• No results found

Understanding the salinity effect on cationic polymers in inducing flocculation of the microalga Neochloris oleoabundans

N/A
N/A
Protected

Academic year: 2022

Share "Understanding the salinity effect on cationic polymers in inducing flocculation of the microalga Neochloris oleoabundans"

Copied!
8
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

ContentslistsavailableatScienceDirect

Journal of Biotechnology

jo u r n al h om ep ag e :w w w . e l s e v i e r . c o m / l o c a t e / j b i o t e c

Understanding the salinity effect on cationic polymers in inducing flocculation of the microalga Neochloris oleoabundans

G.P. ‘t Lam

a,∗

, J.B. Giraldo

a

, M.H. Vermuë

a

, G. Olivieri

a,b

, M.H.M. Eppink

a

, R.H. Wijffels

a,c

aBioprocessEngineering,AlgaePARC,WageningenUniversity,P.O.Box16,6700AAWageningen,theNetherlands

bDipartimentodiIngegneriaChimica,deiMaterialiedellaProduzioneIndustriale,UniversitàdegliStudidiNapoliFedericoII,PiazzaleVincenzoTecchio, 80,80125Napoli,Italy

cUniversityofNordland,FacultyofBiosciencesandAquaculture,N-8049Bodø,Norway

a r t i c l e i n f o

Articlehistory:

Received28October2015

Receivedinrevisedform24February2016 Accepted3March2016

Availableonline18March2016

Keywords:

Marinemicroalgae Harvesting Flocculation Mechanism Cationicpolymers Cationiccharge

a b s t r a c t

Amechanisticstudywasperformedtoevaluatetheeffectofsalinityoncationicpolymericflocculants, thatareusedfortheharvestingofmicroalgae.ThepolyacrylamideSynthofloc5080Handthepolysac- charideChitosanwereemployedfortheflocculationofNeochlorisoleoabundans.Inseawaterconditions, amaximumbiomassrecoveryof66%wasobtainedwithadosageof90mg/LChitosan.Thisrecovery wasapproximately25%lowercomparedtoSynthofloc5080Hreachingrecoveriesgreaterthan90%with dosagesof30mg/L.Althoughdifferentrecoverieswereobtainedwithbothflocculants,thepolymers exhibitasimilarapparentpolymerlength,aswasevaluatedfromviscositymeasurements.Whileboth flocculantsexhibitsimilarpolymerlengthsinincreasingsalinity,thezetapotentialdiffers.Thisindi- catesthatpolymericchargedominatesflocculation.Withincreasedsalinity,theeffectivityofcationic polymericflocculantsdecreasesduetoareductionincationiccharge.Thismechanismwasconfirmed throughaSEManalysisandadditionalexperimentsusingflocculantswithvariouschargedensities.

©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Thelowenergyrequirementsforflocculationestablishesitasa promisingtechniqueforconcentratingmicroalgae(Udumanetal., 2010;Vandammeetal.,2013).Flocculationofseawatercultivated microalgae,however,isstillverychallenging.Insea-water,ionic hindranceoccurswhichinhibitstheinteractionoftheflocculant moleculeswiththe microalgae(Bilanovic etal., 1988; Uduman etal.,2010;Vandammeetal.,2010,2013).Unfortunately,onlya smallnumberoftechniquesarereportedtobesuccessfulforfloc- culationofmarinespecies:i.e.pH-increase,inorganicflocculation, andpolymericflocculation (Wu et al.,2012;Chatsungnoen and Chisti,2016;‘tLametal.,2014).ApH-increaseinducesthepre- cipitationofsalts.Thoseprecipitateswillsettleand,meanwhile, willsweepthebiomass(Wuetal.,2012).Intheirstudy,several microalgaehavebeensuccesfullyflocculatedbyincreasingthepH, resultingin a precipitationof thedivalention magnesium.The useof inorganicflocculantsinseawatersalinities hasalsobeen reported(ChatsungnoenandChisti,2016).However,asmentioned byUdumanetal.(2010),theuseofinorganicflocculantsinseawa-

Correspondingauthor.

E-mailaddress:gerard.tlam@wur.nl(G.P.‘tLam).

tersalinitiescommonlyrequireshighdosagesthatareabout5–10 timeshighercomparedtopolymericflocculants.Withpolymeric flocculation,polymericbridgesbetweenindividualcellsareformed and,subsequently,aggregatesofbiomassevolve(Vandammeetal., 2013;‘tLametal.,2014).

Amongpolymericflocculants,cationicpolymersareregarded assuccessful,thoughnotallareequallyefficientininducingfloc- culationofmarinemicroalgae.Currently,onlypolyacrylamidesare reportedtobesuccessful(‘tLametal.,2014;Königetal.,2014;

Roseletetal.,2015).

Despite the success of cationic polyacrylamides in harvest- ing marine microalgae, ‘t Lam et al. (2015) reported that, when commercially available cationic polymers are applied as flocculants, the required flocculant dosage is quite high (40–100mgflocculant/gbiomass),resultinginalowereconomicfeasi- bility.Additionally,theuseofpolyacrylamidesisforbiddenforfood andfeedapplicationsasseveraloftheseflocculantsarereportedto betoxicandnon-foodgradepetroleumprocessingtechniquesare commonlyusedtomanufacturethem(Leeetal.,2014).Toover- cometheselimitations,otherflocculantsthatpreferablyhavean equalofevenbetterperformanceandthatareallowedinthefood andfeedindustryshouldbeselectedordesigned.Toallowtheratio- nalselectionordesignofnovelflocculants,themechanismthatis

http://dx.doi.org/10.1016/j.jbiotec.2016.03.009

0168-1656/©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.

0/).

(2)

However,recentstudiesofRoseletetal.(2015)showedthatthe cationicchargeofthepolymericflocculantshadapositiveeffect onthebiomassrecoverywherethepolymerlengthwasofminor importanceandthatisnotinaccordancewiththepreviouslyspec- ifiedexplanationofpolymericcoiling.Itis,therefore,stilldifficult toexplainwhycertaincationicpolymersaresuccessfulininducing flocculationinseawatersalinitieswhileothersarenot.

The goal of this study was to provide further information tobetterunderstandcationicpolymericflocculationinseawater salinitiesandpossiblyrevealwhycationicpolyacrylamidesremain functionalinhighsalinitieswhileothercationicpolymersdonot.

Thisgainedinsightalsoprovidedinformationthatcanbeapplied inoptimizingthedesignofflocculants.

Inthisstudy,Synthofloc5080HandChitosanwereexploitedas flocculants.Synthofloc5080Hisacationicpolyacrylamidethatis reportedtobesuccessfulinflocculatingmarinemicroalgae(‘tLam etal.,2014).Chitosanisanaturalpolysaccharidewhichisrecog- nizedasbeingsuccessfulininducingflocculationunderfreshwater conditionsbutbecomeslesssuccessfulinseawatersalinitiesandin neutralpH(Bilanovicetal.,1988).Theapparentpolymerlengthand nettcationicchargeofbothflocculantswerecomparedwitheach otherasafunctionofsalinity.

TheusedmicroalgainthisstudywasNeochlorisoleoabundans whichisabletogrowinbothfreshandsaltwaterconditions.It.has beenreportedtocontainahighproteincontentand,understressed conditions,a highlipidcontent.ThismakesN.oleoabundansan interestingspeciesforseveralapplications(Popovichetal.,2012;

Breuer et al., 2012). In addition, N.oleoabundans is a spherical Chlorophyta,hence,itsshapeeliminatespossibleside-effectsof thecellshapeduringflocculation.

2. Materialandmethods 2.1. Biomasscultivation

The microalgal strain N. oleoabundans UTEX1185 was culti- vatedinartificialseawatermediumwithvarioussalinities:NaCl:

15g/L(brackish),25g/L(seawater),35g/L(saline);KNO3:1.7g/L;

Na2SO4: 0.5g/L; 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES): 23.83g/L; MgSO4·7H2O: 0.73g/L; CaCl2·2H2O:

0.36g/L;K2HPO4:0.43g/L;Na2EDTA·2H2O:0.03g/L;MnCl2·4H2O:

0.004g/L; ZnSO4·7H2O: 0.0012g/L; CoCl2·6H2O: 0.0003g/L;

CuSO4·5H2O:0.0003g/L;Na2MoO4·2H2O:0.00003g/L;NaFeEDTA:

0.01g/L.

Biomasswascultivatedin100mLshakeflasksinanInforsMul- titronincubator(InforsAG,Bottmingen,Switzerland).Thecultures werecontinuouslyilluminatedat120␮molm2s1inatmospheric airenrichedwith2.5%CO2atatemperatureof25C.Theflaskswere orbitallyshakenat90rpm.

Partoftheculturedbiomasswasharvestedusingpipettingtwo daysafterinoculation.Ontheseventhday,newcultureswereinoc- ulatedforfurthercultivation.Byre-inoculatinganewflaskevery

provided by Sachtleben Wasserchemie GmbH, Germany. All flocculants are large polyacrylamides with various cationic chargesandarecommonlyusedinwastewaterapplications.

Chitosan(purchasedfromSigma-Aldrich,productnr.:448869- 50G)wasdissolvedovernightin0.1%(v/v)aceticacidafterwhich thepHwasadjustedtopH7±0.2.Flocculantswerestoredat4Cin adarkenvironmentandwereneverstoredlongerthansevendays.

2.3. Biomassrecovery

After harvesting the biomass, the initial optical density at 750nmwasestablishedat0.8±0.01usingculturemedium(cor- respondswitha dryweightof0.24±0.07g/L).Aftersetting the OD750,10mLofthesamplewastransferredtoabeakerglassand stirredat500rpm.Fromastocksolution,flocculantwasaddeduntil thedesireddosewasachieved(rangingbetween0and90ppm).

Afterfiveminutesofmixingat500rpmfollowedbyatenminute period ofmixing at100rpm,samples weretransferredto4mL polystyrene cuvettes. The mixing protocol that was used first involvedaseveremixingfollowedbyagentlemixingtimeandis inaccordancewithprotocolsreportedinotherstudies(Bilanovic etal.,1988).Usingthephotometricmethodof(Salimetal.,2012), thegradualbiomassrecoverywasfollowed inaBeckman Coul- ter DU730 photometer. After two hours of sedimentation, the biomassrecoveriesweredeterminedandcalculatedaccordingto (Salimetal.,2012).Allexperimentswereperformedinduplicate:

Recovery(%)=OD750(t0)−OD750(tsupernatant)

OD750(t0) ×100

2.4. Viscosity

The viscosity of a polymeric solution is correlated with the apparentpolymer length.Tostudy theeffectof thesalinity on theapparentpolymerlengthof theflocculants,theviscosityof theflocculant solutionsin varioussalinities wasmeasured.The flocculant concentrations ranged between 0 and 100ppm. The viscosity was measured using a Physica MCR 301 Rheometer.

Polymericsolutionsweremadewithvarioussalinitiesbyvarying theNaCl-concentration(0–10g/LNaCl).Aftertheadditionofthe flocculant solution in the rotational cylinder, theviscosity was measuredatshearratesrangingfrom1to100s1.

2.5. ␨-Potential

␨-Potential measurementswere performedtodeterminethe effectofsalinityonthenetcationicchargeoftheflocculant.Several flocculantsolutionswithdifferentNaClconcentrationswerepre- pared.Flocculantdosagesrangedbetween30 and200ppm.The salinityrangedbetween0and4g/LofNaCl.Thechargewasmea- suredusingaMalvernZetasizerNano.

(3)

Fig.1. Biomassrecoveryasafunctionoftheflocculantdosageatsalinitiesof25g/L( ),35g/L(䊏)and45g/L().RecoveriesobtainedwithSynthofloc5080HinfigureA, ChitosaninFigureB.Allsamplesrepresentbiologicalduplicates.

Fig.2.ViscosityofSynthofloc5080Hmeasuredatasharerateof100s−1.Everyclusterofbarsrepresentsaflocculantdosage.Withineverycluster,thesalinitywasincreased, correspondingwiththelegendattherightsiteofthefigure.

Table1

ComparisonofobtainedbiomassrecoverieswithChitosanatneutralpHinvariousstudies.

Species Cx(g/L) pH dosage(mg/L) fresh/marine recovery Reference

C.sorokiniana 0.27±0.07 7 5 fresh >90% Xuetal.(2013)

C.vulgaris 1 7 120 fresh 92%±0.4 Rashidetal.(2013)

N.oleoabundans 0.5 7.2 100 fresh 95% Beachetal.(2012)

S.obliquus 0.54 7 80 fresh 95% Chengetal.(2011)

N.salina 8 8 marine >90% Garzon-Sanabriaetal.(2013)

N.oleoabundans 0.24±0.07 7 90 marine 66% thisstudy

2.6. SEMimaging

The scanning electron microscopy objects were prepared accordingtotheprotocoldescribedinSalimetal.(2014).Inthis protocol,aliquotsofthemicroalgaeweremixedwiththefloccu- lantfor.,fiveminutesofseveremixing(500rpm)followedbyten minutesofgentlemixing(100rpm).Immediatelyafterthemixing, adropofsuspendedflocswastransferredtoapoly-L-lysinecoated microscopycoverslip.Afteronehour,thecoverslipwasrinsed, andtheremainingcells onthecoverslipwerefixatedina3%a glutaraldehydesolutioninaPBS-bufferforonehour.Thecellswere post-fixatedina1%OsO4 solutionforanotherhour.Afterwards, thefixatedcellswererinsedanddehydratedusingethanol.They weresubsequently, dried using critical point CO2 drying. After drying,thecover slips werecoatedwitha 10nmIridiumlayer usingsputter-coating.

3. Resultsanddiscussion 3.1. Flocculation

Thebiomassrecoveriesweremeasuredatvariousdosagesof Synthofloc5080H(Fig.1A)andChitosan(Fig.1B)atthreedifferent salinities:25,35,and45g/LofNaCl.

WithSynthofloc5080H,thebiomassrecoveryisalwayshigher than90%regardlessofthesalinity.Alowerbiomassrecoveryis recordedwhenChitosanisappliedasacationicpolymericfloccu- lantusingasimilardosage.

Atelevateddosages,thebiomassrecoveryinallthreesalinities decreaseswith7%recoverywhenusingSynthofloc5080Hasafloc- culant.Thisisinagreementwiththemodelpresentedinprevious work(‘tLametal.,2015)inwhichthereisanoptimumflocculant-

(4)

Fig.3.ViscosityofChitosanmeasuredatasharerateof100s−1.Everyclusterofbarsrepresentaflocculantdosage.Withineverycluster,thesalinitywasincreased, correspondingthelegendattherightsiteofthefigure.

biomassratio.Whenthisratioisexceeded,flocculationbecomes inhibitedduetorestabilization.

ThesuccessfuluseofChitosaninfreshwaterconditionshaspre- viouslybeenreported(Table1),andtheobtainedresultsofFig.1B werecomparedwiththesestudies.Inallofthestudiesmentionedin Table1,thebiomasswascultivatedinnutrientrepleteconditions.

Possiblebiological effectssuchastheformation ofextracellular polymericsubstancesduetonutrientstress(Salimetal.,2013), werethuseliminated.

Thecomparisonbetweenthebiomassrecoveriesobtainedwith Chitosaninthisstudyandotherstudiesdemonstratedthat,insea- watersalinities,aconsiderablylowerbiomassrecoveryisobtained usingmerelychitosan(Table1).AlthoughGarzon-Sanabriaetal.

(2013)didinciteelevatedbiomassrecoveriesbyusingChitosanin seawatersalinities,itisnotknowniftherewasapossiblepHeffect involvedasthepHafterflocculantadditionwasadjustedto8in theirstudy.Inadditiontothelowerbiomassrecovery,otherstud- iesinTable1usedsubstantiallowerflocculantdosages.Theuseof lowerflocculantdosageswithhigherbiomassrecoveriesimplies that,inotherstudiesinfreshwaterconditions,Chitosanwasamore efficientflocculant.

The differences in polymeric properties that were observed betweenSynthofloc5080HandChitosan inincreasingsalinities havebeenattributedtothedegreeofpolymericcoiling(Bilanovic etal.,1988).Theyconcludedthat,asafunctionofthesalinity,a polymershrinksuntilitreachesitsmallestdimensions.

3.2. Viscositymeasurements

Toverifyifpolymericcoilingprovidesanexplanationforthe lower biomass recovery observed with Chitosan compared to Synthofloc5080H,viscositymeasurementsofbothflocculantsdis- solvedinwaterwithdifferentsalinitieswereperformed.

The viscosity of a polymeric solution is proportional tothe apparentlengthofthepolymers(Yamakawa,1971;Tricot,1984;

Bilanovicetal.,1988).

InFigs.2and3,thetwobardiagramsillustratetheviscosityas afunctionoftheflocculantdosageandasafunctionofthesalinity.

In Fig.2, thedecrease in viscosityobtainedwithSynthofloc 5080HisinagreementwiththetrenddescribedbyBilanovicetal.

(1988).Intheirstudy,alsoadecreasein viscosityasafunction ofthemedium salinitywasobserved.Butdespitetheobserved substantialviscositydecreaseoftheSynthofloc5080Hsuspension inhighsalinities,itstillinducesflocculation(Fig.1).Moreover,the viscosityofSynthofloc5080Hdropsdramaticallytovaluescloseto theviscosityofwateralreadyinmediumwithsaltconcentrations

Fig.4.␰-potentialasafunctionof[NaCl](g/L).Synthofloc5080H,potentialsmea- suredat:100mg/L( )and200mg/L( ).Chitosan,potentialsmeasuredat:30mg/L (),60mg/L()and90mg/L(䊏).Errorbarsareduplicates.

lowerthan 1g/L ofNaCl.Thisillustrates thatSynthofloc5080H polymerisverysensitivetosurroundingionicforcesandbecomes coiled.

With Chitosan (Fig. 2), the viscosity remains similar to the viscosityofwaterregardlessoftheflocculantdosageandsalinity thatisapplied.Theseresultsdemonstratethatnocoilingoccurred toexplainthelowerbiomassrecoveriesobtainedinFig.1with ChitosancomparedtoSynthofloc5080H.Inaddition,bothfloccu- lantshadaviscositysimilartowaterinsalinitiesof10g/LNaCland aflocculantdosagelowerthan100ppm.Thisresultillustratesthat bothflocculantshadasimilarapparentpolymerlengthinthese conditions.

Althoughpolymericcoilingobviouslyoccursinelevatedsalinity, itdoesnotexplainthesuccessofSynthofloc5080Hinhighsalinity andthedecreasingfunctionalityofChitosanwithincreasingsalin- ityasthesalinityofseawaterisapproximately35g/L.Theseresults illustratethatanothercharacteristicoftheflocculantsshouldbe responsibleforthedegreeofsuccessofflocculantsinhighsalinities.

3.3. ␨-Potential

Inadditiontotheapparentlengthofthepolymericchain,the chargeof cationicpolymersmaybeanimportant feature.With increasingsalinity, thenett cationic charge ofpolymers should

(5)

Fig.5. SEMimaging,A:controlat25g/Lsalinity.B:controlat45g/Lsalinity.C:FlocwithSynthoflocat25g/L.D:flocwithSynthoflocat45g/L.E:zoominonthebridges withSynthoflocat25g/L.F:zoominonthebridgeswithSynthoflocat45g/L.Usedflocculantconcentrationwas60mg/L.

decrease due to the surrounding of anions. ␨-Potential mea- surementswereperformedtomeasuretheimpactofincreasing salinityonthenettchargeofthecationicpolymers(Fig.4).Forboth flocculants,thepolymericpotentialwasmeasuredasafunctionof salinity.ThesalinitywasincreasedbyanadditionofNaCl.These measurementswereperformedwithvariousdosages(Fig.4).

Withbothflocculants,the␨-potentialdecreasesasafunctionof thesalinity.Whenthe␨-potentialasafunctionofsalinityofSyn- thofloc5080Hiscomparedwiththe␨-potentialofChitosan(Fig.4), itappearsthat the␨-potentialofSynthofloc5080His generally morethantwiceashighregardlessofthesalinity.Bothflocculants demonstrateaninitialsharpdecreasein␨-potentialwithsalinity, butSynthofloc5080Halwayshasatleasta20mVorhighercharge thanChitosan.

Thecombinationoftheobserveddifferenceincationiccharge forbothflocculantswiththeobservedsimilaritiesinviscositywith salinitysuggeststhatthecationicchargeisapredominantparame- terinfluencingtheflocculationefficiencyofN.oleoabundansunder salineconditions.

3.4. SEMimaging

Inadditiontoviscosity-and␨-potentialmeasurements,Scan- ning Electron Microscopy (SEM) was performed to verify if a differencebetweenthetwoflocculantsandanyeffectofsalinity onthestructureoftheflocculatedmicroalgaecouldbeobserved.

Theintentionwastovisualizeiftheflocculantisindeedadsorbedto thecellwall.Inaddition,thepicturescanalsorevealhowindividual cellsareattachedtoeachother:bridging,patching,acombination, oranotherpossibility.

InFig.5,thecellsandformedaggregatesaredepictedatbrackish salinity(25g/L,Fig.5A,CandE)andathighsalinity(45g/L,Fig.5B, DandF)afteradding60mg/LofSynthofloc5080H.

Fig.5Aillustratesthecellswithoutflocculantinbrackishsalin- ity.Accordingtothefigure,thecellsareclusteredwhichmaybe caused fromthedehydration of thesamplesduring theprepa- ration. However, despite this clustering, thecells have smooth surfacesandarenotboundtoeachotherbyafibrousnetworkof flocculants.Afteradditionoftheflocculantinbrackishconditions, Synthofloc5080Hwasstronglyinteractingwiththesinglecells

(6)

Fig.6. SEMimagingA:controlat25g/L.B:controlat45g/L.C:FlocwithChitosanat25g/L.D:flocwithChitosanat45g/L.E:zoominonthebridgeswithChitosanat25g/L.

F:zoominonthebridgeswithChitosanat45g/L.Usedflocculantconcentrationwas60mg/L.

(Fig.5CandE).Thepolymersadsorbtothesurfacesandforma fibrousnetworkbetweenthesinglecells.Asaresult,largeaggre- gatesofflocsareformed.Inaddition,alloftheflocculantsappear tobe adsorbedtothe cells as nonon-absorbedflocculants are observed.

Fig.5Bshowsthatthesinglecellsalsohaveasmoothsurface inverysalineconditions.AccordingtoFig.5DandF,largeagglom- eratesareformedjustasthoseinbrackishconditions.However,in thishighsalinity,Synthofloc5080Happearstoexperienceaweaker interactionwiththecellsasthelargepolymericfibrousnetworks werenotobservedbetweenindividualcells.Itappearsthatthefloc- culantsarestilladsorbedtothesurface(Fig.5F),however,they locallycoverthecellsurfacewhichallowcellstointeractandform smallbridges.

InFig.6,theflocformationafteranadditionof60mg/LofChi- tosanis shown.Fig.6A, C,and Earepictures takenin brackish salinity(25g/L),andFig.6B,D,andFaretakeninverysalinecon- ditions(45g/L).

ThecontrolpictureinFig.6Aisthesamecontrolpicturethat wastakenin brackish salinitiesfor Fig.5. Fig.6C exhibitsthat, although60mg/LofChitosanwasadded,nolargeaggregatesare formedinbrackishconditions.Thereareseveralsmallaggregates

formed,butthosecontainnomorethanapproximatelythreeto fourcells.IncomparisonwithFig.6Carelativelylargeamountof non-adsorbedflocculantwasobservedintheformofwhitesmall aggregatesbetweenthealgalcells.

Thereweresimilarobservations inverysalineconditions.In Fig.6B,thesamecontrolthatwasdepictedinFig.5isshown.Also, smallalgalflocsaredepictedinFig.6DandF.Justaswasobserved inbrackishconditions,arelativelylargeamountofnon-absorbed flocculantremainsnexttothesmallflocs.

Inbothsalinities,thecationicpolymersofChitosanappeartobe moreentangledwitheachotherthanthoseofSynthofloc5080H.

Despitethisentanglement,thepolymerswereadsorbedtothecell wall.Thisisinaccordancewiththeobservedbiomassrecoveries obtainedwithChitosan(Fig.1B).

Theobservations(Figs.5and6)correspondwellwiththeresults ofthe␨-potentialmeasurements.Itwashypothesizedthatpoly- mericflocculantsmustbeabsorbedtothecellwallbeforeinducing flocculation.After15minofmixing,alloftheSynthofloc5080H polymersappear tobe adsorbedsince whiteaggregates are no longerdetected.However,withChitosan,arelativelylargeamount ofnon-absorbedpolymersarestillobservedoutsidetheflocs.

(7)

Fig.7.Biomassrecoveriesasafunctionofthechargedensity(Control,5025H;

5040Hand5080H).Allexperimentsareperformedinbiologicalduplicates.Syn- thofloc5080HisadaptedfromFig.1.

Ourpreviouswork(‘tLam etal.,2015)mathematicallycon- firmedaproposedflocformingmechanismthat,justasinother, earlierstudies,assumespolymericadsorption(Vandammeetal., 2013).TheSEManalysisinthisstudysupportstheproposedmech- anismofadsorptionofaflocculantonacellwall.

Polymericadsorptiontoasurfacecanbeenhancedbycharge differences(BoltoandGregory,2007).Thelargerthechargediffer- encebetweenpolymersandthecellwall,thequickerthepolymer willbeadsorbed(Al-HashmiandLuckham2010;Tekinetal.,2010).

Theseresultsobtainedinotherstudiessuggestthenecessityofa highchargedifferencebetweenpolymerandsurface(inthiscase, themicroalgalcellwall).Ensuingfromthisconclusion,theresults reportedinFig.4suggestthatthedecreaseincationicchargecaused adecreasedefficiencyofcationicpolymersinelevatedsalinities.

Inadditiontoalowerdegreeofadsorptionofpolymersonthe cellwall,Tenneyetal.(1969)suggestedthatchargeneutralization playsaroleininducingflocformation.Whenchargeneutraliza- tionisactuallytakingplaceduringflocformation,apolymerwitha highercationicchargewillbemoreefficientinlocallyneutralizing thechargeofindividualcells.

Thedecreaseincationicchargethatcausedalowerdegreeof adsorptionincombinationwithadecreasedabilitytoneutralize cellwallchargesplausiblycausedthedecreasedflocculationofChi- tosaninelevatedsalinities(Fig.1).Itmayalsoexplaintheremaining amountof polymersthatwereobservedafter15minof mixing (Fig.6).

3.5. Flocculationatvariouscationicchargedensities

Toconfirmthatadecreaseincationicchargeduetoanincreas- ingsalinityiscausingadecreaseinflocculation,additionaltests wereperformedwithflocculantsfromtheSynthofloc50-series.By keepingthepolymericstructure(andsize)constantandvarying thechargedensityfromalowcharge(5025H)throughamoderate cationiccharge(5040H)uptoahighlychargedcationicpolymer (5080H),theeffectofcationicchargecouldbeconfirmed(Fig.7).

Theappliedsalinityinthisexperimentwas35g/L.

AccordingtoFig.7,witha flocculantdosageof 30mg/L,the flocculantwiththehighestchargedensity(5080H)wasthemost efficientinharvestingthebiomassinmarineconditions.Onaver- age, a 9% higher biomass recovery was obtained with 5080H comparedto5025H.Theseresultsdemonstratethatahighercharge densityresultsingreaterbiomassrecoveries.Thecombinationof theresultspresentedinFig.7withtheobserveddecreasein␨- potentialasafunctionofmediumsalinity(Fig.4)andapparent independenceofthebiomassrecoveryonthedegreeofcoilingof aflocculantsuggestthat,duetoadecreaseincationicchargein elevatedsalinities,flocculantsbecomelessfunctional.

Achangeinbiomassrecoveryasafunctionofthechargedensity, similartotheresultsinFig.7,waspreviouslyobservedbyRoselet et al. (2015).In theirstudy, thefreshwater microalga Chlorella vulgarisandtheseawatermicroalgaNannochloropsisoculatawere flocculatedwithcationicpoly(acryl)amidesofthe‘Flopam’series.

Bymaintainingaconstantpolymericsizeandvaryingthecharge densityfrom0%to100%,theeffectofthecationicchargeonthe biomassrecoverywasdetermined.Thebiomassrecoveryincreased fromrecoverieslowerthan10%torecoverieshigherthan90%with bothmicroalgaeasafunctionofthechargedensity.

4. Conclusion

Thedecreaseinnettcationicchargeinelevatedsalinitiesincites decreasedfunctionalityofcationicpolymersandinducesfloccu- lationof N.oleoabundans.In highsalinities, theresultinglower chargecauseddiminishedefficiencyinformingpolymericbridges betweenindividualcells.Thisinsightresultedintheconclusionthat thecationicchargeisanimportantcriterioninselectingcationic polymersasaflocculantformarineapplicationswheretheappar- entpolymerlengthisofminorsignificance.Thisstudyalsorevealed that,inbothbrackishandmarineconditions,polymericbridgingis adominantmechanisminflocformationforcationicpolymers.

Acknowledgements

ThisworkisperformedwithintheTKIAlgaePARCBiorefinery programwithfinancialsupportfromtheNetherlands’Ministryof EconomicAffairsintheframeworkoftheTKIBioBasedEconomy under contract nr. TKIBE01009. The authors thank the depart- mentofFoodProcessEngineering(WageningenUniversity)and, inparticular,Jos Sewaltfor hisassistanceinanalysingthefloc- culants. Theauthors thankMarcel Giesbers of theWageningen ElectronMicroscopyCentreofWageningenUniversityforhissup- port with SEM imaging. The authors are grateful for receiving thepoly(acryl)amidicflocculantsfromSachtlebenWasserchemie GmbH(Germany).

References

Al-Hashmi,A.R.,Luckham,P.F.,2010.Characterizationoftheadsorptionofhigh molecularweightnon-ionicandcationicpolyacrylamideonglassfrom aqueoussolutionsusingmodifiedatomicforcemicroscopy.ColloidsSurf.A 358,142–148.

Beach,E.S.,Eckelman,M.J.,Cui,Z.,Brentner,L.,Zimmerman,J.B.,2012.Preferential technologicalandlifecycleenvironmentalperformanceofchitosan flocculationforharvestingofthegreenalgaeNeochlorisoleoabundans.

Bioresour.Technol.121,445–449.

Bilanovic,D.,Shelef,G.,Sukenik,A.,1988.Flocculationofmicroalgaewithcationic polymers—effectsofmediumsalinity.Biomass17,65–76.

Bolto,B.,Gregory,J.,2007.Organicpolyelectrolytesinwatertreatment.WaterRes.

41,2301–2324.

Breuer,G.,Lamers,P.P.,Martens,D.E.,Draaisma,R.B.,Wijffels,R.H.,2012.The impactofnigrogenstarvationonthedynamicsoftriacylglycerolaccumulation inninemicroalgaestrains.Bioresour.Technol.124,217–226.

Chatsungnoen,T.,Chisti,Y.,2016.Harvestingmicroalgaeby flocculation-sedimentation.AlgalRes.13,271–283.

Cheng,Y.-S.,Zheng,Y.,Labavitch,J.M.,VanderGheynst,J.S.,2011.Theimpactofcell wallcarbohydratecompositiononthechitosanflocculationofChlorella.

ProcessBiochem.46,1927–1933.

Garzon-Sanabria,A.J.,Ramirez-Cabellero,S.S.,Moss,F.E.P.,Nikolov,Z.L.,2013.

Effectofalgogenicorganicmatter(AOM)andsodiumchlorideon Nannochloropsissalinaflocculationefficiency.Bioresour.Technol.143, 231–237.

König,R.B.,Sales,R.,Roselet,F.,Abreu,P.C.,2014.Harvestingofthemarine microalgaConticribraweissflogii(Bacillariophyceae)bycationicpolymeric flocculants.BiomassBioenergy68,1–6.

‘tLam,G.P.,Vermuë,M.H.,Olivieri,G.,vandenBroek,L.A.M.,Barbosa,M.J.,Eppink, M.H.M.,Wijffels,R.H.,Kleinegris,D.M.M.,2014.Cationicpolymersfor successfulflocculationofmarinemicroalgae.Bioresour.Technol.169,184–187.

‘tLam,G.P.,Zegeye,E.K.,Vermuë,M.H.,Kleinegris,D.M.M.,Eppink,M.H.M., Wijffels,R.H.,Olivieri,G.,2015.Dosageeffectofcationicpolymersonthe flocculationefficiencyofthemarinemicroalganeochlorisoleoabundans.

Bioresour.Technol.198,797–802.

(8)

microalgalbiodieselproduction.Bioresour.Technol.138,214–221.

Salim,S.,Kosterink,N.R.,TchetkouaWacka,N.D.,Vermuë,M.H.,Wijffels,R.H., 2014.Mechanismbehindautoflocculationofunicellulargreenmicroalgae Ettliatexensis.J.Biotechnol.174,34–38.

Tekin,N.,Dinc¸er,A.,Demirbas¸,Ö.,Alkan,M.,2010.Adsorptionofcationic polyacrylamide(C-PAM)onexpandedperlite.Appl.ClaySci.50,125–129.

Xu,Y.,Purton,S.,Baganz,F.,2013.Chitosanflocculationtoaidtheharvestingofthe microalgachlorellasorokiniana.Bioresour.Technol.129,296–301.

Yamakawa,H.,1971.ModernTheoryofPolymerSolutions.Departmentofpolymer chemistry,KyotoUniversity,Japan.Harper&RowPublishers.

Referanser

RELATERTE DOKUMENTER

3.1 Evolution of costs of defence 3.1.1 Measurement unit 3.1.2 Base price index 3.2 Operating cost growth and investment cost escalation 3.3 Intra- and intergenerational operating

Measurements of transmission and refraction in the marine boundary layer have been performed during the September 2011 SQUIRREL trial, and have been compared with results from

In April 2016, Ukraine’s President Petro Poroshenko, summing up the war experience thus far, said that the volunteer battalions had taken part in approximately 600 military

This report documents the experiences and lessons from the deployment of operational analysts to Afghanistan with the Norwegian Armed Forces, with regard to the concept, the main

Based on the above-mentioned tensions, a recommendation for further research is to examine whether young people who have participated in the TP influence their parents and peers in

From the above review of protection initiatives, three recurring issues can be discerned as particularly relevant for military contributions to protection activities: (i) the need

Overall, the SAB considered 60 chemicals that included: (a) 14 declared as RCAs since entry into force of the Convention; (b) chemicals identied as potential RCAs from a list of

An abstract characterisation of reduction operators Intuitively a reduction operation, in the sense intended in the present paper, is an operation that can be applied to inter-