• No results found

The pear‐shaped fate of an ice melting front

N/A
N/A
Protected

Academic year: 2022

Share "The pear‐shaped fate of an ice melting front"

Copied!
16
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

2

Proceedings of the 12

th

International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries

SINTEF

PROCEEDINGS

Progress in Applied CFD –

CFD2017

(2)

Editors:

Jan Erik Olsen and Stein Tore Johansen

Progress in Applied CFD – CFD2017

Proceedings of the 12

th

International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries

SINTEF Proceedings

SINTEF Academic Press

(3)

SINTEF Proceedings no 2

Editors: Jan Erik Olsen and Stein Tore Johansen Progress in Applied CFD – CFD2017

Selected papers from 10th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metal lurgical and Process Industries

Key words:

CFD, Flow, Modelling

Cover, illustration: Arun Kamath

ISSN 2387-4295 (online) ISBN 978-82-536-1544-8 (pdf)

© Copyright SINTEF Academic Press 2017

The material in this publication is covered by the provisions of the Norwegian Copyright Act. Without any special agreement with SINTEF Academic Press, any copying and making available of the material is only allowed to the extent that this is permitted by law or allowed through an agreement with Kopinor, the Reproduction Rights Organisation for Norway. Any use contrary to legislation or an agreement may lead to a liability for damages and confiscation, and may be punished by fines or imprisonment

SINTEF Academic Press

Address: Forskningsveien 3 B PO Box 124 Blindern

N-0314 OSLO

Tel: +47 73 59 30 00 Fax: +47 22 96 55 08 www.sintef.no/byggforsk www.sintefbok.no

SINTEF Proceedings

SINTEF Proceedings is a serial publication for peer-reviewed conference proceedings on a variety of scientific topics.

The processes of peer-reviewing of papers published in SINTEF Proceedings are administered by the conference organizers and proceedings editors. Detailed procedures will vary according to custom and practice in each scientific community.

(4)

PREFACE  

This book contains all manuscripts approved by the reviewers and the organizing committee of the  12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and  Process Industries. The conference was hosted by SINTEF in Trondheim in May/June 2017 and is also  known as CFD2017 for short. The conference series was initiated by CSIRO and Phil Schwarz in 1997. 

So far the conference has been alternating between CSIRO in Melbourne and SINTEF in Trondheim. 

The  conferences  focuses on the  application  of CFD in the oil and  gas  industries, metal production,  mineral processing, power generation, chemicals and other process industries. In addition pragmatic  modelling  concepts  and  bio‐mechanical  applications  have  become  an  important  part  of  the  conference. The papers in this book demonstrate the current progress in applied CFD.  

The conference papers undergo a review process involving two experts. Only papers accepted by the  reviewers  are  included  in  the  proceedings.  108  contributions  were  presented  at  the  conference  together  with  six  keynote  presentations.  A  majority  of  these  contributions  are  presented  by  their  manuscript in this collection (a few were granted to present without an accompanying manuscript).  

The organizing committee would like to thank everyone who has helped with review of manuscripts,  all  those  who  helped  to  promote  the  conference  and  all  authors  who  have  submitted  scientific  contributions. We are also grateful for the support from the conference sponsors: ANSYS, SFI Metal  Production and NanoSim. 

Stein Tore Johansen & Jan Erik Olsen 

3

(5)

Organizing committee: 

Conference chairman: Prof. Stein Tore Johansen  Conference coordinator: Dr. Jan Erik Olsen  Dr.

 

Bernhard Müller 

Dr.Sigrid Karstad Dahl  Dr.Shahriar Amini  Dr.Ernst Meese  Dr.Josip Zoric  Dr.Jannike Solsvik  Dr.Peter Witt   

                     

Scientific committee: 

Stein Tore Johansen, SINTEF/NTNU  Bernhard Müller, NTNU 

Phil Schwarz, CSIRO 

Akio Tomiyama, Kobe University 

Hans Kuipers, Eindhoven University of Technology  Jinghai Li, Chinese Academy of Science 

Markus Braun, Ansys  Simon Lo, CD‐adapco 

Patrick Segers, Universiteit Gent  Jiyuan Tu, RMIT 

Jos Derksen, University of Aberdeen  Dmitry Eskin, Schlumberger‐Doll Research  Pär Jönsson, KTH 

Stefan Pirker, Johannes Kepler University  Josip Zoric, SINTEF 

         

             

 

4

(6)

CONTENTS 

 

PRAGMATIC MODELLING ... 

On pragmatism in industrial modeling. Part III: Application to operational drilling  ... 11 

CFD modeling of dynamic emulsion stability ... 23 

Modelling of interaction between turbines and terrain wakes using pragmatic approach ... 29 

  FLUIDIZED BED ... 37 

Simulation of chemical looping combustion process in a double looping fluidized bed        reactor with cu‐based oxygen carriers  ... 39 

Extremely fast simulations of heat transfer in fluidized beds  ... 47 

Mass transfer phenomena in fluidized beds with horizontally immersed membranes ... 53 

A Two‐Fluid model study of hydrogen production via water gas shift in fluidized bed   membrane reactors   ... 63 

Effect of lift force on dense gas‐fluidized beds of non‐spherical particles ... 71 

Experimental and numerical investigation of a bubbling dense gas‐solid fluidized bed  ... 81 

Direct numerical simulation of the effective drag in gas‐liquid‐solid systems ... 89 

A Lagrangian‐Eulerian hybrid model for the simulation of direct reduction of iron ore  in fluidized beds... 97 

High temperature fluidization ‐ influence of inter‐particle forces on fluidization behavior   ... 107 

Verification of filtered two fluid models for reactive gas‐solid flows  ... 115 

  BIOMECHANICS  ... 123 

A computational framework involving CFD and data mining tools for analyzing disease in       cartoid artery   ... 125 

Investigating the numerical parameter space for a stenosed patient‐specific internal  carotid artery model  ...  133 

Velocity profiles in a 2D model of the left ventricular outflow tract, pathological  case study using PIV and CFD modeling  ...  139 

Oscillatory flow and mass transport in a coronary artery  ... 147 

Patient specific numerical simulation of flow in the human upper airways for assessing       the effect of nasal surgery  ... 153 

CFD simulations of turbulent flow in the human upper airways ... 163 

  OIL & GAS APPLICATIONS  ... 169 

Estimation of flow rates and parameters in two‐phase stratified and slug flow by an   ensemble Kalman filter ... 171 

Direct numerical simulation of proppant transport in a narrow channel for hydraulic   fracturing application ... 179 

Multiphase direct numerical simulations (DNS) of oil‐water flows through   homogeneous porous rocks  ... 185 

CFD erosion modelling of blind tees ... 191 

Shape factors inclusion in a one‐dimensional, transient two‐fluid model for stratified  and slug flow simulations in pipes ... 201 

Gas‐liquid two‐phase flow behavior in terrain‐inclined pipelines for wet natural  gas transportation  ... 207 

   

(7)

NUMERICS, METHODS & CODE DEVELOPMENT ... 213 

Innovative computing for industrially‐relevant multiphase flows  ... 215 

Development of GPU parallel multiphase flow solver for turbulent slurry flows in cyclone  ... 223 

Immersed boundary method for the compressible Navier–Stokes equations using  high order summation‐by‐parts difference operators  ... 233 

Direct numerical simulation of coupled heat and mass transfer in fluid‐solid systems ... 243 

A simulation concept for generic simulation of multi‐material flow,   using staggered Cartesian grids  ... 253 

A cartesian cut‐cell method, based on formal volume averaging of mass,   momentum equations  ... 265 

SOFT: a framework for semantic interoperability of scientific software ... 273 

  POPULATION BALANCE ... 279 

Combined multifluid‐population balance method for polydisperse multiphase flows ... 281 

A multifluid‐PBE model for a slurry bubble column with bubble size dependent   velocity, weight fractions and temperature  ... 285 

CFD simulation of the droplet size distribution of liquid‐liquid emulsions   in stirred tank reactors  ... 295 

Towards a CFD model for boiling flows: validation of QMOM predictions with   TOPFLOW experiments ... 301 

Numerical simulations of turbulent liquid‐liquid dispersions with quadrature‐based   moment methods  ... 309 

Simulation of dispersion of immiscible fluids in a turbulent couette flow ... 317 

Simulation of gas‐liquid flows in separators ‐ a Lagrangian approach  ... 325 

CFD modelling to predict mass transfer in pulsed sieve plate extraction columns ... 335 

  BREAKUP & COALESCENCE ... 343 

Experimental and numerical study on single droplet breakage in turbulent flow ... 345 

Improved collision modelling for liquid metal droplets in a copper slag cleaning process  ... 355 

Modelling of bubble dynamics in slag during its hot stage engineering  ... 365 

Controlled coalescence with local front reconstruction method ... 373 

  BUBBLY FLOWS ... 381 

Modelling of fluid dynamics, mass transfer and chemical reaction in bubbly flows ... 383 

Stochastic DSMC model for large scale dense bubbly flows  ... 391 

On the surfacing mechanism of bubble plumes from subsea gas release  ... 399 

Bubble generated turbulence in two fluid simulation of bubbly flow  ... 405 

  HEAT TRANSFER ... 413 

CFD‐simulation of boiling in a heated pipe including flow pattern transitions   using a multi‐field concept  ... 415 

The pear‐shaped fate of an ice melting front ... 423 

Flow dynamics studies for flexible operation of continuous casters (flow flex cc)  ... 431 

An Euler‐Euler model for gas‐liquid flows in a coil wound heat exchanger  ... 441 

  NON‐NEWTONIAN FLOWS  ... 449 

Viscoelastic flow simulations in disordered porous media  ... 451 

Tire rubber extrudate swell simulation and verification with experiments ... 459 

Front‐tracking simulations of bubbles rising in non‐Newtonian fluids  ... 469 

A 2D sediment bed morphodynamics model for turbulent, non‐Newtonian,  

particle‐loaded flows  ...  479 

 

(8)

METALLURGICAL APPLICATIONS  ... 491 

Experimental modelling of metallurgical processes ... 493 

State of the art: macroscopic modelling approaches for the description of multiphysics   phenomena within the electroslag remelting process ... 499 

LES‐VOF simulation of turbulent interfacial flow in the continuous casting mold ... 507 

CFD‐DEM modelling of blast furnace tapping  ... 515 

Multiphase flow modelling of furnace tapholes ... 521 

Numerical predictions of the shape and size of the raceway zone in a blast furnace  ... 531 

Modelling and measurements in the aluminium industry ‐ Where are the obstacles? ... 541 

Modelling of chemical reactions in metallurgical processes  ... 549 

Using CFD analysis to optimise top submerged lance furnace geometries  ... 555 

Numerical analysis of the temperature distribution in a martensic stainless steel   strip during hardening  ... 565 

Validation of a rapid slag viscosity measurement by CFD  ... 575 

Solidification modeling with user defined function in ANSYS Fluent  ... 583 

Cleaning of polycyclic aromatic hydrocarbons (PAH) obtained from ferroalloys plant  ... 587 

Granular flow described by fictitious fluids: a suitable methodology for process simulations  ... 593 

A multiscale numerical approach of the dripping slag in the coke bed zone of a   pilot scale Si‐Mn furnace  ...  599 

  INDUSTRIAL APPLICATIONS ... 605 

Use of CFD as a design tool for a phospheric acid plant cooling pond ... 607 

Numerical evaluation of co‐firing solid recovered fuel with petroleum coke in a   cement rotary kiln: Influence of fuel moisture ... 613 

Experimental and CFD investigation of fractal distributor on a novel plate and   frame ion‐exchanger  ...  621 

  COMBUSTION ... 631 

CFD modeling of a commercial‐size circle‐draft biomass gasifier  ... 633 

Numerical study of coal particle gasification up to Reynolds numbers of 1000  ... 641 

Modelling combustion of pulverized coal and alternative carbon materials in the   blast furnace raceway ... 647 

Combustion chamber scaling for energy recovery from furnace process gas:   waste to value ... 657 

  PACKED BED  ... 665 

Comparison of particle‐resolved direct numerical simulation and 1D modelling   of catalytic reactions in a packed bed  ... 667 

Numerical investigation of particle types influence on packed bed adsorber behaviour ... 675 

CFD based study of dense medium drum separation processes ... 683 

A multi‐domain 1D particle‐reactor model for packed bed reactor applications  ... 689 

  SPECIES TRANSPORT & INTERFACES ... 699 

Modelling and numerical simulation of surface active species transport   ‐ reaction in welding processes  ... 701 

Multiscale approach to fully resolved boundary layers using adaptive grids  ... 709 

Implementation, demonstration and validation of a user‐defined wall function   for direct precipitation fouling in Ansys Fluent  ... 717   

 

 

(9)

FREE SURFACE FLOW & WAVES ... 727  Unresolved CFD‐DEM in environmental engineering: submarine slope stability and  

other applications... 729  Influence of the upstream cylinder and wave breaking point on the breaking wave  

forces on the downstream cylinder ... 735  Recent developments for the computation of the necessary submergence of pump  

intakes with free surfaces ... 743  Parallel multiphase flow software for solving the Navier‐Stokes equations ... 752   

PARTICLE METHODS  ... 759  A numerical approach to model aggregate restructuring in shear flow using DEM in  

Lattice‐Boltzmann simulations  ... 761  Adaptive coarse‐graining for large‐scale DEM simulations  ... 773  Novel efficient hybrid‐DEM collision integration scheme  ... 779  Implementing the kinetic theory of granular flows into the Lagrangian  

dense discrete phase model  ... 785  Importance of the different fluid forces on particle dispersion in fluid phase  

resonance mixers ... 791  Large scale modelling of bubble formation and growth in a supersaturated liquid  ... 798   

FUNDAMENTAL FLUID DYNAMICS ... 807  Flow past a yawed cylinder of finite length using a fictitious domain method ... 809  A numerical evaluation of the effect of the electro‐magnetic force on bubble flow  

in aluminium smelting process  ... 819 

A DNS study of droplet spreading and penetration on a porous medium  ... 825 

From linear to nonlinear: Transient growth in confined magnetohydrodynamic flows  ... 831 

(10)

12th International Conference on CFD in Oil & Gas, Metallurgical and Process Industries SINTEF, Trondheim, NORWAY

May 30th - June 1st, 2017 CFD 2017

THE PEAR-SHAPED FATE OF AN ICE MELTING FRONT

James N. HEWETT1∗, Mathieu SELLIER1

1Department of Mechanical Engineering, University of Canterbury, Christchurch 8140, NEW ZEALAND

E-mail: james@hewett.nz

ABSTRACT

A fluid-structure interaction problem with the melting of water around a heated horizontal circular cylinder is analysed with nu- merical simulations. Dynamic meshing was used for evolving the flow domain in time as the melting front extended radially outward from the cylinder; a node shuffle algorithm was used to retain mesh quality across the significant mesh deformation. We simulated one case above the density inversion point of water and one case below, yielding pear-shaped melting fronts due to thermal plumes either rising or falling from the cylinder, respectively. Results were com- pared with previous experimental studies and the melting front pro- files matched reasonably well and melting rates were in agreement.

We confirm that natural convection plays a significant role in the transport of energy as the melt zone increases, and needs to be con- sidered for accurately modelling phase change under these condi- tions.

Keywords: Fluid-structure interaction, Stefan problem, melting, natural convection, density inversion.

NOMENCLATURE Greek Symbols

α Thermal diffusivity (k/ρcp),[m2/s]. εεε Strain tensor, [-].

θ Angle, [rad].

µ Dynamic viscosity,[kg/ms]. ν Kinematic viscosity (µ/ρ),[m2/s]. ρ Mass density,[kg/m3].

σσσ Stress tensor,[Pa].

τ Dimensionless time (Fo·Ste, Equation 5), [-].

Latin Symbols

A Cross-sectional area,[m2]. cp Specific heat,[J/kgK]. CT Temperature coefficient,[1/K].

E Young’s modulus, [Pa].

Fo Fourier number (αt/R2w), [-].

g Acceleration due to gravity,[m/s2].

G Shear modulus,[Pa].

∆hf Latent heat of fusion,[J/kg].

k Thermal conductivity,[W/mK].

m Mesh displacement vector,[m].

ˆ

n Unit normal vector to interface, [-].

Nu Nusselt number (Equation 13), [-].

Po Poisson’s ratio (Equation 12), [-].

q Temperature index, [-].

r Radial coordinate, [m].

R Radius, [m].

Ra Rayleigh number (Equation 6), [-].

Ste Stefan number (Equation 4), [-].

t Time,[s].

T Temperature,[C].

v Velocity vector, [m/s].

V Dimensionless volume ratio (Equation 1), [-].

x Horizontal coordinate, [m].

y Vertical coordinate, [m].

Sub/superscripts 0 Initial condition.

f Fusion.

film Evaluated at the film temperature ((Ti+Tf)/2).

i Interface.

m Physical properties of water at 4.029325C.

w Cylinder wall.

INTRODUCTION

Thermal energy storage plays an important role in utilising energy resources effectively because often the timing of gen- eration and consumption of energy can vary from hours to months. For example, solar energy is only available during the day and therefore effective energy storage is required for utilising solar energy during the night. Similarly, power sta- tions must design for peak loads whereas adequate energy storage would allow more efficient use of generators as peak times can be offset by stored energy from off peak times. An efficient method of storing thermal energy is with latent heat which provides a high storage density and requires a smaller difference between storing and releasing temperatures com- pared with the sensible heat storage method (Farid et al., 2004). There has also been recent studies on using phase change materials for passive cooling in buildings where lat- ent heat is used to increase the thermal inertia of building en- velopes, regularising the ambient temperature (Akeiberet al., 2016).

The moving boundary problem where the solid and liquid phase change process occurs forms the classical Stefan prob- lem (Stefan, 1891); named after the Slovene physicist Jo˘zef Stefan (1835-1893). This moving boundary is a function of both time and space and is unknown a priori; creating a coupled fluid structure interaction problem to model.

Heat transfer by conduction dominates as the mechanism re- sponsible for melting in the initial stages, when a thin layer 423

(11)

J. N. Hewett, M. Sellier of water is present. However, natural convection (due to

the temperature dependent water density) plays an import- ant role as the melting front advances outward from the heat source and the volume of the flow domain increases (White et al., 1977; Sparrowet al., 1978; Batheltet al., 1979). The flow induced from these buoyancy effects creates temperat- ure fields which lead to apear-shapedsolid-liquid interface.

Water has a density inversion near 4.0C which influences the location of enhanced melting (either the warmer water rises or falls around the cylinder). An inverted pear-shaped interface was found for cylinder temperatures below 8.0C (Herrmannet al., 1984) and near concentric interface evolu- tion at 8.0C. We simulate one case below and another above this critical cylinder temperature to explore both scenarios due to the density inversion of water.

Experiments have previously been undertaken on the melting of phase change materials around horizontal cylindrical heat sources of: n-paraffins (n-heptadecane and n-octadecane) (Bathelt and Viskanta, 1980) where no density inversion ex- ists; and water (White et al., 1986) at temperatures around the density inversion point. We simulate water as the phase change material and quantitatively compare our results with the latter set of experiments.

Previous simulation approaches include numerical mapping techniques where the transformed domain morphs over time (Riegeret al., 1982; Ho and Chen, 1986), and another by us- ing the latent heat content which varies between zero (solid) and 1 (liquid) (Darziet al., 2012). The first approach involves tracking the melting interface via domain mapping and cal- culating the governing equations on a stationary grid. The second approach employs a single mesh where cells have a liquid fraction assigned and the interface is determined based on a fraction threshold criteria. Alternatively, we directly tracked the moving boundary by dynamically updating the mesh throughout the simulation based on the heat flux at the solid-liquid interface.

METHODS

Problem description

The physical problem studied in this paper is of ice melting radially outward from a horizontal isothermal heated cylin- der. Initially, the ice has a uniform temperature of Tf and the cylinder is heated toTw>Tf. We model the molten ice as a single phase with the interface boundary imitating the Stefan condition. The interface is tracked across discrete time steps where the mesh dynamically updates. Flow is solved in steady state at each time step, leading to a quasi- steady state simulation.

Considering the complexity of modelling phase change ma- terials with dynamic boundaries, the following assumptions were made: (1) motion of water is laminar, 2-D and is in- compressible; (2) thermophysical properties of water, except density, are constant across the temperature range modelled;

(3) the Boussinesq approximation (density variations only feature in the buoyancy source term); (4) viscous dissipation and volume difference due to phase change are neglected;

and (5) thermal equilibrium exists at the interface.

Geometry and boundary conditions

The heated cylinder, bounded with a radius ofRw=12.7mm, is located at the centre of the computational domain and re- mains stationary. We selected two cylinder wall temperature values: Tw =2.3C andTw =14.1C, to directly compare our simulation results with existing experimental data (White

Figure 1:Computational mesh evolution from initial (top left) to final (bottom right) geometry for one of the simulations.

et al., 1986); one belowTm(heat source sinks) and one above Tm(heat source rises).

Ice surrounds the cylinder outward to infinity and the inter- face between the ice and water is described with the radial distanceRi(θ,τ). The computational domain resides between the heated cylinder wall boundary and the dynamic melting interface.

A dimensionless melted ice volume ratio was defined as the ratio of molten ice to the isothermal cylinder, calculated with

V =Ai−Aw

Aw (1)

using cross-sectional areas because the depth is an arbitrary parameter for our 2-D model. The area enclosed by the in- terfaceAiwas calculated by treating the nodes outlining the boundary as a simple polygon, and the constant wall area was calculated withAw=πR2w.

A structured O-grid mesh of 40×80 (radial×circumferen- tial) was used in all of the simulations. Uniform cell lengths were specified around the perimeter and a bias was applied in the radial direction to cluster cells near both of the bound- aries; in order to resolve the thermal boundary layers. The outer boundary (solid and molten ice interface) expands and the mesh dynamically updates accordingly throughout the simulation as shown in Figure 1. Computational cells within the mesh are deformed and translated without creating or destroying cells; a constant number of finite volume cells are retained throughout each simulation.

Dirichlet conditions were applied to the cylinder wall and interface boundaries with temperatures ofTwandTirespect- ively, and no slip shear conditions were also imposed. The front and back boundaries of the O-grid domain were set as symmetry with one cell depth to enforce the 2-D assumption.

Initial conditions

The experiments (Whiteet al., 1986) started with the solid ice in contact with the cylinder such thatR0=Rw (no mol- ten ice was present). However, our simulations require a fi- 424

(12)

The pear-shaped fate of an ice melting front / CFD 2017 nite volume to begin with and therefore we usedR0=1.2Rw

and offset the time appropriately witht0(as calculated based on the analytical solution of heat transfer by conduction de- scribed in theResultssubsection onValidation with uniform density).

As the heat transport within the molten ice is dominated by conduction in the initial stages, we initialised the computa- tional domain with the analytical solution to this conduction problem. Velocities were set to zero and the temperature field was initialised using

T= (Ti−Tw)ln(r/Rw)

ln(Ri/Rw)+Tw (2) with the substitutionRi=R0.

Fluid properties

The nonlinear variation of water density was included in our simulations by using aρ relation in the range ofT =0 to 20C (Gebhart and Mollendorf, 1977)

ρ=ρm(1−CT|T−Tm|q) (3) where ρm =999.9720kg/m3, CT =9.297173×106/K, Tm=4.029325C andq=1.894816.

Thermophysical properties of water were evaluated at an average temperature of T ≈5C: cp=4.20kJ/kgK, µ= 1.52g/ms and k =0.57W/mK. These properties vary slightly across the temperature range simulated but have a negligible influence on the melting rate compared to the density variation.

The constant temperature of the heated cylinderTwwas non- dimensionalised with the Stefan number

Ste=cp(Tw−Tf)

∆hf (4)

where∆hf =333.55kJ/kg. The time was made dimension- less with the product of the Fourier and Stefan numbers with

τ= αt

R2wSte (5)

The Rayleigh number is a measure of the intensity of natural convection within the molten ice. A density based defini- tion (Whiteet al., 1986) was chosen to handle the non-linear density variation and density inversion feature, with

Ra=gR3wm−ρfilm)

ναρm (6)

whereg=9.80665m/s2. Ra approaches zero at the dens- ity inversion point (Tw=8.0C and thereforeTfilm=4.0C) where natural convection plays an insignificant role. Con- versely, Ra increases further from this point and is positive for both upright and inverted pear-shaped melting fronts.

Numerical procedure

Our simulations were performed using ANSYS Fluent R17.0 as the computational fluid dynamics software. Data analysis and visualisation of results were coded in MATLAB 2016b.

Governing equations

Fluent is a cell centred finite volume solver and was em- ployed to solve the momentum, continuity and energy equa- tions. Second order spatial discretisation methods were set for the pressure, momentum and energy equations. Pressure

and velocity were coupled with the PISO scheme. Under- relaxation factors of 0.3 (pressure), 1 (density), 1 (body forces), 0.7 (momentum) and 0.7 (energy) were used.

The fluid time step specified in Fluent was 1×106s (quasi- steady state assumption) whereas the dynamic mesh step used for deforming the interface was∆t=250s (τ=0.006) resulting in 120 steps for the inverted pear-shape and∆t = 20s (τ=0.003) with 200 steps for the upright pear-shape case. A maximum number of 50 iterations per time step was used as this number gave iterative convergence of the solu- tion.

Melting interface boundary

The velocity of the melting front at the solid-liquid water interface was given by the Stefan condition (Moore, 2017)

vi=−αcp

∆hf

dT dn

inˆ (7) where ˆnis directed toward the solid phase. Theviwas posit- ive for all cases because a negative temperature gradient ex- isted at the interface boundary; yielding an outward melting front from the warm cylinder throughout the simulations.

Dynamic mesh

The dynamic mesh model in Fluent was employed for hand- ling the changing mesh through time. Nodes on the interface boundary were displaced with

∆xi=∆tvi (8)

using user-defined functions.

A node shuffle algorithm (Hewett and Sellier, 2017) was used to uniformly distribute the nodes around the interface at each mesh update. Without this algorithm, mesh quality degrades as the profile of the boundary morphs into its new shape and the simulation diverges.

The interior nodes were updated with a linearly elastic solid model (with the mesh smoothing based option in Fluent).

Mesh motion was governed by

∇·σσσ(m) =0 (9)

σσσ(m) =Etr(εεε(m))I+2Gεεε(m) (10) εεε(m) =1

2(∇m+ (∇m)T) (11) and was parameterised with Poisson’s ratio

Po= 1

2(1+G/E) (12)

where we used the default of Po=0.45 which gave robust mesh deformations and retained similar thermal boundary layer resolutions throughout the simulations.

RESULTS

We first validated our model by using a phase change ma- terial with uniform density (no natural convection; conduc- tion only) and compared the results with the analytical solu- tion. Next, we simulated one case below the temperature thresholdTw=8.0C where an inverted pear-shape interface developed, and one case above where an upright pear-shape melting front formed.

425

(13)

J. N. Hewett, M. Sellier

−3 −2 −1 0 1 2 3

−3

−2

−1 0 1 2 3

x/Rw y/Rw

Cylinder

Interface 0.1 0.2 0.3 0.4 0.5 0.6 0.7

τ

Figure 2:Melting interface evolution assuming uniform density withTw=2.3C. Profiles are equally spaced in time.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0

1 2 3 4

τ

V

∆τ= 0.024

∆τ= 0.006

∆τ= 0.003 Analytic

Figure 3:Time step convergence of melt volume over time for the uniform density case atTw=2.3C.

Validation with uniform density

The Stefan problem is simplified when a uniform fluid dens- ity is employed such that no natural convection exists and the heat is transferred exclusively by conduction. Equation 2 describes the temperature field throughout the melting evolu- tion for this reduced one-dimensional case. The temperature gradient in Equation 7 was calculated by numerically differ- entiating the temperature at the interface boundary.

Evolution of the melting interface between the solid and li- quid water phases are shown in Figure 2. All time interface profiles are concentric with the cylinder, caused by uniform temperature gradients at the boundary, because no flow was generated within the fluid. The melting front is quickest dur- ing the initial period where the ice is almost in contact with the heated cylinder and slows as the interface recedes out- ward.

The rate of melt volume (Figure 3) is greatest at the begin- ning and reduces over time; monotonically increasing. Simu- lations overestimate the melting rate because the temperature gradient was explicitly calculated at each step (essentially an Euler method). The coarse mesh time step of ∆τ=0.024 significantly overestimates the melt volume and time steps of∆τ60.006 agree well with the analytical solution.

Mesh independence was studied on a case by case basis as the flow features requiring varying mesh resolution levels differed across the cylinder temperatures and whether natural convection occurred or not. For example, the pure conduc-

−3 −2 −1 0 1 2 3

−3

−2

−1 0 1 2

x/Rw

y/Rw

Cylinder wall Experiment Simulation Figure 4:Melting interface profiles for Tw=2.3C, comparing

simulation with experiment using paired dimensionless times ofτ=0.039,0.172,0.223,0.350 and 0.524 (ex- tending outward from the cylinder respectively).

tion case achieved mesh independence with a coarser mesh than the cases where natural convection occurred; recircula- tion of the flow needed to be resolved. Similarly, the mesh time step was converged for each case.

Inverted pear-shape (T<8.0C)

A low cylinder temperature of Tw =2.3C (Ste=0.029, Ra=6700) was chosen such that the coldest water had the lowest density (below the density inversion point). The melt- ing interface, shown in Figure 4, initially advances concent- rically from the cylinder at the same rate as the uniform dens- ity case (Figure 2).

Buoyancy driven flow develops as the melt volume increases causing recirculation as shown in Figure 5. The warm water sinks (due to the density variation specified via Equation 3), enhancing the melting rate at the base causing an inverted pear-shape form.

Molten ice volume over time is shown in Figure 6 where both our simulation and the experiment (Whiteet al., 1986) closely follows the uniform density during the early stages of melting. This uniform density approximation begins to deviate atτ≈0.2 where the fluid heat starts to be transported by natural convection in addition to conduction, causing the approximation to underestimateV.

A spike inV atτ=0.223 was observed in the experiment (Figure 6) which was not featured in our results. However, the slope ofV withτmatch closely between the final two ex- periment data points and the second half of our simulation.

Furthermore, the shape Ri(θ)closely resembles the experi- ment but lags slightly behind in time.

Upright pear-shape (T >8.0C)

The final case included the density inversion effects of wa- ter by prescribing a cylinder boundary temperature ofTw= 14.1C (Ste=0.178, Ra=7400). The melting interface for this case also begins with a concentrically evolving profile as shown in Figure 7.

A thermal plume develops as the molten ice volume increases and this plume generates two counter-rotating vortices as 426

(14)

The pear-shaped fate of an ice melting front / CFD 2017

−3 −2 −1 0 1 2 3

−3

−2

−1 0 1 2

x/Rw y/Rw

Mesh boundary Streamline Figure 5:Streamlines forTw=2.3C atτ=0.524.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0 1 2 3 4

τ

V

Experiment Simulation Uniform density

Figure 6:Molten ice volume over time withTw=2.3C.

−3 −2 −1 0 1 2 3

−2

−1 0 1 2 3 4

x/Rw

y/Rw

Cylinder wall Experiment Simulation Figure 7:Melting interface profiles for Tw=14.1C, comparing

simulation with experiment using paired dimensionless times ofτ=0.045, 0.122,0.177,0.272 and 0.370 (ex- tending outward from the cylinder respectively).

−3 −2 −1 0 1 2 3

−2

−1 0 1 2 3 4

x/Rw y/Rw

Mesh boundary Streamline Figure 8:Streamlines forTw=14.1C atτ=0.370.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0

1 2 3 4

τ

V

Experiment Simulation Uniform density

Figure 9:Molten ice volume over time withTw=14.1C.

shown in Figure 8; these vortices were also observed in ex- periments (Whiteet al., 1986). This rising warm water and corresponding vortices causes an upright pear-shape profile to emerge.

The molten ice volume deviates from the uniform density approximation earlier for this warmer case as shown in Fig- ure 9. The ice melting rate observed in the experiments ap- pear to exceed that of by pure conduction even in the early stages of the process atτ=0.045 whereas our simulations follow this rate untilτ≈0.1. Similar to the low temperature case, the slope ofV withτmatch reasonably well between the experiment and our simulations during the natural con- vection dominated heat transfer regime.

Instantaneous interface profiles match closely with the exper- iment (Figure 7) but are out of sync; slightly lagging in time.

Small asymmetric features were observed in the experiment during the final time snapshots whereas our simulations pre- dicted symmetric profiles about the vertical plane.

DISCUSSION

The solid-liquid interface advanced radially outward from the heated cylinder in all cases; causing a monotonically in- creasing melt volume. Resolidification of the molten ice was not allowed in our model as a positive temperature gradient was present at the interface boundary (sinceT>Tf through- out the domain); and resolidification was not observed in ex- periments (Whiteet al., 1986). The conduction only case ex- hibited uniform melting rates as a function ofθ, resulting in 427

(15)

J. N. Hewett, M. Sellier

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0 2 4 6 8

τ

Nu

Overall mean θ0=0 θ0=π/2 θ0=π Figure 10:Variation of the local and total Nusselt numbers over

time for the inverted pear-shape case (Tw=2.3C).

Angleθis measured from the base of the cylinder and is positive in the anti-clockwise direction.

concentric interface profiles, whereas the other two cases in- volving natural convection featured eccentricity in their inter- face shapes beyond the initial conduction dominated period.

The location of eccentricity was determined by the oppos- ite direction of the thermal plume: either above or below the cylinder.

The local Nusselt number around the melting interface was defined as

Nui= Ri

Tf−Tw

dT dn

i (13) where an area averaged radius ofRi=p

Ai/πwas used to ac- count for the time-dependent expansion of the domain. Fig- ure 10 shows that the total heat transfer rapidly decreases in the early stages as the conduction heat transport mechanism accelerates the melting process. Heat transfer was uniform around the cylinder up untilτ≈0.05 where the local angle dependent Nu numbers split and natural convection begins to develop. However, the melt volume rate deviates between the two cases atτ≈0.2 (Figure 6) indicating that the average melting rate is similar, regardless of the non-uniform melting rate, for 0.05<τ<0.2. Average Nu appears to plateau to- ward the end of the simulation (τ>0.6), indicating that an equilibrium of the melting rate has been reached; also shown as the slope ofV withτin Figure 6.

Heat transfer by conduction dominated the early stages of the process and natural convection became a significant factor as the molten ice volume expanded, allowing recirculation to occur (Figures 5 and 8). Experiments observed a spike in the rate of melting at the transition between the conduction and natural convection dominated heat transfer regimes. Our simulations did not capture this counter-intuitive local spike, possibly due to our simplified assumptions including 2-D steady flow. Local transient fluid motion induced from the transition from conduction to natural convection (unsteady flow) or 3-D effects may have been responsible for this en- hanced melting rate. Whiteet al.(1986) observed 3-D vor- tex motion in the later stages of the melting process causing ripples around the interface along the cylinder axis.

Standard uncertainties in measurements (either explicitly or implicitly via perturbing the rig) and values used for the thermophysical properties are other possible sources for the quantitative discrepancy between simulations and experi- ment. Melting rates and flow features are highly sensitive to the temperature of the heated cylinder. However, it is import- ant to note that the interface shapes closely match throughout

the melting process; and only the time dependent interface evolution at the flow regime transition differs.

The Rayleigh numbers of the two pear-shape cases involving natural convection were similar: 6700 (inverted) and 7400 (upright). However, each case was either side of the density inversion point of water. The inverted pear-shape had a posit- ive monotonic relationship of density to temperature yielding a relatively simple recirculation flow pattern on each side of the pear. In contrast, the upright pear-shape encompassed the density inversion point causing more complex flow features such as counter-rotating vortices above the cylinder separ- ated by the thermal plume (Figure 8). An instability of the thermal plume was observed in the experiment (Whiteet al., 1986) atτ≈0.3 as the melt layer grew. These instabilities, and any unsteady flow features, are absent in our steady state model which could explain the discrepancy between the melt rates fromτ=0.3 for theTw=14.1C (Figure 9).

We assumed the flow field was in steady state for each discrete flow domain update (mesh step). The streamlines shown in images produced with an interferometer during the experiments (Whiteet al., 1986) indicate a mostly symmet- ric and steady flow field. However, slight perturbations and unsteady behaviour could cause greater heat mixing lead- ing to faster melting, particularly for the Tw>8.0C case.

For example, assuming 2-D steady flow significantly overes- timates the skin friction in the wake of an eroding cylinder evolving to a different shape than that of simulating with 3- D unsteady flow (Hewett and Sellier, 2017). Another step would be required for including these unsteady effects: the time-averaged wall temperature gradient must first be estab- lished before calculatingvior the mesh would be deformed based on instantaneous local transients.

CONCLUSION

Numerical simulations were used to model the classical Stefan problem around a heated horizontal cylinder near the density inversion point of water by modelling both con- duction and natural convection heat transfer. The melting front was explicitly tracked with a dynamic mesh and a node shuffle algorithm was employed to retain mesh quality through significant mesh deformation.

Heat transfer by conduction was dominant for the early stages of melting and natural convection played an important role as the melt zone increased. A stable steady flow field was found for the case below the density inversion point whereas a more complex and less stable flow was simulated when including the density inversion point. Pear-shaped melting interfaces developed as a thermal plume from the heated cyl- inder interacted with the solid-liquid boundary.

This paper provides a validation for modelling Stefan prob- lems by tracking the melting front interface using only the local temperature gradient and fluid properties. The con- stitutive relation, along with the tools for handling the mesh deformation, form a useful approach for simulating this melt- ing boundary problem found in latent heat thermal energy storage systems. This approach can also be applied to other scenarios of moving boundary problems.

REFERENCES

AKEIBER, H., NEJAT, P., MAJID, M.Z.A., WAHID, M.A., JOMEHZADEH, F., ZEYNALI FAMILEH, I., CALAUTIT, J.K., HUGHES, B.R. and ZAKI, S.A. (2016).

“A review on phase change material (PCM) for sustainable passive cooling in building envelopes”. Renewable and Sus- tainable Energy Reviews,60, 1470–1497.

428

(16)

The pear-shaped fate of an ice melting front / CFD 2017 BATHELT, A.G. and VISKANTA, R. (1980). “Heat trans-

fer at the solid-liquid interface during melting from a hori- zontal cylinder”. International Journal of Heat and Mass Transfer,23(11), 1493–1503.

BATHELT, A.G., VISKANTA, R. and LEIDENFROST, W. (1979). “An experimental investigation of natural con- vection in the melted region around a heated horizontal cyl- inder”.Journal of Fluid Mechanics,90(2), 227–239.

DARZI, A.R., FARHADI, M. and SEDIGHI, K. (2012).

“Numerical study of melting inside concentric and eccent- ric horizontal annulus”. Applied Mathematical Modelling, 36(9), 4080–4086.

FARID, M.M., KHUDHAIR, A.M., RAZACK, S.A.K.

and AL-HALLAJ, S. (2004). “A review on phase change energy storage: materials and applications”.Energy Conver- sion and Management,45(9-10), 1597–1615.

GEBHART, B. and MOLLENDORF, J.C. (1977). “A new density relation for pure and saline water”. Deep Sea Re- search,24(9), 831–848.

HERRMANN, J., LEIDENFROST, W. and VISKANTA, R. (1984). “Melting of ice around a horizontal isothermal cylindrical heat source”. Chemical Engineering Communic- ations,25(1-6), 63–78.

HEWETT, J.N. and SELLIER, M. (2017). “Evolution of an eroding cylinder in single and lattice arrangements”.

Journal of Fluids and Structures,70, 295–313.

HO, C.J. and CHEN, S. (1986). “Numerical simulation of melting of ice around a horizontal cylinder”. International Journal of Heat and Mass Transfer,29(9), 1359–1369.

MOORE, M.N.J. (2017). “Riemann-Hilbert problems for the shapes formed by bodies dissolving, melting, and erod- ing in fluid flows”. Communications on Pure and Applied Mathematics.

RIEGER, H., PROJAHN, U. and BEER, H. (1982). “Ana- lysis of the heat transport mechanisms during melting around a horizontal circular cylinder”.International Journal of Heat and Mass Transfer,25(1), 137–147.

SPARROW, E.M., SCHMIDT, R.R. and RAMSEY, J.W.

(1978). “Experiments on the role of natural convection in the melting of solids”.Journal of Heat Transfer,100(1), 11–

16.STEFAN, J. (1891). “Über die theorie der eisbildung, ins- besondere über die eisbildung im polarmeere”. Annalen der Physik,278(2), 269–286.

WHITE, D., VISKANTA, R. and LEIDENFROST, W.

(1986). “Heat transfer during the melting of ice around a ho- rizontal, isothermal cylinder”. Experiments in Fluids,4(3), 171–179.

WHITE, R.D., BATHELT, A.G., LEIDENFROST, W. and VISKANTA, R. (1977). “Study of heat transfer and melting front from a cylinder imbedded in a phase change material”.

American Society of Mechanical Engineers (Paper),77.

429

Referanser

RELATERTE DOKUMENTER

There had been an innovative report prepared by Lord Dawson in 1920 for the Minister of Health’s Consultative Council on Medical and Allied Services, in which he used his

Moreover, a silane (GPS) surface treatment is applied for improving the adhesion between the particles and the surrounding matrix. More details are found in [19]. The data set is

The dense gas atmospheric dispersion model SLAB predicts a higher initial chlorine concentration using the instantaneous or short duration pool option, compared to evaporation from

Based on the above-mentioned tensions, a recommendation for further research is to examine whether young people who have participated in the TP influence their parents and peers in

− CRLs are periodically issued and posted to a repository, even if there are no changes or updates to be made. NPKI Root CA CRLs shall be published bi-weekly. NPKI at tier 2 and

The SPH technique and the corpuscular technique are superior to the Eulerian technique and the Lagrangian technique (with erosion) when it is applied to materials that have fluid

Azzam’s own involvement in the Afghan cause illustrates the role of the in- ternational Muslim Brotherhood and the Muslim World League in the early mobilization. Azzam was a West

The rate of melting at the base of an ice shelf depends primarily on the water speed and the amount of heat in the water column near the ice shelf base available for melting ice,