. Òîãäà îðìû

ω i , i ≥ n + 1

, â áàçèñå

ω 1 , . . . , ω n

çàïèøóòñÿ â ñëåäóþùåì âèäå:

a i1 ω 1 + · · · + a in ω n + ω i = 0,

(3)

ãäåêîîðäèíàòû

a ij

íåîáðàùàþòñÿâíîëü,à

a i n+2

ìûâäàëüíåéøåìäëÿ

ïðîñòîòû îáîçíà÷èì ïðîñòî

a i

. Âûáîðîì ìíîæèòåëåé

s i , i = 1, . . . , n,

ìîæíî äîáèòüñÿ òîãî, ÷òî èìååò ìåñòî îðìóëà

ω 1 + · · · + ω n + ω n+1 = 0.

(4)

 äàëüíåéøåì ìû áóäåì èñïîëüçîâàòü íîðìèðîâêè (3) è(4 ). Îòìå-

òèì, ÷òî ïðè íîðìèðîâêàõ (3 ) è (4) îðìû

ω 1 , . . . , ω n , ω n+1 , . . . , ω d

è

s 1 ω 1 , . . . , s n ω n , s n+1 ω n+1 , . . . , s d ω d

çàäàþò îäíó è òó æå

d

-òêàíü òîãäà

è òîëüêî òîãäà, êîãäà

s = s 1 = . . . s n = s n+1 = · · · = s d

, à òî÷êè

a (i) = [a i1 : · · · : a in ]

ïðîåêòèâíîãî ïðîñòðàíñòâà

RP n−1

ÿâëÿþòñÿ èíâà-

ðèàíòàìè òêàíè. Ìû íàçûâàåì èõ áàçèñíûìè (ñì. [1℄).

5 åîäåçè÷åñêèå òêàíè

Èç îðìóëû (1) âûòåêàåò ñëåäóþùèé ðåçóëüòàò:

Òåîðåìà 1.

d

-òêàíü

< ω 1 , . . . , ω d >

áóäåò ãåîäåçè÷åñêîé òîãäà è òîëüêî òîãäà, êîãäà

d s ω i = θ i · ω i , i = 1, . . . , d,

(5)

äëÿ íåêîòîðûõ

1

-îðì

θ i

.

Âûáåðåì áàçèñ

1 , . . . , ∂ n

âåêòîðíûõ ïîëåé, äâîéñòâåííûé êîáàçèñó

ω 1 , . . . , ω n

:

ω i (∂ j ) = δ ij

. Òîãäà

[∂ i , ∂ j ] = X

k

c k ijk

äëÿ íåêîòîðûõ óíêöèé

c k ij ∈ C (M )

è

∇ ∂ i (∂ j ) = X

k

Γ k ji ∂ k , 1 ≤ i, j ≤ n,

ãäå

Γ k ij

ñèìâîëû Êðèñòîåëÿ âòîðîãî ðîäà ñâÿçíîñòè

.

Ñèììåòðè÷íàÿ ÷àñòü

d s

ïðèíèìàåò âèä

d s ( ω k ) = − X

i,j

Γ k ij ω j · ω i .

(5)

Îòñþäà ñëåäóåò, ÷òî

Γ k ji − Γ k ij = c k ij .

(6)

Èññëåäóåìóñëîâèÿïîëíîé ãåîäåçè÷íîñòèïåðâûõ

n + 1

ñëîåíèé òêà-

íè. Äëÿñëîåíèé, îïðåäåëÿåìûõ îðìàìè

ω 1 , . . . , ω n

, ýòè óñëîâèÿèìå-

þò âèä

d s ω i = θ i · ω i , i = 1, . . . , n,

ãäå

θ i =

n

X

j=1

θ ij ω j .

(7)

Ñðàâíèâàÿ ñîîòíîøåíèÿ (5) è (7), ïîëó÷àåì

Γ k ik + Γ k ki + θ ki = 0 , i, k = 1 , . . . , n, Γ k ij + Γ k ji = 0,

åñëè

i 6= k

è

j 6= k.

Îòñþäà è èç ñîîòíîøåíèÿ(6) âûòåêàþò ñëåäóþùèå ñîîòíîøåíèÿ ìåæ-

äó

Γ k ij

è

c k ij , θ ki

:

Γ k ik = c k ki − θ ki

2 ,

(8)

(6)

Γ k ij = c k ji

2 ,

åñëè

i 6= k

è

j 6= k.

(9)

Îáîçíà÷èì ÷åðåç

σ ij

è

α ij

ñèììåòðè÷íóþè êîñîñèììåòðè÷íóþ ÷àñòü ìàòðèöû

(θ ij )

, ò.å.

σ ij = θ ij + θ ji

2 , α ij = θ ij − θ ji 2 ,

è ïîëîæèì

t i = θ ii

. Òîãäà óñëîâèå ïîëíîé ãåîäåçè÷íîñòè

( n + 1)

-ãî

ñëîåíèÿ ïîëíîñòüþ îïðåäåëÿåò ñèììåòðè÷åñêóþ ÷àñòü

θ ij

,

σ ij = t i + t j

2 ,

à òàêæå äàåò ñëåäóþùåå ïðåäñòàâëåíèå äèåðåíöèàëüíîé îðìû

θ n+1

:

θ n+1 =

n

X

i=1

t i θ i .

Óñëîâèÿ ïîëíîé ãåîäåçè÷íîñòè

(n + 2)

-ãî ñëîåíèÿ ïîçâîëÿþò îïðå-

äåëèòü êîñîñèììåòðè÷íóþ ÷àñòü

α ij

:

α ij = t j − t i

2 + s ij ,

ãäå

s ij = s a ij = 1 a i − a j

a ij − a ji

log a j a i ,

è

θ n+2 = θ n+1 +

n

X

i=1

a i,i a i ω i ,

ãäå

a i,i

ïðîèçâîäíàÿ îò

a i

âäîëü

i

.

Îêîí÷àòåëüíî, äèåðåíöèàëüíûå îðìû

θ i , θ n+1 , θ n+2

èìåþò âèä

 

 

 

 

 

 

θ i = θ n+1 +

n

X

i=1

s ij ω j , i = 1, . . . , n, θ n+1 = θ n+1 ,

θ n+2 = θ n+1 +

n

X

i=1

a i,i

a i ω i .

(7)

Òåîðåìà 2. Àèííàÿ ñâÿçíîñòü áåç êðó÷åíèÿ, äëÿ êîòîðîé

(n + 2)

-

òêàíü ãèïåðïîâåðõíîñòåé ÿâëÿåòñÿ ãåîäåçè÷åñêîé, çàäàåòñÿ îðìà-

ìè

θ 1 , . . . , θ n

âèäà

θ i = θ n+1 +

n

X

i=1

s ij ω j ,

(10)

à ñîîòâåòñòâóþùèå ñèìâîëû Êðèñòîåëÿ âû÷èñëÿþòñÿ ïî îðìó-

ëàì

(

8

)

è

(

9

)

.

Òåîðåìà 3. Êàæäàÿ

(n + 2)

-òêàíü ãèïåðïîâåðõíîñòåé îïðåäåëÿåò åäèíñòâåííóþ ïðîåêòèâíóþ ñòðóêòóðó, à èìåííî, êëàññ ïðîåêòèâíî

ýêâèâàëåíòíûõ ñâÿçíîñòåé, îïðåäåëÿåìûõ îðìàìè

(

10

)

.

Óêàçàííóþ â òåîðåìå åäèíñòâåííóþ ïðîåêòèâíóþ ñòðóêòóðó íàçî-

âåì êàíîíè÷åñêîé.

Çàìåòèì, ÷òî äëÿ ëþáîé ãåîäåçè÷åñêîé

d

-òêàíè, ãäå

d ≥ n + 2

, êàíî-

íè÷åñêèå ïðîåêòèâíûå ñòðóêòóðû, îïðåäåëÿåìûå ðàçëè÷íûìè

(n + 2)

-

ïîäòêàíÿìè, ñîâïàäàþò.Ïîýòîìó â äàëüíåéøåì ìû ãîâîðèì î êàíîíè-

÷åñêîé ïðîåêòèâíîé ñòðóêòóðå ãåîäåçè÷åñêîé

d

-òêàíè,

d ≥ n + 2

.

Òêàíü ñ âûäåëåííûì ñëîåíèåì áóäåì íàçûâàòü îòìå÷åííîé.

àññìîòðèìîòìå÷åííóþ

d

-òêàíüè ïðåäïîëîæèì,÷òîâûäåëåíî

(n+

1)

ñëîåíèå. Âûáåðåì íîðìèðîâêó (ëîêàëüíî) òàêèì îáðàçîì, ÷òîáû

ω n+1 = df

, à àèííóþ ñâÿçíîñòü òàê, ÷òîáû îðìà

θ n+1 ≡ 0

.

Òîãäà äëÿ ýòîé àèííîé ñâÿçíîñòè óíêöèÿ

f

ÿâëÿåòñÿ àèí-

íîé. Îòìåòèì, ÷òî òàêàÿ óíêöèÿ

f

îïðåäåëåíà ñ òî÷íîñòüþ äî à-

èííîãî êàëèáðîâî÷íîãî ïðåîáðàçîâàíèÿ

f → af + b

.

Òåîðåìà 4. Êàæäàÿ îòìå÷åííàÿ

( n + 2)

-òêàíü ãèïåðïîâåðõíîñòåé îïðåäåëÿåò åäèíñòâåííóþ àèííóþ ñâÿçíîñòü, äëÿ êîòîðîé òêàíü

(8)

öèåé.

Óêàçàííóþ âòåîðåìååäèíñòâåííóþàèííóþñòðóêòóðóìûòàêæå

íàçîâåì êàíîíè÷åñêîé.

6 Óñëîâèÿ ãåîäåçè÷íîñòè

d

-òêàíè

Ïðåäïîëîæèì,÷òî ìû óæå ïðîâåëè íîðìèðîâêè (4) è (3 ). àññìîòðèì

ñëîåíèå, çàäàâàåìîå îðìîé

ω

, ãäå

ω = b 1 ω 1 + · · · + b n ω n .

Ýòî ñëîåíèå âïîëíå ãåîäåçè÷íî â ñâÿçíîñòè

, åñëè

d s ω = θ · ω,

èëè

s a ij = s b ij .

Îòñþäà âûòåêàåò ñëåäóþùèé ðåçóëüòàò.

Òåîðåìà 5. Îáîçíà÷èì ÷åðåç

( a k )

íàáîð áàçèñíûõ èíâàðèàíòîâ, ãäå

k = n + 2 , . . . , d

. Òîãäà

d

-òêàíü ãèïåðïîâåðõíîñòåé áóäåò ãåîäåçè÷å- ñêîé â òîì è òîëüêî òîì ñëó÷àå, êîãäà

s (a

k )

ij = s (a

l )

ij

äëÿ âñåõ

k, l = n + 2, . . . , d.

7 Ëèíåàðèçóåìîñòü òêàíåé

Èçâåñòíî, ÷òî åñëè

dim M = 2

, òî íåîáõîäèìûì è äîñòàòî÷íûì óñëî- âèåì òîãî,÷òîáû ìíîãîîáðàçèå

M

áûëî ïëîñêèì, ÿâëÿåòñÿ îáðàùåíèå

â íóëü òåíçîða Ëèóâèëëÿ (ñì. [5℄, [6℄ èëè [3℄). Åñëè æå

dim M > 2

,

òî íåîáõîäèìûì è äîñòàòî÷íûì óñëîâèåì òîãî, ÷òîáû ìíîãîîáðàçèå

(9)

M n

áûëî ïëîñêèì, ÿâëÿåòñÿ îáðàùåíèå â íóëüòåíçîðà Âåéëÿ(ñì. [9℄).

Îòñþäà è èç ðåçóëüòàòîâ ðàçäåëà 4 âûòåêàåò ñëåäóþùàÿ òåîðåìà.

Òåîðåìà 6.

(

[2℄

) 1.

Åñëè

dim M = 2

, òî

d

-òêàíü ãèïåðïîâåðõíîñòåé,

d ≥ 4

, ëîêàëüíî ëèíåàðèçóåìà òîãäà è òîëüêî òîãäà, êîãäà îíà ÿâ- ëÿåòñÿ ãåîäåçè÷åñêîé, à òåíçîð Ëèóâèëëÿ êàíîíè÷åñêîé ïðîåêòèâíîé

ñòðóêòóðû îáðàùàåòñÿ â íóëü.

2.

Åñëè

dim M > 2

, òî

d

-òêàíü ïðè

d ≥ n + 2

ëîêàëüíî ëèíåàðè-

çóåìà òîãäà è òîëüêî òîãäà, êîãäà îíà ÿâëÿåò ñÿ ãåîäåçè÷åñêîé, à

òåíçîð Âåéëÿ êàíîíè÷åñêîé ïðîåêòèâíîé ñòðóêòóðû îáðàùàåòñÿ â

íóëü.

8 Òåîðåìû òèïà ðîíâàëëà

Èç Òåîðåìû 3 âûòåêàåò ñëåäóþùàÿ òåîðåìà òèïà ðîíâàëëà (ñì. [4℄ è

[2℄ äëÿ

n = 2

).

Òåîðåìà 7.Ëþáîå îòîáðàæåíèå ãåîäåçè÷åñêîé

d

-òêàíè ãèïåðïîâåðõ- íîñòåé ïðè

d ≥ n +2

íà äðóãóþ ãåîäåçè÷åñêóþ

d

-òêàíü ÿâëÿåòñÿ ïðî-

åêòèâíûì ïðåîáðàçîâàíèåì îòíîñèòåëüíî êàíîíè÷åñêèõ ïðîåêòèâ-

íûõ ñòðóêòóð.

Òåîðåìà 4 âëå÷åò áîëåå ñèëüíóþ òåîðåìó òèïà ðîíâàëëà.

Òåîðåìà 8. Îòîáðàæåíèå îòìå÷åííûõ ãåîäåçè÷åñêèõ

d

-òêàíåé ãè-

ïåðïîâåðõíîñòåé ïðè

d ≥ n + 2

ÿâëÿåòñÿ àèííûì îòíîñèòåëüíî êàíîíè÷åñêèõ àèííûõ ñòðóêòóð.

Ñïèñîê ëèòåðàòóðû

[1℄ M.A.Akivis, V.V. Goldberg,V.V. Lyhagin,SeletaMath. 10(4),431

451 (2004).

(10)

(ïðèíÿòî ê ïå÷àòè â Ata Appl. Math. (2009)).

[3℄ Goldberg, V. V., Lyhagin, V. V., arXiv:0812.0125v2, pp. 131 (2009)

(ïðèíÿòîêïå÷àòèèáóäåòîïóáëèêîâàíîâTheAbelSymposium 2008,

Springer (2009)).

[4℄ Gronwall, T. H., J. de Liouville 8, 59102 (1912).

[5℄ Lie, S., Arhiv fur Math. og Naturvidenskab 8 (Kristiania, 1883), 371

458; see also Gesammelte Abhandlungen. Bd. 5 (1924), paper XIV,

362427.

[6℄ Liouville, R., Journal de l'

Eole Polytehnique 59, 776 (1889).

[7℄ K. Nomizu and T. Sasaki, Ane Dierential Geometry (Cambridge

Trats in Mathematis, 111. Cambridge University Press, Cambridge,

1994).

[8℄ Pirio, L., arXiv: 0811.1810v1, pp. 126 (2008).

[9℄ Veblen, O. and Thomas, J. M., Ann. Math. (2) 27, no. 3, 279296,

(1926).

[10℄ Weyl, H., Gott. Nahr., 1921, 99122 (1921).

(11)

V.V. Goldberg, V.V. Lyhagin

Inthepresentpaperwestudygeometristruturesassoiatedwithwebsofhypersurfaes.Weprovethat

withanygeodesi

( n + 2)

-webonan

n

-dimensionalmanifoldthereisnaturallyassoiatedauniqueprojetive strutureand,providedthatoneofwebfoliationsispointed,thereisalsoassoiatedauniqueanestruture.

Theprojetivestrutureanbehosenbythelaimthattheleavesofallwebfoliationsaretotally geodesi,

andtheanestruturebyanadditionallaimthatoneofwebfuntionsisane.

Thesestruturesallowustodeterminedierentialinvariantsofgeodesiwebsandgivegeometriallylear

answerstosomelassialproblemsofthewebtheorysuhastheweblinearizationandtheGronwalltheorem.

Referanser

RELATERTE DOKUMENTER

äµé!êß,܄çMä,è ä„ð¸Ý!éMçqï ÞXëçï#ï è&amp;ê„ñ ð•æ!ÚXá©è ûۄÞßè âwê ðÊ܄éXëá©è Ý[è äÞßè

ëÚuÕæéëäåÆá#áÖ&lt;ÚuëÛËéLÙëè(ãÓéÕÚ&lt;ÙåÆæ ÚuØªà „åÆÙLëåÆè(áÕÛ âÓåéÕÛ³é^è–åªÛ³ÕÚ Ø„æ

[r]

ßFàsáHâ»ãâä1å±æ±ççæ±è

The paper is organized as follows: section 2 presents some re- lated works on haptic interfaces, section 3 describes the hap- tic device for surface rendering consisting of an

Step 1: Modelling the Gibbs energy for each phase Aim of this first step is to derive the Gibbs free energy for each possible composition of the pure components at

Having described how to use a PGA-based reduced pose model in a kinematic animation context, we now move on to the physically-based animation of a character, using this reduced model

To also describe the global shape of the object and capture major topological changes we exploit the global representation presented by Sun and Abidi [SA01], who compute the