• No results found

Single digit parts-per-billion NOx detection using MoS2/hBN transistors

N/A
N/A
Protected

Academic year: 2022

Share "Single digit parts-per-billion NOx detection using MoS2/hBN transistors"

Copied!
7
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

transistors

Ayaz Ali

a,b

, Ozhan Koybasi

c

, Wen Xing

d

, Daniel N. Wright

c

, Deepak Varandani

e

, Takashi Taniguchi

f

, Kenji Watanabe

f

, Bodh R. Mehta

e

, Branson D. Belle

a,d,∗

aDepartmentofSmartSensorSystems,SINTEFDIGITAL,Oslo,0373,Norway

bDepartmentofElectronicEngineering,UniversityofSindh,Jamshoro,76080,Pakistan

cDepartmentofMicrosystemsandNanotechnology,SINTEFDIGITAL,Oslo,0373,Norway

dDepartmentofSustainableEnergyTechnology,SINTEFINDUSTRY,Oslo,0373,Norway

eDepartmentofPhysics,IndianInstituteofTechnologyDelhi,Delhi-110016,India

fNationalInstituteforMaterialsScience(NIMS),Tsukuba,Ibaraki,305-0044,Japan

a r t i c l e i n f o

Articlehistory:

Received20April2020

Receivedinrevisedform14July2020 Accepted31July2020

Availableonline6August2020

Keywords:

Molybdenumdisulphide(MoS2) Fieldeffecttransistor(FET) Gassensor

NOxdetection Sensitivity

a b s t r a c t

2Dmaterialsofferexcellentpossibilitiesforhighperformancegasdetectionduetotheirhighsurface- to-volumeratio,highsurfaceactivities,tunableelectronicpropertiesanddramaticchangeinresistivity uponmolecularadsorption.Thispaperdemonstratesasimplefieldeffecttransistor(FET)ofmolybdenum disulphide(MoS2)fabricatedonahexagonalboronnitride(hBN)substratethatcandetectNOxdownto concentrationsof6ppbandpossiblyfarbelowatroomtemperature(RT)withasystematicoptimization ofthedevicedesignandfabricationparametersaswellasthedeviceoperatingconditions.Theeffects ofthesubstrate,numberofMoS2layers,channellayoutandbiasingconditionsontheresponseofMoS2

FETstoNOxwereinvestigated,providingdirectionsformaximizingthesensitivity.Thisworkalsosheds lighttheissuesofrecoveryandstabilityandpresentamethodologyforcalibrationofthesensorswhich iscriticalforrepeatableandreliablemeasurements.

©2020TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Industrialization and urbanization worldwide has led to increasedlevelsofair-pollutantswhich canseriouslynegatively impacthumanhealthaswellasincreaseglobalenvironmenthaz- ardssuchasozonelayerdeterioration,acidrainandphotochemical smog [1,2]. Theseair-pollutants mainlycontain harmful gasses suchascarbonmonoxide(CO),nitrogenoxides(NOx)orsulphur dioxide(SO2).IthasbeennotedthatanexposuretoNOxconcen- trationsevenaslowas53parts-per-billion(ppb)canpotentially damagethehumanrespirationsystem[3–6].Existingtechnology todetectthesehazardousgasesisbasedonmetaloxideswhich requireshighoperatingtemperatures(>200C)toactivatethegas sensingprocesses(adsorption/desorption),whichnotonlyrequires fabricationcomplexitybutalsoleadstohighpowerconsumption [7–9].

Correspondingauthorat:DepartmentofSmartSensorSystems,SINTEFDIGITAL, Oslo,0373,Norway.

E-mailaddress:Branson.Belle@sintef.no(B.D.Belle).

Conversely,two-dimensional(2D)materialshaveemergedasa verypromisingclassofmaterialswhichhavebeenusedtodevelop ultrahighsensitiveandlow-power-consumptiongassensorsdueto theirunmatchedsurfaceareaperunitvolume,highsurfaceactivi- tiesanduniqueelectronicproperties[10–14].Graphenebasedgas sensorshaveshownremarkableperformancebysensingdownto asinglegasmoleculeatroomtemperature[15].Forhighperfor- mancegassensors,transitionmetaldichalcogenides(TMDs)offer aroutetoobtainsemiconductingpropertieswhichisakeyparam- eter,unlikegraphenewhichhasazerobandgap[16–18].

RecentworksonMoS2basedNOxsensorshavedemonstrated thepotentialofthisclassofmaterialswithexcellentsensitivities rangingfrom100ppmto8ppb[19–31].Intheseworks,elevated temperature,nanoparticles,andredlighthavebeenused,which increasesthepowerconsumptionandcomplexityandaddedsteps indevicefabrication.GiventhattheUnitedStatesEnvironmental Protectionagencyhasstipulated53ppbofNOxasbeingdangerous [6],itisimperativetodeveloplowcosthighlysensitiveNOxsensors.

It isknownthatdevices thatemployhBNas asubstrateare robustandhave increasedperformanceduetothereductionof electron-hole puddlesand scattering sites given theatomically flatsurface[32–34].In thispaper,weemployhighqualityhBN

https://doi.org/10.1016/j.sna.2020.112247

0924-4247/©2020TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.

0/).

(2)

Fig.1.Schematicandopticalimage(scalebar10␮m)ofsinglelayerMoS2/hBNtransistor(a,b).MoS2/hBNtransistorcharacteristics(c,d).(c)Transfercharacteristicsatdrain voltage(Vd)of1V.(d)seriesofoutputcharacteristiccurveswithdifferentgatevoltages(Vg=−10Vto60V).

asasubstrateforourmechanicallyexfoliatedMoS2devices and demonstratesensitivitydowntoatleast6ppbforNOxdetectionat roomtemperaturethroughasystematicoptimizationofthedevice parametersandoperatingconditions.Ourworkprovidessignifi- cantinformationontheimpactofvariousstructuralparameters suchastypeofsubstrate,numberofMoS2layersandchannelgeom- etryontheresponse.Moreover,wediscussindetail thesensor biasingconditionsandtheiradjustmenttoobtainconsistentand reliablemeasurementresultsaswellasmaximalsensitivity.

2. Experimentalmethods 2.1. Devicefabrication

TheMoS2/hBNVanderWaalsheterostructureswerefabricated bya drytransfertechniqueusingmechanicallyexfoliatedflakes [35] (details in supportinginformation Fig. S1). Electron-beam lithography(EBL)wasusedtopatterntheMoS2channelwithsub- sequentshapingviareactiveionetchingusingamixtureofCHF4 andO2gases.Finally,electrodeswererealizedbyEBLande-beam evaporationandlift-offofTi/Au(5nm/100nm)metals.

2.2. Ramancharacterization

Raman characterization was carried out using a MonoVista CRS+systemwith532nmlaser.Thelaserpowerwassufficiently lowtoavoidsampledamage.Additionally,Ramancharacterization wasperformedonflakeofsimilarthicknessnotwithinthechannel ofthedevice.

2.3. Gasmeasurements

Gasmeasurementswerecarriedoutinacustomgaschamberat atmosphericpressure.TheNOxusedwasa50/50mixtureofNO2 andNO.Pre-dilutedNOx gasbottleswerepurchasedfromLinde GasAS(Norway)withconcentrationof50and5ppmbalancedby argon.For obtainingdesiredgasconcentrationinthis work,the gaseswerefurtherdilutedbymixingwithargonbeforesupplying

tothegaschamber.Thetotalflowrateofthegaseswasbetween 40–80ml/min.

3. Resultsanddiscussions

AsinglelayerMoS2/hBNfieldeffecttransistor(FET)withachan- nellengthof7␮mandchannelwidthof10␮mwasusedasthe reference device structure for our work(Fig.1(a)). The Raman measurementdataconfirmingsingle-layerthicknessoftheMoS2

channelisincludedinsupportinginformationFig.S2.Anoptical imageofthedeviceisshowninFig.1(b).Fig.1(c,d)showsthetrans- ferandoutputcharacteristicsofthefabricatedreferencedevice,

Fig.2.SensorresponseunderthedifferentNOxexposuresatzerogatevoltage (Vg=0V)(a)andNOxgasresponseatfixedtime(35min)fordifferentgasconcen- trations(62,125,250and500ppb)(b).Timedependentresponsechangeunderthe NOxexposureof500ppbandthecorrespondingfittedcurveusingtheexponential decayfunction(c)andextractedadsorptionrateconstant(␶)fromcurvefittingfor differentNOxconcentrations(d).

(3)

whichwasoperatedintwoterminalconfiguration.AsseeninFig.1, thedeviceshowsn-typebehaviourwheredraincurrentincreases withincreasinggatevoltage.The fieldeffectmobility extracted fromthetransfercharacteristicsis1.16cm2V−1s−1.

Fig.2(a)showsthenormalizedresponsesofthedevicetodiffer- entconcentrationsofNOxrangingfrom5000ppbdownto62ppb atagatevoltageof0V.ThegasresponseisnormalizedasINOx/IAr,

whereINOxandIArrefertodraincurrentduringtheNOxexposure andpriortoNOxinAratmosphere,respectively.Uponexposure toNOx,thedraincurrentdecreasesand thresholdvoltage(Vth) shiftstowardpositivegatevoltages,indicating p-typedopingof thechannelwithNOxexposure.Theseattributesconfirmthatthe gassensingprocessisbasedonchargetransfermechanism,where NOxcaptureselectronsfromtheMoS2channel.Astheconcentra- tionofNOxincreases,morechargesperunittimearetransferred from MoS2 to NOx, leading to a steeper decrease in the drain current(Fig.2(a)).Fig.2(b) showsthatourdeviceexhibitsgood response, capable of detectingvery low concentrations of NOx

(62ppb)atroomtemperatureandfollowstheLangmuirisotherm formoleculesadsorbedonthesurface(Fig.2(b)).Itthereforecon- firms that charge transfer is the sensing mechanism [36]. The resultsalsoshowthattheresponsetimeismuchshorterforhigher NOxconcentration(20sfor5ppm)asshowninFig.2(a)andFig.

S4.Furthermore,theadsorptionrate constant(␶)of oursensor wasextractedwhichrevealstherateoftheNOxadsorptionpro- cessontheMoS2 surface.Fig. 2(c)illustrates thedrain current decreasesassociatedwithNOxadsorption.Thedataisfittedwith anexponentialdecayfunctionwhichconfirmsthatthereisonly onemechanismassociatedwithNOxadsorption[37].Theadsorp- tionrateconstantasthefunctionofdifferentNOxconcentrations ispresentedinFig.2(d).Itisobservedthat␶decreasesastheNOx

concentrationincreasesandsaturatesforthehigherNOxconcen- trations.

Throughouttherestofthepaper,theeffectsofthedeviceoper- atingconditionsanddevicestructureparametersontheresponse ofthedevicetoNOxweresystematicallyinvestigated.Thisstudy willprovideaninsightintooptimizingtheseparameterstoachieve maximalresponsetoNOxandsensorcalibrationmethodsinorder toobtainconsistentandreliablemeasurementresults.

3.1. Thresholdshift,recoveryandgatevoltagedependenceofthe response

Asmentionedabove,NOxexposureleadstoasignificantshiftof thedevice’sthresholdvoltagetowardpositivegatevoltages.Vari- oustechniquescanbeemployedtorecoverMoS2gassensorsafter NOx exposure.Onemethodisbyapplyinga negativegatevolt- agepulsetorefreshthesensor[38].Theothermethodsthatcan beusedtorecoverthesensorafterNOxexposurearetoannealat elevatedtemperatures(100–200C)[39–41]orlightillumination, wherephotogeneratedholes reactwithadsorbedgasmolecules

andgiverisetodesorption[42].Therecoverytimeofthesensor stronglydependsontheintensityofthelight.Sensorrecoveryat roomtemperaturebyilluminatingwithwhitelightfromalight emittingdiode(LED)wasdemonstratedwhichshiftsthethreshold backtooriginalstate(Fig.S3).Thisroomtemperaturesensorrecov- erysuggeststhatphysisorptionofNOxmoleculesonmechanically exfoliatedMoS2isthemoredominant.Inaddition,thecyclictestof sensorresponseandrecoveryshowsgoodrepeatabilityasshown insupportinginformationFig.S4.Inadditiontogasexposure,envi- ronmental effects suchashumidity/watermolecules couldalso shiftthesensor’sthresholdvoltage[43,44].Apropercalibration of thesensorafter each measurementis therefore essentialfor repeatabilityandreliabilityofthemeasurementresults.Thefol- lowingexperimentwasconductedtostudytheconsequencesof uncalibratedoperation.Wefirstmeasuredthegatecharacteristics andthenresponseofthesensortoaNOxconcentrationof62ppbat agatevoltageof-10V.Afterthismeasurement,werecoveredthe sensorusingwhiteLEDwhichshiftedthethresholdvoltageback totheoriginalstate.Next,thesensorwaskeptinambientairfora fewdaysandthenthegatecharacteristicsofthesensorwasmea- suredagain.Thiswasimmediatelyfollowedbythemeasurementof thesensorresponsetoaNOxconcentrationof125ppbatthesame gatevoltageof-10V.Ascanbeseenfromtheresultspresented inFig.3,thedeviceshowslowerresponsetoaconcentrationof 125ppbascomparedtoaconcentrationof62ppb.Lowerresponse tohigherconcentrationisattributedtothethresholdshiftdueto environmentaleffectsbeforethemeasurementataconcentration of125ppb.Thisisevidentfromthetransfercharacteristicsmea- suredrightbeforeeachgasexposure(Fig.3(b)).Thetransfercurve hadshiftedby−25Vbeforeexposureto125ppbofNOx.Thisshows thatbyoperatingthesensoratthesamegatevoltageof-10Vdur- ingthemeasurementoftheresponseto125ppbofNOx,thedevice isnolongerinthesameconditionthatitwaswhenmeasuringthe responseto62ppb.Torestorethesameoperatingconditionsas thefirstmeasurementwiththegateat-10V,thedevicemustbe operatedwiththegateat−35Vduringthesecondmeasurement.

To study the effect of gate voltage on the sensor response andexploretheoptimumoperatingconditions,wemeasuredthe response ofthereference devicetoNOx atthree differentgate voltages.AsindicatedinFig.4,eachofthechosengatevoltagescor- respondstoadifferentregionofthetransfercharacteristicscurve (i.e.,regionsofdifferenttransconductances):i)subthresholdregion (V1),ii)transitionfromsubthresholdtolinearorquadraticregion (V2),andiii)linearregion(V3).Duetothethresholdshift,theval- uesofV1,V2,andV3 arecalibratedbeforeeachmeasurementto ensurethatthedeviceisoperatedatthesamecondition,i.e.,the samedopinglevel.Fig.5showsthegatevoltagedependenceof theresponsetodifferentconcentrationsofNOx.Theresultsshow thatthemaximalsensitivityisachievedwhenthesensorisoper- atedinthesubthresholdregion(V1).Thisisbecauseatsubthreshold regime,thedeviceisdepletedofchargecarriersandhencethedrain

(4)

Fig.4. Transfercharacteristiccurveinlogarithmicscaleshowingdifferentregions (i)subthreshold(V1),ii)subthresholdtolinear(V2),andiii)linear(V3)).

currentchangesmoreabruptlyuponexposuretoagivenconcentra- tionofNOxmolecules.However,whenthesensorisexposedtothe highconcentrationsofNOx(5000ppb),theeffectofthegatevolt- agebecomesnegligible.Ourexperimentalresultsareinagreement withthesimulationworkpresentedbyRaoetal.[17]

3.2. Effectofthesubstrate

Tostudytheeffectofthesubstrateontheperformanceofthe gassensor,asinglelayerMoS2transistoronbareSiO2(MoS2/SiO2) wasfabricatedandcomparedwiththereferencedevicewhichis onhBN(MoS2/hBN).Fig.S5inthesupportinginformationshows theopticalimageofthesinglelayerMoS2transistorfabricatedon SiO2 substrate.Beforeconductingsensingcomparison, thetran- sistorperformancecomparisonofthesedeviceswascarriedout.

Foreffectivecomparison,bothdeviceswerechosenwiththesame dimensions(channellengthandwidth).Thetransfercharacteristic curvesofbothdevicesarepresentedinFig.6.Thefieldeffectmobil-

Fig.6.TransfercharacteristiccurveofsinglelayerMoS2/SiO2(blackcurve)andsin- glelayerMoS2/hBNtransistor(redcurve),respectively.(Forinterpretationofthe referencestocolourinthisfigurelegend,thereaderisreferredtothewebversion ofthisarticle).

ityofthedeviceswasextractedas1.16cm2V1s1forMoS2/hBN and0.25cm2V−1s-1forMoS2/SiO2transistor,respectively.Inaddi- tion, thecurrent on/off ratioof 104 and 103 was observed for MoS2/hBNandMoS2/SiO2device,respectively.Thisperformance differencecanbeattributedtofewerinterfacetrapsbetweenMoS2

andhBNcomparedtoMoS2andSiO2.Inaddition,hBNisanatom- icallyflatsubstratewithfewerscatteringsites.

For the comparison of NOx gas sensing, both transistors (MoS2/hBNand MoS2/SiO2) wereoperated in the subthreshold region(Fig.4),andtheirresponsesweremeasured.Fig.7shows thatuponexposuretolowerconcentrationsofNOx(25ppb),the MoS2/hBN deviceexhibits higher response as compared tothe MoS2/SiO2device.However,theeffectofsubstratebecomesnegli-

Fig.5. GatevoltagedependentresponseofthesinglelayerMoS2/hBNgassensor.Thesensorwasoperatedatthreedifferentgatevoltages(V1,V2andV3)andtheresponse tovariousNOxexposures(62,125,250,500,1000and5000ppb)wasmeasured.

(5)

Fig.8.ThresholdvoltageshiftupondifferentgasexposuresforMoS2/SiO2device (a)andforMoS2/hBNdevice(b),respectively.

Fig.9.EffectivemobilitychangeasafunctionofNOxconcentrations(25,62,125, 500and1000ppb)forMoS2/SiO2device(blackcurve)andMoS2/hBNdevice(red curve).(Forinterpretationofthereferencestocolourinthisfigurelegend,thereader isreferredtothewebversionofthisarticle).

giblewhenthedeviceisexposedtothehigherNOxconcentrations (500ppb).

To understand the mechanism behind the substrate effect, transfercharacteristiccurveswererecordedaftereachgasmea- surementandthecorrespondingthresholdvoltageshiftandchange inthemobilityfortheMoS2/SiO2deviceandMoS2/hBNdevicewere extractedandshowninFigs.8&9.Arelativelylargethreshold voltageshiftisobservedfortheMoS2/hBNdeviceatlowNOxcon- centrations(25ppb)whileforhigherNOx concentration,almost same threshold voltage shift is observed for both devices. The thresholdvoltageshiftreflectstheamountofchargetransferupon gasexposure;hence,itsuggeststhattheMoS2/hBNdeviceismore sensitivetoultra-lowconcentrationsofNOx(25ppb).Furthermore, achangeinmobilityisalsoobservedforbothdevicesunderNOx exposure(Fig.9).InthecaseofMoS2/hBN,asharpdecreaseinthe mobilityisobservedforlowconcentrationgasexposures.Thiscan beexplainedbytheincreaseinscatteringsitesonadsorptionof NOxmoleculesduetodevicebeingmorehomogeneousonaflatter substrate.However,incaseoftheMoS2/SiO2 device,thechange

Fig.10.EffectoftheMoS2layerthicknessonsensorresponse.Gassensingresponse ofmonolayer,bilayerandfour-layerMoS2devicesundervariousNOxexposures(62, 125,250,500,1000and5000ppb).Thesensorswereoperatedatsaturatedregime (Vg=30V)inordertokeepthedopinglevelsame.

in mobilityin thepresenceof NOx ismuch lower forlow con- centrationswhichshowsthateffectofsurfaceroughnessismore dominant.Thiscanbeseenfromthepristinedevicecharacteris- tics(Fig.6),wheretheMoS2/hBNdeviceexhibitshighmobilityand currenton/offratioascomparetoMoS2/SiO2.

3.3. Effectofnumberoflayers

TheeffectofMoS2layerthicknessontheresponseofthesensor toNOxwasalsostudied.Inadditiontothereferencedevice,wealso fabricatedFETswithbilayerandfour-layerMoS2onhBN.Thetrans- fercharacteristicscurvesofthedeviceswithdifferentnumberof MoS2layersareshowninfig.S6.Thethresholdvoltageisdifferent forFETswithdifferentnumberofMoS2layersasthecarrierconcen- trationvarieswithMoS2thickness.Hence,operatingthedevices atsamegatevoltagewouldnotprovideacorrectcomparisonof theirresponsetoNOx.Instead,thedeviceswereoperatedatdif- ferentgatevoltagesthatleadtothesamedopinglevelorthesame effectivepointofoperationonthetransfercharacteristicscurveas discussedinSection3.1.weoperatedallthreesensorsatthelinear regimeofthetransfercharacteristicscurve(Vg=30V)andmea- suredtheresponseofthedevicesundervariousNOxgasexposures asshowninFig.10.Ourresultsshowthattheresponsedecreases withincreasingnumberofMoS2layers.Thiscanbeattributedtothe screeningeffect[45].InmonolayerMoS2FET,NOxinteractswith thesurfacechargecarriersasthechannelismonolayer.Inthecase ofmulti-layerMoS2,ontheotherhand,NOxinteractslesswithcar- riersfurtherawayfromthetoplayer.Furthermore,ascanbeseen inFig.10,theeffectofnumberofMoS2layersbecomesmoresig- nificantathighergasconcentrationswheretheresponsediffersby ordersofmagnitude.

3.4. Effectofchanneldimensions

To demonstrate the effect of MoS2 channel dimensions on response,wefabricatedhallbarshapedchannel(Fig.S7).Forcom- parison,weusedtwodifferentchannellengths(CHL1=12␮mand CHL2=24␮m)withsamechannelwidth(4␮m)andmeasuredthe

(6)

layerMoS2/hBNdevicebeforeandafterofanultra-lowexposureofNOx(6ppb)(a).

TimeresponseofsinglelayerMoS2/hBNdeviceunderanultra-lowexposureofNOx

(6ppb)(b).Thesensorwasoperatedatsub-thresholdgatevoltageof−5V.

electricalcharacteristicsforeachchannellengthinordertochoose thesameoperatingconditionsforthedevices.Thetransfercurvesof bothchannellengthsshowthesamethresholdvoltage(Fig.S8),and thereforeoperatingthesensorsatsamegatevoltagegivesacorrect comparison.Fig.S9showstheresponseofthedeviceswithCHL1 andCHL2underfixedgatebiasof-10VtovariousNOxgasconcen- trations(62,125,250,500,1000and5000ppb).Thedevicewith shorterchannellength(CHL1)showsarelativelyhigherresponse ascomparedtolongchannel(CHL2).Thisisexpectedasthecharges undergolessscatteringduringtransportthroughashorterchannel.

3.5. Maximalsensitivity

The results obtained from the above studies allowed us to choosethebest parameters for maximum sensitivity. We have demonstratedthathighersensitivitiestoNOxcanbeachievedwith monolayerMoS2onhBNsubstratewithshortchannellengthand byoperatingatthesubthresholdregime.Byimplementingallopti- mizationsbasedonstudiesreportedintheprevioussections,single digitppb sensitivitytoNOx wasobtained. Fig.11(a)showsthe transfercharacteristicsbeforeandaftertheexposureoftheopti- mizedsensorto6ppbofNOx.Asignificantshiftinthetransfercurve wasobservedevenaftersuchlowexposures.Moreover,oneorder ofmagnitudechangeintheresistanceofMoS2wasobservedwithin twohoursofultra-lowNOxexposure(6ppb)asshownFig.11(b).

Thesignaltonoiseratioisonetheimportantparametersforthe high-performancegassensor,especiallyforlowconcentrationgas sensors.Oursensorshowsanorderofmagnitudechangeinresis- tance atultra-low exposure(6ppb). Our experimentalsetup is currentlynotcapableofprovidinggasconcentrationsbelow6ppb, andhencewewerenotabletoexploretheultimateNOx detec- tionlimitofMoS2transistors.However,theremarkableresponse to6ppbofNOxindicatesthatthedetectionlimitcanbewell-below 6ppb.

4. Conclusionandoutlook

WeperformedacomprehensivestudyontheresponseofMoS2 transistorstoNOxexposure.Inthisstudy,wedemonstratedhow thedevicestructureparametersandoperatingconditionsimpact theresponse. Ourfindings showthattheresponseof theMoS2 transistorstoNOxcanbesignificantlyenhancedbyusinghBNsub- strateinsteadofSiO2,usingmonolayerMoS2channel,andreducing thechannellength.Thebiasvoltageusedforthesensoroperation alsosignificantlyaffectstheresponseandourresultsshowthatthe maximalresponseisobtainedwhenthedeviceisoperatedinthe subthresholdregimeofthetransfercharacteristicscurve.Aknown characteristicofMoS2transistorsasgassensoristheirpoorself- recoveryatroomtemperature,which wasalsoobservedinour work.Wehaveshownthatitisextremelyimportanttocalibrate thedevicebyadjustingthebiasvoltagebeforeeachoperationin

gasspeciesistodecoratetheMoS2transistorswithnanoparticles ofspecificworkfunctionswhichiscurrentlyunderinvestigation byourgroup.

CRediTauthorshipcontributionstatement

AyazAli:Conceptualization,Methodology,Investigation,Writ- ing-originaldraft,Writing-review&editing,Visualization.Ozhan Koybasi: Conceptualization,Methodology, Validation, Writing - review&editing,Supervision. WenXing:Methodology,Investi- gation,Resources.DanielN.Wright:Methodology,Investigation, Resources. Deepak Varandani: Project administration, Funding acquisition.TakashiTaniguchi:Methodology,Resources,Writing -originaldraft.KenjiWatanabe:Methodology,Resources,Writing -originaldraft.BodhR.Mehta:Conceptualization,Methodology, Writing-review&editing,Supervision,Fundingacquisition.Bran- sonD.Belle:Conceptualization,Methodology,Validation,Writing -review&editing,Supervision,Fundingacquisition.

DeclarationofCompetingInterest

Theauthorsdeclarethattheyhavenoknowncompetingfinan- cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

Acknowledgements

ThisworkwassupportedbytheResearchCouncilofNorway (Project no. 280788). The Research Council of Norway is also acknowledgedforthesupporttotheNorwegianMicro-andNano- FabricationFacility,NorFab,projectnumber245963/F50.Growth ofhexagonalboronnitridecrystalswassupportedbytheMEXT ElementStrategyInitiativetoFormCoreResearchCenter,Grant NumberJPMXP0112101001andtheCREST(JPMJCR15F3),JST.

AppendixA. Supplementarydata

Supplementarymaterial relatedto this articlecanbe found, in the online version, at doi:https://doi.org/10.1016/j.sna.2020.

112247.

References

[1]S.Gulia,S.M.S.Nagendra,M.Khare,I.Khanna,Urbanairquality management-areview,Atmos.Pollut.Res.6(2015)286–304.

[2]P.Kumar,M.Khare,R.M.Harrison,W.J.Bloss,A.C.Lewis,H.Coe,etal.,New directions:airpollutionchallengesfordevelopingmegacitieslikeDelhi, Atmos.Environ.122(2015)657–661.

[3]S.-K.Liu,S.Cai,Y.Chen,B.Xiao,P.Chen,X.-D.Xiang,Theeffectofpollutional hazeonpulmonaryfunction,J.Thorac.Dis.8(2016)E41–E56.

[4]M.Guarnieri,J.R.Balmes,Outdoorairpollutionandasthma,Lancet383 (2014)1581–1592.

[5]K.Wetchakun,T.Samerjai,N.Tamaekong,C.Liewhiran,C.Siriwong,V.

Kruefu,etal.,Semiconductingmetaloxidesassensorsforenvironmentally hazardousgases,SensorsActuatorsB:Chem160(2011)580–591.

[6]USEnvironmentalProtectionAgencyAirTrendsSummaryReports;https://

www3epagov/ttn/naaqs/standards/nox/snoxhistoryhtml#3.

(7)

levels,J.Mater.Chem.AMater.EnergySustain.5(2017)19116–19125.

[14]K.Shehzad,T.Shi,A.Qadir,X.Wan,H.Guo,A.Ali,etal.,Designinganefficient multimodeenvironmentalsensorbasedongraphene–siliconheterojunction, Int.J.Adv.Mater.Technol.2(2017),1600262.

[15]F.Schedin,A.K.Geim,S.V.Morozov,E.W.Hill,P.Blake,M.Katsnelson,etal., Detectionofindividualgasmoleculesadsorbedongraphene,Nat.Mater.6 (2007)652–655.

[16]Z.Feng,Y.Xie,J.Chen,Y.Yu,S.Zheng,R.Zhang,etal.,HighlysensitiveMoTe2

chemicalsensorwithfastrecoveryratethroughgatebiasing,2dMater.4 (2017),025018.

[17]D.J.Late,Y.-K.Huang,B.Liu,J.Acharya,S.N.Shirodkar,J.Luo,etal.,Sensing behaviorofatomicallythin-layeredMoS2transistors,ACSNano7(2013) 4879–4891.

[18]B.Liu,L.Chen,G.Liu,A.N.Abbas,M.Fathi,C.Zhou,High-performance chemicalsensingusingSchottky-contactedchemicalvapordepositiongrown monolayerMoS2transistors,ACSNano8(2014)5304–5314.

[19]G.Deokar,P.Vancsó,R.Arenal,F.Ravaux,J.Casanova-Cháfer,E.Llobet,etal., MoS2–carbonnanotubehybridmaterialgrowthandgassensing,Adv.Mater.

Interfaces4(2017),1700801.

[20]H.Long,A.Harley-Trochimczyk,T.Pham,Z.Tang,T.Shi,A.Zettl,etal.,High surfaceareaMoS2/graphenehybridaerogelforultrasensitiveNO2detection, Adv.Funct.Mater.26(2016)5158–5165.

[21]R.Kumar,N.Goel,M.Kumar,UV-activatedMoS2basedfastandreversible NO2sensoratroomtemperature,ACSSens.2(2017)1744–1752.

[22]T.Pham,G.Li,E.Bekyarova,M.E.Itkis,A.Mulchandani,MoS2-based optoelectronicgassensorwithsub-parts-per-billionlimitofNO2gas detection,ACSNano13(2019)3196–3205.

[23]Q.He,Z.Zeng,Z.Yin,H.Li,S.Wu,X.Huang,etal.,FabricationofflexibleMoS2

thin-filmtransistorarraysforpracticalgas-sensingapplications,Small8 (2012)2994–2999.

[24]R.Kumar,N.Goel,M.Kumar,HighperformanceNO2sensorusingMoS2

nanowiresnetwork,Appl.Phys.Lett.112(2018),053502.

[25]D.Wu,Z.Lou,Y.Wang,T.Xu,Z.Shi,J.Xu,etal.,ConstructionofMoS2/Si nanowirearrayheterojunctionforultrahigh-sensitivitygassensor, Nanotechnology28(2017),435503.

[26]D.Sarkar,X.Xie,J.Kang,H.Zhang,W.Liu,J.Navarrete,etal.,Functionalization oftransitionmetaldichalcogenideswithmetallicnanoparticles:implications fordopingandgas-sensing,NanoLett.15(2015)2852–2862.

[27]B.Cho,J.Yoon,S.K.Lim,A.R.Kim,S.-Y.Choi,D.-H.Kim,etal.,Metaldecoration effectsonthegas-sensingpropertiesof2Dhybrid-structuresonflexible substrates,Sensors15(2015)24903–24913.

[28]Y.Zhou,C.Gao,Y.Guo,UVassistedultrasensitivetraceNO2gassensingbased onfew-layerMoS2nanosheet–ZnOnanowireheterojunctionsatroom temperature,J.Mater.Chem.AMater.EnergySustain.6(2018)10286–10296.

[29]J.M.Suh,Y.-S.Shim,K.C.Kwon,J.-M.Jeon,T.H.Lee,M.Shokouhimehr,etal., Pd-andAu-decoratedMoS2gassensorsforenhancedselectivity,Electron MaterLett15(2019)368–376.

[30]J.Guo,R.Wen,J.Zhai,Z.L.Wang,EnhancedNO2gassensingofasingle-layer MoS2byphotogatingandpiezo-phototroniceffects,SciBull64(2019) 128–135.

[31]W.Zheng,Y.Xu,L.Zheng,C.Yang,N.Pinna,X.Liu,etal.,MoS2VanDerWaals p–njunctionsenablinghighlyselectiveroom-temperatureNO2sensor,Adv.

Funct.Mater.(2020),2000435.

[32]C.R.Dean,A.F.Young,I.Meric,C.Lee,L.Wang,S.Sorgenfrei,etal.,Boron nitridesubstratesforhigh-qualitygrapheneelectronics,Nat.Nanotechnol.5 (2010)722–726.

[33]A.V.Kretinin,Y.Cao,J.S.Tu,G.L.Yu,R.Jalil,K.S.Novoselov,etal.,Electronic propertiesofgrapheneencapsulatedwithdifferenttwo-dimensionalatomic crystals,NanoLett.14(2014)3270–3276.

[34]Y.Y.Illarionov,G.Rzepa,M.Waltl,T.Knobloch,A.Grill,M.M.Furchi,etal.,The roleofchargetrappinginMoS2/SiO2andMoS2/hBNfield-effecttransistors, 2dMater.3(2016),035004.

[35]D.H.Tien,J.-Y.Park,K.B.Kim,N.Lee,T.Choi,P.Kim,etal.,Studyof graphene-based2D-heterostructuredevicefabricatedbyall-drytransfer process,ACSAppl.Mater.Interfaces8(2016)3072–3078.

reversibleNO2sensingatroomtemperature,Nanotechnology30(2019), 355504.

[43]G.Liu,S.L.Rumyantsev,C.Jiang,M.S.Shur,A.A.Balandin,Selectivegassensing withh-BNcappedMoS2heterostructurethin-filmtransistors,IEEEElectron DeviceLett36(2015)1202–1204.

[44]N.Liu,J.Baek,S.M.Kim,S.Hong,Y.K.Hong,Y.S.Kim,etal.,Improvingthe stabilityofhigh-performancemultilayerMoS2field-effecttransistors,ACS Appl.Mater.Interfaces9(2017)42943–42950.

[45]Y.Li,C.-Y.Xu,L.Zhen,Surfacepotentialandinterlayerscreeningeffectsof few-layerMoS2nanoflakes,Appl.Phys.Lett.102(2013),143110.

Biographies

Dr.AyazAlireceivedhisBSdegreeinElectronicsfromUniversityofSindh,Jamshoro, in2009,MSandPhDdegreeinMicroelectronicsfromZhejiangUniversity,China in2014and2018respectively.Currently,heisapostdocfellowatSINTEF,Oslo.

HisresearchinterestfocusesonCMOSintegrationofgraphenelike2Dmaterials (BN,BPandTMDs)forhigh-performanceheterostructuredevicessuchasbroadband photodetectorsandemergingsmartsensorsfortheinternet-ofthingsandflexible electronics.

Dr.OzhanKoybasiisaSeniorScientistatSINTEFinthedepartmentofMicrosystems andNanotechnology.HeobtainedhisMSdegreein2010andPhDdegreein2011 fromPurdueUniversityinelectricalengineeringandphysics,respectively.Hejoined SINTEFin2013,andsincethen,hehasbeenleadingR&Dandproductionprojects onsemiconductor-basedradiationdetectorsandphotodetectors.Hisotherresearch interestsincludeapplicationof2Dmaterialsandrelatedmaterialsindifferenttypes ofsensorssuchasgassensorsandphotodetectors.

Dr.WenXingcurrentlyworksasresearchscientistattheDepartmentofThin FilmandMembraneTechnology,SINTEF.HeobtainedhisPhDin2013atUni- versityofOslo,Norway.Hiscurrentresearchinterestsareelectrochemistryin hightemperatureenergyconvertingmaterials,gasseparationmembranesand2D materials.

Dr.DanielNilsenWrightreceivedhisMCheminchemicalphysicsfromLiverpool Universityin2001andhisPhDinphysicsfromtheUniversityofOsloin2008.He iscurrentlyaresearchscientistatSINTEFworkingasaprojectleaderforprojects involvingsilicondevicefabricationandadvancedelectronicpackaging.

Dr.DeepakVarandaniisaSeniorScientistinThinFilmLaboratory,Department ofPhysics,IndianInstituteofTechnologyDelhi.Hiscurrentresearchinterestsare synthesisandcharacterizationofnanomaterials.

Dr.TakashiTaniguchiisResearcherintheNationalInstituteforMaterialsScience, Japan.Hiscurrentresearchinterestsaresynthesis,opticalandelectricalcharacter- izationofnovel2Dmaterials.

Dr.KenjiWatanabeisResearcherintheNationalInstituteforMaterialsScience, Japan.Hiscurrentresearchinterestsaresynthesis,opticalandelectricalcharacter- izationofnovel2Dmaterials.

Prof.BodhR.MehtaiscurrentlyDean(R&D),SchlumbergerChairProfessorand memberoftechnicalcommitteeonsensorbasedambientairmonitoringsystems (CentralPollutionControlBoard,India).Heleadsagroupwhichhasextensiveexpe- rienceinthefieldofthinfilmandnanomaterialsforgassensing,SolarCell,Resistive Memory,Thermoelectricandphotoelectrochemicalapplications.

Dr.BransonBelleisaSeniorScientistatSINTEFinthedepartmentofRenewable EnergyTechnology.HeobtainedhisPhDin2007fromtheUniversityofManchester inthefieldofMagnetism.Hiscurrentresearchinterestsarethedevelopmentof sensorsanddevicesbasedon2Dmaterialheterostructuresaswellasatomicforce microscopy.

Referanser

RELATERTE DOKUMENTER

The dust was investigated by SEM and representative images are shown for (A) amorphous SiO 2 and (D) crystalline SiO 2 ; (B) The diameter (nm) of the dust particles was measured

The system can be implemented as follows: A web-service client runs on the user device, collecting sensor data from the device and input data from the user. The client compiles

In April 2016, Ukraine’s President Petro Poroshenko, summing up the war experience thus far, said that the volunteer battalions had taken part in approximately 600 military

Overall, the SAB considered 60 chemicals that included: (a) 14 declared as RCAs since entry into force of the Convention; (b) chemicals identied as potential RCAs from a list of

An abstract characterisation of reduction operators Intuitively a reduction operation, in the sense intended in the present paper, is an operation that can be applied to inter-

The ideas launched by the Beveridge Commission in 1942 set the pace for major reforms in post-war Britain, and inspired Norwegian welfare programmes as well, with gradual

On the first day of the Congress, on Wednesday 3 June, 2009, we will organize a Pre Congress Workshop on topics related to museums of the history of medicine, addressing the

• RHFene setter av midler til å dekke interne kostnader i før-kommersielle anskaffelser med bedrifter som mottar støtte fra virkemidler som Offentlige forsknings-