• No results found

Oscillatory flow and mass transport in a coronary artery

N/A
N/A
Protected

Academic year: 2022

Share "Oscillatory flow and mass transport in a coronary artery"

Copied!
15
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

2

Proceedings of the 12

th

International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries

SINTEF

PROCEEDINGS

Progress in Applied CFD –

CFD2017

(2)

Editors:

Jan Erik Olsen and Stein Tore Johansen

Progress in Applied CFD – CFD2017

Proceedings of the 12

th

International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries

SINTEF Proceedings

SINTEF Academic Press

(3)

SINTEF Proceedings no 2

Editors: Jan Erik Olsen and Stein Tore Johansen Progress in Applied CFD – CFD2017

Selected papers from 10th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metal lurgical and Process Industries

Key words:

CFD, Flow, Modelling

Cover, illustration: Arun Kamath

ISSN 2387-4295 (online) ISBN 978-82-536-1544-8 (pdf)

© Copyright SINTEF Academic Press 2017

The material in this publication is covered by the provisions of the Norwegian Copyright Act. Without any special agreement with SINTEF Academic Press, any copying and making available of the material is only allowed to the extent that this is permitted by law or allowed through an agreement with Kopinor, the Reproduction Rights Organisation for Norway. Any use contrary to legislation or an agreement may lead to a liability for damages and confiscation, and may be punished by fines or imprisonment

SINTEF Academic Press

Address: Forskningsveien 3 B PO Box 124 Blindern

N-0314 OSLO

Tel: +47 73 59 30 00 Fax: +47 22 96 55 08 www.sintef.no/byggforsk www.sintefbok.no

SINTEF Proceedings

SINTEF Proceedings is a serial publication for peer-reviewed conference proceedings on a variety of scientific topics.

The processes of peer-reviewing of papers published in SINTEF Proceedings are administered by the conference organizers and proceedings editors. Detailed procedures will vary according to custom and practice in each scientific community.

(4)

PREFACE  

This book contains all manuscripts approved by the reviewers and the organizing committee of the  12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and  Process Industries. The conference was hosted by SINTEF in Trondheim in May/June 2017 and is also  known as CFD2017 for short. The conference series was initiated by CSIRO and Phil Schwarz in 1997. 

So far the conference has been alternating between CSIRO in Melbourne and SINTEF in Trondheim. 

The  conferences  focuses on the  application  of CFD in the oil and  gas  industries, metal production,  mineral processing, power generation, chemicals and other process industries. In addition pragmatic  modelling  concepts  and  bio‐mechanical  applications  have  become  an  important  part  of  the  conference. The papers in this book demonstrate the current progress in applied CFD.  

The conference papers undergo a review process involving two experts. Only papers accepted by the  reviewers  are  included  in  the  proceedings.  108  contributions  were  presented  at  the  conference  together  with  six  keynote  presentations.  A  majority  of  these  contributions  are  presented  by  their  manuscript in this collection (a few were granted to present without an accompanying manuscript).  

The organizing committee would like to thank everyone who has helped with review of manuscripts,  all  those  who  helped  to  promote  the  conference  and  all  authors  who  have  submitted  scientific  contributions. We are also grateful for the support from the conference sponsors: ANSYS, SFI Metal  Production and NanoSim. 

Stein Tore Johansen & Jan Erik Olsen 

3

(5)

Organizing committee: 

Conference chairman: Prof. Stein Tore Johansen  Conference coordinator: Dr. Jan Erik Olsen  Dr.

 

Bernhard Müller 

Dr.Sigrid Karstad Dahl  Dr.Shahriar Amini  Dr.Ernst Meese  Dr.Josip Zoric  Dr.Jannike Solsvik  Dr.Peter Witt   

                     

Scientific committee: 

Stein Tore Johansen, SINTEF/NTNU  Bernhard Müller, NTNU 

Phil Schwarz, CSIRO 

Akio Tomiyama, Kobe University 

Hans Kuipers, Eindhoven University of Technology  Jinghai Li, Chinese Academy of Science 

Markus Braun, Ansys  Simon Lo, CD‐adapco 

Patrick Segers, Universiteit Gent  Jiyuan Tu, RMIT 

Jos Derksen, University of Aberdeen  Dmitry Eskin, Schlumberger‐Doll Research  Pär Jönsson, KTH 

Stefan Pirker, Johannes Kepler University  Josip Zoric, SINTEF 

         

             

 

4

(6)

CONTENTS 

 

PRAGMATIC MODELLING ... 

On pragmatism in industrial modeling. Part III: Application to operational drilling  ... 11 

CFD modeling of dynamic emulsion stability ... 23 

Modelling of interaction between turbines and terrain wakes using pragmatic approach ... 29 

  FLUIDIZED BED ... 37 

Simulation of chemical looping combustion process in a double looping fluidized bed        reactor with cu‐based oxygen carriers  ... 39 

Extremely fast simulations of heat transfer in fluidized beds  ... 47 

Mass transfer phenomena in fluidized beds with horizontally immersed membranes ... 53 

A Two‐Fluid model study of hydrogen production via water gas shift in fluidized bed   membrane reactors   ... 63 

Effect of lift force on dense gas‐fluidized beds of non‐spherical particles ... 71 

Experimental and numerical investigation of a bubbling dense gas‐solid fluidized bed  ... 81 

Direct numerical simulation of the effective drag in gas‐liquid‐solid systems ... 89 

A Lagrangian‐Eulerian hybrid model for the simulation of direct reduction of iron ore  in fluidized beds... 97 

High temperature fluidization ‐ influence of inter‐particle forces on fluidization behavior   ... 107 

Verification of filtered two fluid models for reactive gas‐solid flows  ... 115 

  BIOMECHANICS  ... 123 

A computational framework involving CFD and data mining tools for analyzing disease in       cartoid artery   ... 125 

Investigating the numerical parameter space for a stenosed patient‐specific internal  carotid artery model  ...  133 

Velocity profiles in a 2D model of the left ventricular outflow tract, pathological  case study using PIV and CFD modeling  ...  139 

Oscillatory flow and mass transport in a coronary artery  ... 147 

Patient specific numerical simulation of flow in the human upper airways for assessing       the effect of nasal surgery  ... 153 

CFD simulations of turbulent flow in the human upper airways ... 163 

  OIL & GAS APPLICATIONS  ... 169 

Estimation of flow rates and parameters in two‐phase stratified and slug flow by an   ensemble Kalman filter ... 171 

Direct numerical simulation of proppant transport in a narrow channel for hydraulic   fracturing application ... 179 

Multiphase direct numerical simulations (DNS) of oil‐water flows through   homogeneous porous rocks  ... 185 

CFD erosion modelling of blind tees ... 191 

Shape factors inclusion in a one‐dimensional, transient two‐fluid model for stratified  and slug flow simulations in pipes ... 201 

Gas‐liquid two‐phase flow behavior in terrain‐inclined pipelines for wet natural  gas transportation  ... 207 

   

(7)

NUMERICS, METHODS & CODE DEVELOPMENT ... 213 

Innovative computing for industrially‐relevant multiphase flows  ... 215 

Development of GPU parallel multiphase flow solver for turbulent slurry flows in cyclone  ... 223 

Immersed boundary method for the compressible Navier–Stokes equations using  high order summation‐by‐parts difference operators  ... 233 

Direct numerical simulation of coupled heat and mass transfer in fluid‐solid systems ... 243 

A simulation concept for generic simulation of multi‐material flow,   using staggered Cartesian grids  ... 253 

A cartesian cut‐cell method, based on formal volume averaging of mass,   momentum equations  ... 265 

SOFT: a framework for semantic interoperability of scientific software ... 273 

  POPULATION BALANCE ... 279 

Combined multifluid‐population balance method for polydisperse multiphase flows ... 281 

A multifluid‐PBE model for a slurry bubble column with bubble size dependent   velocity, weight fractions and temperature  ... 285 

CFD simulation of the droplet size distribution of liquid‐liquid emulsions   in stirred tank reactors  ... 295 

Towards a CFD model for boiling flows: validation of QMOM predictions with   TOPFLOW experiments ... 301 

Numerical simulations of turbulent liquid‐liquid dispersions with quadrature‐based   moment methods  ... 309 

Simulation of dispersion of immiscible fluids in a turbulent couette flow ... 317 

Simulation of gas‐liquid flows in separators ‐ a Lagrangian approach  ... 325 

CFD modelling to predict mass transfer in pulsed sieve plate extraction columns ... 335 

  BREAKUP & COALESCENCE ... 343 

Experimental and numerical study on single droplet breakage in turbulent flow ... 345 

Improved collision modelling for liquid metal droplets in a copper slag cleaning process  ... 355 

Modelling of bubble dynamics in slag during its hot stage engineering  ... 365 

Controlled coalescence with local front reconstruction method ... 373 

  BUBBLY FLOWS ... 381 

Modelling of fluid dynamics, mass transfer and chemical reaction in bubbly flows ... 383 

Stochastic DSMC model for large scale dense bubbly flows  ... 391 

On the surfacing mechanism of bubble plumes from subsea gas release  ... 399 

Bubble generated turbulence in two fluid simulation of bubbly flow  ... 405 

  HEAT TRANSFER ... 413 

CFD‐simulation of boiling in a heated pipe including flow pattern transitions   using a multi‐field concept  ... 415 

The pear‐shaped fate of an ice melting front ... 423 

Flow dynamics studies for flexible operation of continuous casters (flow flex cc)  ... 431 

An Euler‐Euler model for gas‐liquid flows in a coil wound heat exchanger  ... 441 

  NON‐NEWTONIAN FLOWS  ... 449 

Viscoelastic flow simulations in disordered porous media  ... 451 

Tire rubber extrudate swell simulation and verification with experiments ... 459 

Front‐tracking simulations of bubbles rising in non‐Newtonian fluids  ... 469 

A 2D sediment bed morphodynamics model for turbulent, non‐Newtonian,  

particle‐loaded flows  ...  479 

 

(8)

METALLURGICAL APPLICATIONS  ... 491 

Experimental modelling of metallurgical processes ... 493 

State of the art: macroscopic modelling approaches for the description of multiphysics   phenomena within the electroslag remelting process ... 499 

LES‐VOF simulation of turbulent interfacial flow in the continuous casting mold ... 507 

CFD‐DEM modelling of blast furnace tapping  ... 515 

Multiphase flow modelling of furnace tapholes ... 521 

Numerical predictions of the shape and size of the raceway zone in a blast furnace  ... 531 

Modelling and measurements in the aluminium industry ‐ Where are the obstacles? ... 541 

Modelling of chemical reactions in metallurgical processes  ... 549 

Using CFD analysis to optimise top submerged lance furnace geometries  ... 555 

Numerical analysis of the temperature distribution in a martensic stainless steel   strip during hardening  ... 565 

Validation of a rapid slag viscosity measurement by CFD  ... 575 

Solidification modeling with user defined function in ANSYS Fluent  ... 583 

Cleaning of polycyclic aromatic hydrocarbons (PAH) obtained from ferroalloys plant  ... 587 

Granular flow described by fictitious fluids: a suitable methodology for process simulations  ... 593 

A multiscale numerical approach of the dripping slag in the coke bed zone of a   pilot scale Si‐Mn furnace  ...  599 

  INDUSTRIAL APPLICATIONS ... 605 

Use of CFD as a design tool for a phospheric acid plant cooling pond ... 607 

Numerical evaluation of co‐firing solid recovered fuel with petroleum coke in a   cement rotary kiln: Influence of fuel moisture ... 613 

Experimental and CFD investigation of fractal distributor on a novel plate and   frame ion‐exchanger  ...  621 

  COMBUSTION ... 631 

CFD modeling of a commercial‐size circle‐draft biomass gasifier  ... 633 

Numerical study of coal particle gasification up to Reynolds numbers of 1000  ... 641 

Modelling combustion of pulverized coal and alternative carbon materials in the   blast furnace raceway ... 647 

Combustion chamber scaling for energy recovery from furnace process gas:   waste to value ... 657 

  PACKED BED  ... 665 

Comparison of particle‐resolved direct numerical simulation and 1D modelling   of catalytic reactions in a packed bed  ... 667 

Numerical investigation of particle types influence on packed bed adsorber behaviour ... 675 

CFD based study of dense medium drum separation processes ... 683 

A multi‐domain 1D particle‐reactor model for packed bed reactor applications  ... 689 

  SPECIES TRANSPORT & INTERFACES ... 699 

Modelling and numerical simulation of surface active species transport   ‐ reaction in welding processes  ... 701 

Multiscale approach to fully resolved boundary layers using adaptive grids  ... 709 

Implementation, demonstration and validation of a user‐defined wall function   for direct precipitation fouling in Ansys Fluent  ... 717   

 

 

(9)

FREE SURFACE FLOW & WAVES ... 727  Unresolved CFD‐DEM in environmental engineering: submarine slope stability and  

other applications... 729  Influence of the upstream cylinder and wave breaking point on the breaking wave  

forces on the downstream cylinder ... 735  Recent developments for the computation of the necessary submergence of pump  

intakes with free surfaces ... 743  Parallel multiphase flow software for solving the Navier‐Stokes equations ... 752   

PARTICLE METHODS  ... 759  A numerical approach to model aggregate restructuring in shear flow using DEM in  

Lattice‐Boltzmann simulations  ... 761  Adaptive coarse‐graining for large‐scale DEM simulations  ... 773  Novel efficient hybrid‐DEM collision integration scheme  ... 779  Implementing the kinetic theory of granular flows into the Lagrangian  

dense discrete phase model  ... 785  Importance of the different fluid forces on particle dispersion in fluid phase  

resonance mixers ... 791  Large scale modelling of bubble formation and growth in a supersaturated liquid  ... 798   

FUNDAMENTAL FLUID DYNAMICS ... 807  Flow past a yawed cylinder of finite length using a fictitious domain method ... 809  A numerical evaluation of the effect of the electro‐magnetic force on bubble flow  

in aluminium smelting process  ... 819 

A DNS study of droplet spreading and penetration on a porous medium  ... 825 

From linear to nonlinear: Transient growth in confined magnetohydrodynamic flows  ... 831 

(10)

12th International Conference on CFD in Oil & Gas, Metallurgical and Process Industries SINTEF, Trondheim, NORWAY

May 30th - June 1st, 2017

CFD 2017

OSCILLATORY FLOW AND MASS TRANSPORT IN A CORONARY ARTERY

Sargon A. GABRIEL1∗, Yan DING1, John A. GEAR1, Yuqing FENG2†

1Mathematics, School of Science, RMIT University, Melbourne, Victoria 3001, AUSTRALIA

2Mineral Resources, CSIRO, Clayton South, Victoria 3169, AUSTRALIA

E-mail: sargon.gabriel@rmit.edu.au

E-mail: yuqing.feng@csiro.au

ABSTRACT

Pulsatile flow is intrinsic to the cardiovascular system and is driven by the rhythmic beating of the heart. As a system for mass transport, the cardiovascular system hosts a variety of biochemical and cellu- lar species whose transport is subjected to the corresponding flow oscillations. The influence is most prevalent near the heart and par- ticularly within arteries, where pressure fluctuations are most sig- nificant. This makes modelling of long-term mass transport diffi- cult to evaluate, since intermediate oscillations need to be explicitly resolved. By applying Reynolds averaging to the governing flow and mass transport equations on a representative period of oscilla- tion, this problem may be alleviated. However, doing so introduces extra terms akin to the Reynolds stresses in the flow equations as well as perturbed-flux terms in the mass transport equations. These terms are investigated in the present study and their distributions assessed. A human right coronary artery is used as the subject ge- ometry, wherein the oscillatory transport behaviour of blood flow and low density lipoprotein is studied.

Keywords: coronary artery, oscillation, period-average, pulsatile flow, species transport.

NOMENCLATURE

Greek Symbols

∂ partial derivative δi j Kronecker delta tensor µ dynamic viscosity,[kg/m/s]

ρ density, kg/m3 τi j viscous stress tensor,

kg/m/s2 τ

τ

τwww wall shear stress vector,

kg/m/s2 ϕ arbitrary scalar field variable

i j strain-rate tensor,[1/s]

Γ domain boundary

Ω domain

Latin Symbols

c normalised species concentration d diameter,[m]

n n

n surface normal vector p pressure,

kg/m/s2

ps pulsatile-state (period-averaged) ss steady-state

t time,[s]

u u

u velocity vector,[m/s]

xxx spatial position vector,[m]

C species concentration D species diffusivity,

m2/s J flux into a boundary Pe Péclet

Re Reynolds Sub/superscripts

0 reference condition (at the inflow) i,j Cartesian tensor indices1

F fluid I inflow O outflow

W wall

INTRODUCTION

The cardiovascular system is a circulatory transport system for blood that carries erythrocytes, thrombocytes, lipopro- teins and other species throughout the body. The flow of blood within the cardiovascular system is driven by pres- sure differentials generated at the heart. As the heart peri- odically contracts and relaxes, the pressure differentials fluc- tuate, causing blood flow to oscillate about a non-zero net- period flow-rate. Correspondingly, the transport of blood- borne species is inherently oscillatory2, with oscillations im- parted by the advecting blood medium. Advective transport by blood flow is one of two dominant transport processes governing species within the cardiovascular system, with the other being diffusive transport. The net transport of a species may be therefore regarded as a competing balance between the two transport processes, with advection generally domi- nating within the bulk blood flow and diffusion near the vas- cular walls. This collective behaviour is quantified by the dimensionless Péclet number (Pe), which measures the re- spective rates of advective and diffusive transport.

At any point in the flow, advective transport is perceived al- most equally amongst relatively passive blood-borne species (i. e. that do not significantly influence the flow field). How- ever, diffusive transport can vary since diffusivity varies amongst species and hence, their corresponding Péclet num- bers. A low Péclet number species (i.e. of high diffusivity

1The subscriptsi,jare reserved for index notation of Cartesian tensors;

all other subscripts are for designating variables and should not be inter- preted as tensor indices. Repeated indices in a term imply Einstein summa- tion notation. For the generic vector variableϕϕϕ, the element-wise absolute is designated byi|and the Euclidean magnitude (2-norm) byϕϕk=

ϕiϕi.

2The termsoscillatoryandpulsatileare herein used interchangeably to describe the flow and are not differentiated with any distinct meaning.

147

(11)

S. A. Gabriel, Y. Ding, J. A. Gear, Y. Feng within blood plasma), would be little influenced by the os-

cillatory flow and would conform to a near-regular transport.

However, most blood-borne species are generally of high Pé- clet numbers in the bulk flow, such as low density lipopro- teins (Pe∼2×108) and oxygen (Pe∼1×106) (Stangeby and Ethier, 2002). In such species, the dominance of advec- tive transport implies a strong influence from the flow, and hence its oscillatory behaviour on their transport. From a modelling perspective, this presents a potential constraint for high Péclet number species transport, since the strong cou- pling to the flow in the bulk flow and increasing influence of diffusivity in the near-wall flow implies an interplay of varying length and time scales. That is, the corresponding response of the species to perturbations from the oscillat- ing flow would spatially vary between the bulk and near-wall flow, requiring a large number of periods (i. e. computational time) to achieve a steady-periodic equilibrium state.

This is demonstrated in the transport of high Péclet num- ber blood-borne species, in that whilst the flow may resolve to a steady-periodic regime within a reasonable ∼5 peri- ods of oscillation from resting-state initial conditions (Liu et al., 2011), the same is not necessarily true for the species, which may take considerably longer (Sunet al., 2007). This is especially problematic near vascular walls where other types of interactions may occur, such as transport into the walls and reactions with other species (Tarbell, 2003). For computational models of such species, this presents an in- convenience that may be infeasible to resolve within rea- sonable time and computational resources. Indeed, oscilla- tory flow and mass transport has been extensively investi- gated in past studies, such as those of Hong et al.(2012), Liu et al. (2011), Sakellarioset al. (2013) and Sun et al.

(2007). However, the difficulty of attaining a steady-periodic regime still remains to be realised within feasible computa- tional resources. In the objective of resolving this difficulty, the mechanics that influence the steady-periodic regime for flow and species transport are therefore investigated in the present study. Period-averaging techniques akin to those of turbulence modelling are applied to the governing flow and species transport equations, so that they may be compared to their equivalent steady-state conditions.

METHODOLOGY

A human right coronary artery (RCA) segment is selected as the subject geometry of study for this investigation. This is because coronary arteries are inherent with relatively small diameters and longitudinal variations in their geometry; the former is useful for reducing computational requirements as multiple periods of oscillation are to be computed, and the latter is useful for inducing variations in the distribution of near-wall species concentration. For this study, the species to be investigated is low density lipoprotein (LDL).

Geometry

The RCA geometry3to be investigated comprises of a sin- gle stem with no bifurcations or branches. The geometry comprises of the volumetric flow space (lumen)ΩF, which is bounded by the wallΓW, inflowΓIand outflowΓO bound- aries; see figure 1 (a). To ensure that the flow and species en- teringΩFare sufficiently developed from their boundary con- dition states, the inflow and outflow boundaries are extended by flow extensions of 5[mm]and 10[mm]respectively.

3Geometry provided by the Biofluid Mechanics Lab, Charité Univer- sitätsmedizin Berlin.

The geometry is discretised using a longitudinally swept O- grid mesh that comprises of 2385 hexahedral elements per cross-section, which amounts to about 7.75×105 elements for the collective geometry; see figure 1 (b). For most of the volumetric flow space, the concentration of LDL is expected to be uniform, except near the wall where a thin mass trans- port boundary layer develops. The near-wall mesh is thus refined to sufficiently resolve the mass transport boundary layer, such that the first element layer height is about 2200 times smaller than the average inflow diameterdI.

(a) (b)

F ΓI

ΓO

ΓW

35[mm]

dI=2.2[mm]

2.4[mm]

Figure 1:Detail of the RCA segment used for this study, with (a) geometry schematic (not including flow-extensions) and (b) cross-section O-grid mesh (coarsened for display).

Governing equations

To investigate the oscillatory behaviour of flow and mass transport of blood and blood-borne species, a continuum de- scription is considered. That is, though it is recognised that blood comprises a heterogeneous suspension of particulates, the collective fluid is approximated as continuous on a suffi- ciently large macroscale level. For blood vessels with diam- eters significantly larger than that of an erythrocyte (i. e. red blood cell), the continuum fluid assumption is found to satis- factorily hold. However, special care needs to be made in re- solving macroscale level properties such as rheology, which need to be described via constitutive models (Thiriet, 2008).

For the present study, the arterial wall is assumed to be rigid and hence non-compliant. This assumption is made so that data processing of oscillatory blood flow and blood-borne species transport can be made within a fixed (i. e. Eulerian) reference frame. For example, the Eulerian reference frame allows for a spatially-invariant definition of period-averaging to be naturally realised. Otherwise, if the arterial wall is al- lowed to deform, then so would the volumetric flow space ΩF. In such a case, special treatment would be required to define a spatially-invariant period-average withinΩF. Blood flow transport

To describe blood flow, the incompressible mass and mo- mentum conservation (Navier–Stokes) equations are used. In conservative-form, these are respectively expressed by

iui = 0 (1) ρ∂tui+∂j(ρuiuj−τi j+pδi j) = 0 , (2) where ui is a component of the blood’s velocity field vec- toruuuand pis its scalar pressure field; δi j is the Kronecker delta. The viscous stress tensor is definedτi j=2µ∆i jand the strain-rate tensor ∆i j= 12(∂iuj+∂jui). Material properties are provided by the blood’s densityρand viscosityµ, which are assumed constant for the present formulation, such that ρ=1050

kg/m3

andµ=3.45×10−3[kg/m/s].

Whilst it is recognised that blood viscosity is non-Newtonian (i. e. having a strain-rate dependence), its equivalent New- tonian approximation may be acceptable for arteries with diameters significantly larger than that of an erythrocyte

∼8×10−6[m](Ambrosiet al., 2012). The RCA geometry of figure 1 is sufficiently large to satisfy this condition and since 148

(12)

Oscillatory flow and mass transport in a coronary artery/ CFD 2017 multiple periods of oscillation are to be computed in this

study, the Newtonian approximation is used so that computa- tional needs are reduced. However, it is recommended that in general, a high fidelity model of blood flow within coronary arteries should use a non-Newtonian viscosity formulation;

see for example the models presented in Cho and Kensey (1991). It is also noted that the near-wall computational ele- ments (required to resolve the mass transport boundary layer) are smaller than the diameter of an erythrocyte and hence, should resolve greater detail than the continuum description of blood would allow. Such flow detail is beyond the scope of the present study and may necessitate local corrections to the material properties of the blood fluid if required. This has been addressed in studies such as Huanget al.(2009), which have resolved such detail as the Fahraeus–Lindqvist effect (migration of erythrocytes away from the wall) and resulting variations in blood rheology.

Species transport

As with the flow, the distribution of blood-borne species is modelled as a continuum. That is, rather than tracking indi- vidual particles, their concentration is resolved on an Eule- rian framework. For this study, the species of interest is low density lipoprotein (LDL); a single particle has a diameter of approximately 2.0×10−8[m](Teerlinket al., 2004), which is about 105times smaller than the internal diameter of a coro- nary artery. Thus, with such large difference between their respective diameters, the continuum description is expected to satisfactorily hold for the transport of LDL.

The presence of LDL is assumed to have no influence on the flow field. Therefore, LDL concentration transport is mod- elled as a passive scalarcthat is advected with the flow (one- way coupling). The governing transport equation can be ex- pressed in conservative form as

tc+∂i(uic−D∂ic) = 0 , (3) whereDis the isotropic diffusion coefficient, which for LDL is about 5.0×10−12

m2/s

(Stangeby and Ethier, 2002). For the present case,cis a normalised concentration which has been scaled by its inflow value, such thatc=C/C0, where C is the concentration and C0is its inflow boundary value.

Boundary conditions

For a boundaryΓenclosing the volumetric flow space ΩF, its inward-pointing surface normal is designated bynnn+ and outward-pointing surface normal bynnn-. The boundary con- ditions described here are for pulsatile flow conditions. Un- der steady-state conditions (i. e. when∂tui=0 and∂tc=0 in equations 2 and 3 respectively), the boundary conditions take their period-average values. At the inflow boundaryΓI, a pulsatile Poiseuille flow profile of the form

ui(xxx,t) = 2u0(t)

1− kxxx−xxxccck

1 2dI

!2

n+i (4) is assigned, whereu0is the boundary-average velocity, which follows the time-periodic waveform defined in figure 2 and has period-averageu0. The characteristic parabolic profile of the Poiseuille flow has its maximum at the boundary cen- troidxxxccc, wherexxxis a spatial coordinate on the boundary. To gauge-fix the pressure field, an arbitrarily selected Dirich- let conditionp=0 is assigned to the outflow boundaryΓO; the precise value is not important under the present condi- tions. For the wall boundaryΓW, a no-slip wall condition is assigned, such thatui=0.

0.0 0.2 0.4 0.6 0.8 1.0

0.00 0.05 0.10 0.15 0.20 0.25

time,t[s]

inflow boundary-average velocity,u0[m/s]

periodic waveform,u0(t) period-average,u0=0.081[m/s]

Figure 2:Plot of the RCA inflow waveform and its period-average;

using an 8-term truncated Fourier series representation of the waveform provided in (Johnstonet al., 2006).

Since the LDL concentration field has been normalised by its inflow value, the inflow boundaryΓIis therefore ascribed with the uniform condition c=1. At the outflow bound- aryΓO, a zero flux condition(∂ic)n-i =0 is assigned. Both these conditions are whole-boundary approximations and lo- cally misrepresent the near wall LDL concentration due to the presence of a spatially growing boundary layer. How- ever, due to the high Péclet number of LDL, its species trans- port equation is weakly elliptic, and so with the added flow- extensions, the effect of the misrepresented boundary condi- tions is not significant within the domain of interest. On the wall boundaryΓW, the flux equilibrium condition

(uic−D∂ic)n-i = Jc (5) is ascribed, which describes the balance between advective flux into the wall and diffusive flux away from it. The net influxJcof LDL into the arterial wall is set to be zero for the present conditions. The advecting velocity into the wall is set to be constant and equivalent to the water filtration velocity Ju=4.0×10−8[m/s](Stangeby and Ethier, 2002), such that uin-i =Ju. Note that this boundary condition has only been enforced in the species transport and has been omitted from the flow equations for this study. A more appropriate bound- ary condition for the flow equations should therefore correct the no-slip wall condition, such that

uin-i = Ju (6) ui−(ujn-j)n-i = 0 . (7) The effect of the misrepresented boundary condition is not expected to influence the flow field significantly, becauseJu

is much smaller thanu0and the domainΩFis small; see the analytical solution for a straight artery with a semi-permeable wall in Wada and Karino (2000) for the influence ofJu. Oscillatory flow data processing

An arbitrary scalar field variableϕthat is transported within an oscillating flow of period-length Tp is considered. To compare the oscillating field variable with its steady-state, it is first necessary to decompose it into a time-invariant state.

This is achieved with Reynolds periodic-decomposition, which decomposes the field variable into its period-average ϕand time-dependent perturbationϕ0components. Reynolds periodic-decomposition is defined

ϕ(t) =

ϕ+ϕ0(t)

ϕ = 1 T

Z

T

ϕ(t)dt, t∈T

, (8)

149

(13)

S. A. Gabriel, Y. Ding, J. A. Gear, Y. Feng whereT=kTpis the integration time andk≥1 is an integer

multiplier. Under laminar flow conditions, the flow field is periodic at all relevant length scales; therefore, the decompo- sition may be made over a single period of oscillation (k=1).

However, under turbulent flow conditions, a sufficiently large number of periods (k>>1) would be required forϕto be- come temporally invariant.

Applying the Reynolds periodic-decomposition to the flow (equations 1 and 2) and species transport (equation 3), and period-averaging, respectively yields

iui = 0 (9) ρ∂tui+∂j

ρ

uiuj+u0iu0j

−τi j+pδi j

= 0 (10)

tc+∂i

uic+u0ic0−D∂ic

= 0 . (11) It is noted that the period-averaged flow and mass equations are similar to their original form, except for the presence of added terms, which have emerged from the non-linear ad- vective components of the equations. These added terms describe the period-aggregate influence of fluctuations about the period-average of their respective field variable. For the flow (equation 10) and species (equation 11), these added terms are respectively referred as the oscillatory advective- stress and oscillatory advective-flux.

Due to the presence of the oscillatory advective-stress and oscillatory advective-flux in the flow and species transport equations respectively, variations may emerge between the period-average and equivalent steady-state of their respective field variables. These variations may be subtle and difficult to qualitatively differentiate. A quantitative measure is there- fore required, and is provided with the Steady Representation Index (SRI), which is defined

SRI{ϕ} =ϕ|ss−ϕ|ps

ϕ|ss+ϕ|ps. (12) This index quantifies variations in a generic field variableϕ that arise due to flow pulsatility, relative to its equivalent steady-state. The SRI is signed and bounded by the range

−1≤SRI≤1, such that a positive value SRI{ϕ}denotes that the steady-state value locally overestimates the field variable ϕ, and a negative value if it underestimates; at SRI{ϕ}=0, both steady and pulsatile conditions are locally equivalent.

For the flow field, oscillatory fluctuations have generally been measured via the Oscillatory Shear Index (OSI), which was designed to measure fluctuations in the wall shear stress τττwww (He and Ku, 1996). In a previous study by the authors (Gabrielet al., 2016), the Oscillatory Shear Index was gen- eralised to the Oscillatory Flow Index (OFI), which extended the domain space of the index onto the flow-field, where

OFI =









1− kuuuk

kuuuk on ΩF ∪ ∂ΩFW

1− ττwwwk

ττwwwk on ΓW.

(13)

Note that the OSI is generally scaled to have a maximum value of 0.5; the scaling multiplier is removed in the above definition as it presents no added value. In the same study (Gabrielet al., 2016), the Oscillatory Kinetic Energy Index (OKEI) was also introduced to measure the significance of the oscillatory fluctuations; by measures the trace (i. e. en- ergy) of the oscillatory advective-stress tensor relative to that

of the period-average flow. The OKEI was also extended to flow and wall spaces, and is defined

OKEI =









u u u0·uuu0 uu

uuu+uuu0·uuu0 on ΩF ∪ ∂ΩFW τ

τ τ0www·τττ0www τττwww·τττwww+τττ0www·τττ0www

on ΓW.

(14)

By applying the OFI to the OKEI, direction-reversing (DR) and non direction-reversing (NDR) oscillations can be segre- gated and their significance measured, such that

OKEIDR = OKEI×OFI (15)

OKEINDR = OKEI×(1−OFI). (16) It is noted that a similar period-averaging technique was ap- plied by Hong et al. (2012) to derive the period-average species concentration equations for LDL transport within the arterial wall. In that study, the authors argued that within the arterial wall, the period-averaged LDL concentration is significantly larger than its oscillatory perturbations and can thus be represented satisfactorily by the steady-state equiv- alent. In the present analysis, the period-averaged species equations within the lumen are demonstrated to inherit the period-aggregated influence of oscillatory perturbations via the oscillatory advective-flux term, which depending on its magnitude, can spatially modify the period-average species concentration from its steady-state equivalent. Therefore, in the same manner as the OKEI for the flow, the Oscillatory Species Advective-Flux Index (OSAFI) is proposed to mea- sure the significance of the oscillatory advective-stress term in equation 11; the OSAFI is defined

OSAFI = kuuu0c0k

kuuu ck+kuuu0c0k on ΩF ∪ ∂ΩFW. (17) Computational implementation

The system of flow and species transport equations was im- plemented into the cell-centred finite-volume solver ANSYS Fluent v17.2, with in-house user-defined functions for cus- tomisation of the solver and data-processing. Computations were made with double-precision on a 64-bit serial machine.

For the flow equations, pressure-velocity coupling was at- tained via the SIMPLE algorithm. Flow variable discreti- sation was made using a second-order upwind scheme and pressure discretisation using the standard ANSYS Fluent scheme (a neighbour-cell interpolation method using mo- mentum equation coefficient weighting). For species (LDL concentration) discretisation, a first-order upwind scheme was used; this scheme was implemented to avoid numeri- cal instabilities arising due to the high Péclet number asso- ciated with the species transport. Temporal discretisation of all equations was made with an implicit first-order forward- differencing scheme. Field variable gradients were derived using least-squares cell-based interpolation.

RESULTS AND DISCUSSION

For the pulsatile flow (i. e. temporal) case, computations were terminated at the end of the 20th period of oscillation. It was found that from zero initial conditions, the flow field had converged to a steady-periodic state by the fourth period (i. e. the period-average remained unchanged with successive periods). However, as expected of the high Péclet number associated with LDL transport, the LDL concentration field 150

(14)

Oscillatory flow and mass transport in a coronary artery/ CFD 2017

(a)

(period-average pulsatile)

(b)

(steady-state)

kuuuk/u0, 0.0 2.4

(c)

SRI{kuuuk}, −0.2 0.2

Figure 3:Plot of normalised velocity magnitude on a longitudinal mid-cut of the artery; for (a) period-average of pulsatile flow, (b) steady-state flow and (c) Steady Representation Index of both conditions.

(a)

(period-average pulsatile)

(b)

(steady-state)

kτττwwwk/τw0, 0.0 3.7

(c)

SRI{kτττwwwk}, −0.2 0.2

Figure 4:Plot of normalised wall shear stress magnitude on the wall; for (a) period-average of pulsatile flow, (b) steady- state flow and (c) Steady Representation Index of both conditions, whereτw0=8µu0/dIis the inflow’s equiva- lent Poiseuille wall shear stress.

(a)

(period-average pulsatile)

(b)

(steady-state)

c, 1.0 1.14

(c)

SRI{c}, −0.02 0.02

Figure 5:Plot of normalised LDL concentration on the wall; for (a) period-average of pulsatile flow, (b) steady-state flow and (c) Steady Representation Index of both conditions.

(a)

(OKEINDR)

(b)

(OKEIDR)

OKEI, 0.0 1.0

(c)

OSAFI, 0.0 1.0×10−3

Figure 6:Plot of OKEI on the wall; for (a) NDR and (b) DR oscil- lations. Also, a plot of (c) OSAFI on a near-wall surface withinΩF(i. e. taking measurements at the first element layer from the wall).

(a)

0.0 0.2 0.4 0.6 0.8 1.0

1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14

normalised distance,s s

ps

ss (b)

0.0 0.2 0.4 0.6 0.8 1.0

1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14

normalised distance,s s

ps ss

Figure 7:Plot of normalised LDL concentration along the normalised distance of the (a) upper and (b) lower span of the RCA; comparing period-averaged pulsatile-state (ps) and equivalent steady-state (ss) conditions. The direction of the arrow is from period 1–20.

was yet to converge onto a steady-periodic state from initial conditionsc=1 (see figure 7). Nevertheless, to give prelim- inary insight into what is expected of a converged periodic state for the LDL concentration field, the 20th period results are investigated for the present study.

Observation of the flow and wall shear stress distributions in

figures 3 and 4 respectively, reveals that the period-average of the pulsatile flow displays similar characteristic to that of its equivalent steady-state condition. However, subtle vari- ations can be observed, particularly in the magnitude of the velocity and wall shear stress at the narrowing of the artery (near its longitudinal centre) and at the expansion thereafter

151

(15)

S. A. Gabriel, Y. Ding, J. A. Gear, Y. Feng (just before the outflow). This is confirmed by the SRI for

these respective indices, which also reveals that its sign is not homogeneous but a seemingly even distribution of pos- itive and negative; indicating that the period-average of the pulsatile flow is both overestimated and underestimated rela- tively evenly by its steady-state equivalent.

For the LDL concentration (figure 5), it is noted that the period-average distribution for the 20th period is signifi- cantly far from converged, and many more periods are re- quired before a steady-periodic state is achieved. When com- pared to the steady-state case, it appears that both distribu- tions resemble each other (since regions of high and low con- centrations seem to spatially coincide), though their respec- tive magnitudes substantially differ. Correspondingly, it is expected that the steady-periodic state may also behave sim- ilarly to the 20th period. From the corresponding signed SRI distribution, it is noted that the period-average of the oscilla- tory concentration field is mostly less than that of its steady- state equivalent. Observation of successive period-averaged concentration profiles along the span of the artery (figure 7) reveals that the concentration field is currently incremen- tally increasing in magnitude away from its initial condition c=1. This behaviour appears to be monotonic and slowing down with each successive period, indicating that the steady- periodic state is a converging limit.

It is difficult to ascertain the influence of flow oscillations on the flow and species field variables, from their respective distributions alone. However, this information can be deter- mined from their corresponding oscillatory indices. From figure 6, it can be observed that the OKEI is significant throughout the artery, with NDR oscillations dominating. A small distribution of OKEIDRis also observed, though this is insignificant relative to that of the OKEINDR. The magnitude of these distributions is generally equal to or less than 0.5, indicating that the oscillatory advective-stress is not domi- nant though moderately influential in modifying the period- average flow field from its equivalent steady-state.

For the OSAFI, a more diverse distribution is observed, where there seems to be little correlation with that of the OKEI. However, a similar distribution is observed with the SRI{kτττwwwk}(figure 4), indicating a possible relation with the gradient of the flow velocity. Though, further analysis is re- quired before this can be ascertained.

CONCLUSION

The oscillatory transport of pulsatile blood flow and blood- borne species (low density lipoprotein) has been investigated in the present study. It was determined from their respec- tive period-averaged transport equations that oscillatory in- fluence is inherent to the period-average transport. This influ- ence is prominent in the advective terms of the equations and manifests as the period-aggregate of oscillatory advective- stresses and advective-fluxes within the flow and species transport respectively. These terms are identified to be the cause for parting the period-average transport from its equiv- alent steady-state condition. To investigate these terms, pul- satile blood flow within a human right coronary artery is in- vestigated and oscillatory indices developed to measure their significance. It was observed that though a direct correlation could not be ascertained between the oscillatory indices for flow and species transport respectively, there was sufficient similarity to imply a potential relationship. It is the objective of this study that such a relationship can be determined and modelled, so as to better resolve pulsatile species transport without explicitly resolving all periods of oscillation.

ACKNOWLEDGEMENTS

This work was supported by an Australian Government Re- search Training Program Scholarship and a grant from the CSIRO through the ATN Industry Doctoral Training Cen- tre. The Biofluid Mechanics Lab, Charité Universitätsmedi- zin Berlin is acknowledged for providing the RCA geometry.

REFERENCES

AMBROSI, D., QUARTERONI, A. and ROZZA, G. (eds.) (2012). Modeling of Physiological Flows, vol. 5 ofModel- ing, Simulation & Applications. Springer Milan, Milano.

CHO, Y.I. and KENSEY, K.R. (1991). “Effects of the non- Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows.” Biorheology,28(3-4), 241–62.

GABRIEL, S.A., DING, Y. and FENG, Y. (2016). “Ex- tending the Oscillatory Index to discern oscillatory flow modes”. 20th Australasian Fluid Mechanics Conference, 1–

4. Australasian Fluid Mechanics Society, Perth, Australia.

HE, X. and KU, D.N. (1996). “Pulsatile flow in the human left coronary artery bifurcation: average conditions.”Journal of Biomechanical Engineering,118(1), 74–82.

HONG, J., FU, C., LIN, H. and TAN, W. (2012). “Non- Newtonian effects on low-density lipoprotein transport in the arterial wall”. Journal of Non-Newtonian Fluid Mechanics, 189-190, 1–7.

HUANG, J., LYCZKOWSKI, R.W. and GIDASPOW, D.

(2009). “Pulsatile flow in a coronary artery using multiphase kinetic theory”. Journal of biomechanics,42(6), 743–54.

JOHNSTON, B.M., JOHNSTON, P.R., CORNEY, S. and KILPATRICK, D. (2006). “Non-Newtonian blood flow in human right coronary arteries: transient simulations.” Jour- nal of biomechanics,39(6), 1116–28.

LIU, X., FAN, Y., DENG, X. and ZHAN, F. (2011). “Ef- fect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta”. Journal of Biomechanics, 44(6), 1123–1131.

SAKELLARIOS, A.I.et al.(2013). “Patient-specific com- putational modeling of subendothelial LDL accumulation in a stenosed right coronary artery: effect of hemodynamic and biological factors.” American journal of physiology. Heart and circulatory physiology,304(11), H1455–70.

STANGEBY, D.K. and ETHIER, C.R. (2002). “Computa- tional analysis of coupled blood-wall arterial LDL transport”.

Journal of biomechanical engineering,124(1), 1–8.

SUN, N.et al.(2007). “Influence of pulsatile flow on LDL transport in the arterial wall”.Annals of biomedical engineer- ing,35(10), 1782–90.

TARBELL, J.M. (2003). “Mass transport in arteries and the localization of atherosclerosis”. Annual review of biomedical engineering,5(1), 79–118.

TEERLINK, T., SCHEFFER, P.G., BAKKER, S.J.L. and HEINE, R.J. (2004). “Combined data from LDL compo- sition and size measurement are compatible with a discoid particle shape”. Journal of lipid research,45(5), 954–66.

THIRIET, M. (2008). Biology and Mechanics of Blood Flows. Part II: Mechanics and Medical Aspects. Springer, New York, NY.

WADA, S. and KARINO, T. (2000). “Computational Study on LDL Transfer from Flowing Blood to Arterial Walls”. T. Yamaguchi (ed.),Clinical Application of Compu- tational Mechanics to the Cardiovascular System, 157–173.

Springer Japan, Tokyo.

152

Referanser

RELATERTE DOKUMENTER

73 This included managers and teachers at madrassas and schools, leaders and officials of local government, alumni of madrassas and notable donors from the community,

Methodologically, the Large Eddy Simulation approach is used, in conjunction with both a scalar (Eulerian) and a discrete (Lagrangian) aerosol model.. In the context of these

However, at this point it is important to take note of King’s (2015) findings that sometimes women can be denigrated pre- cisely because they are highly able

The difference is illustrated in 4.23, and as we see, it is not that large. The effect of applying various wall treatments is of course most apparent in the proximity of the wall.

The system can be implemented as follows: A web-service client runs on the user device, collecting sensor data from the device and input data from the user. The client compiles

Based on the above-mentioned tensions, a recommendation for further research is to examine whether young people who have participated in the TP influence their parents and peers in

Organized criminal networks operating in the fi sheries sector engage in illicit activities ranging from criminal fi shing to tax crimes, money laundering, cor- ruption,

Recommendation 1 – Efficiency/sustainability: FishNET has been implemented cost-efficiently to some extent, and therefore not all funds will be spent before the project’s