• No results found

Summary and Recommendations for Further Work

CHAPTER 7. SUMMARY 121 in a good and thorough manner. Especially for the Stirling engine it is important to

prove that the system is capable to harvest waste heat from marine engines since the author of this report has not found any examples of Stirling engine prototypes built for this specific type of application.

Bibliography

Aksoy, F. (2013). Thermodynamic analysis of a beta-type stirling engine with rhombic drive mechanism. Energy Conversion and Management, 75(0):319 – 324.

Al-Najem, N. and Diab, J. (1992). Energy-exergy analysis of a diesel engine. Heat Recovery Sys-tems and CHP, 12(6):525–529.

American Cancer Society (2015). Known and probable human carcino-gens. <http://www.cancer.org/cancer/cancercauses/othercarcinogens/

generalinformationaboutcarcinogens/known-and-probable-human-carcinogens>

Retrived 10.03.2015.

ASHRAE (2010). Designation and Safety Classification of Refrigerants. Number ISSN 1041-2336.

Approved American National Standard (ANSI).

ASHRAE (2013). 2013 ASHRAE Handbook - Fundamentals (I-P Edition). American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

Asnaghi, A., Ladjevardi, S., Saleh Izadkhast, P., and Kashani, A. (2012). Thermodynamics perfor-mance analysis of solar stirling engines. International Scholarly Research Notices, 2012.

Badr, O., Probert, S., and O’callaghan, P. (1985). Selecting a working fluid for a rankine-cycle engine.Applied Energy, 21(1):1–42.

Bejan, A. and Moran, M. J. (1996).Thermal design and optimization. John Wiley & Sons.

Bianchi, M. and Pascale, A. D. (2011). Bottoming cycles for electric energy generation: Paramet-ric investigation of available and innovative solutions for the exploitation of low and medium temperature heat sources.Applied Energy, 88(5):1500 – 1509.

122

BIBLIOGRAPHY 123 BITZER (2012). Refrigerant Report 17 BITZER Kühlmaschinenbau GmbH. <http:

//www.izw-online.de/news/Kaeltemittel_Report_Bitzer_a-501-17.pdf> Retrived 19.01.2015, Informationszentrum Wärmepumpen und Kältetechnik.

Bolland, O. (2013).TEP4185 Natural Gas Technology. NTNU.

BP Energy (2014). Bp statistical review of world energy june 2014. <bp.com/

statisticalreview>Retrived 13.02.2015, BP Energy.

Brasz, L. J. and Bilbow, W. M., editors (2004). Ranking of Working Fluids for Organic Rankine Cycle Applications, volume Paper 722. International Refrigeration and Air Conditioning Con-ference.

Brown, S. P. (2013). The Shale Gas and Tight Oil Boom, U.S. States Economic Gains and Vulner-abilities.Council on Foreign Relations Press.

BW Gas (2009). Machinery Operating Manual, BW Gas Suez Paris. BW Gas.

C. Chryssakis DNV GL (2015). Information retrived through telephone conversations and mail correspondance with Phd Christos Chryssakis, Senior Researcher, Maritime Transport Group Leader Greener Shipping at DNV GL Research and Innovation Department.

Chammas, R. E. and Clodic, D. (2005). Combined cycle for hybrid vehicles. InSAE Technical Paper. SAE International.

Chen, H., Goswami, D. Y., and Stefanakos, E. K. (2010). A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renewable and Sustainable Energy Re-views, 14(9):3059 – 3067.

Chen, Y., Lundqvist, P., Johansson, A., and Platell, P. (2006). A comparative study of the carbon dioxide transcritical power cycle compared with an organic rankine cycle with r123 as working fluid in waste heat recovery. Applied Thermal Engineering, 26(17-18):2142–2147.

Comission, E. (2014). Refrigerants used in mobile air condition systems (MAC) - State of play.

<http://europa.eu/rapid/press-release_MEMO-14-50_en.htm>Retrived 7.01.2015.

BIBLIOGRAPHY 124 Connor, D. E. (2015). Availability of helium. <http://www.peakscientific.com/page/

488-availability-of-helium/#.VQwgJI6G-Z8>Retrived 2.02.2015.

Cool Energy (2015). ThermoHeart Engine - Waste Heat Recovery. <http://coolenergy.com/

how-it-works/>Retrived 8.01.2015.

DiBella, F. A., DiNanno, L. R., and Koplow, M. D. (1983). Laboratory and on-highway testing of diesel organic rankine compound long-haul vehicle engine. InSAE Technical Paper. SAE International.

Dimopoulos, G. and Kakalis, N. (2014). Next generation energy management. Technical Re-port 05, DNV GL STRATEGIC RESEARCH & INNOVATION.

DNV (2014). Rules for classification of ships, newbuildings, special equipment and systems, additional class, environmental class.

DNV GL (2013). Norway is teaming up in pole position for battery-powered ships. DNV GL Research Blog, <http://www.dnv.com/press_area/press_releases/2013/norway_

is_teaming_up_in_pole_position_for_battery_powered_ships.asp> Retrieved 2015.04.09.

Draw.io (2015). Diagram editor. JGraph Ltd.,<https://www.draw.io/>.

Ernst, W. D. and Shaltens, R. K. (1997). Automotive stirling engine development project. NASA.

Etele, J. and Rosen, M. A. (1999). The effect of reference-environment models on the accuracy of exergy analyses of aerospace engines. InSAE Technical Paper. SAE International.

Finkelstein, T. and Organ, A. (2001). Air Engines. Professional Engineering Publishing Ltd.

Fu, J., Liu, J., Feng, R., Yang, Y., Wang, L., and Wang, Y. (2013). Energy and exergy analysis on gasoline engine based on mapping characteristics experiment. Applied Energy, 102(0):622 – 630. Special Issue on Advances in sustainable biofuel production and use - {XIX} International Symposium on Alcohol Fuels - {ISAF}.

Graham Thomas Reader, C. H. (1983). Stirling engines. E. and F. Spon, New York, NY, USA.

BIBLIOGRAPHY 125 Guillen, D., Klockow, H., Lehar, M., Freund, S., and Jackson, J. (2011). Development of a direct evaporator for the organic rankine cycle. Energy Technology 2011: Carbon Dioxide and Other Greenhouse Gas Reduction Metallurgy and Waste Heat Recovery, pages 25–35.

Guo, C., Du, X., Yang, L., and Yang, Y. (2014). Performance analysis of organic rankine cycle based on location of heat transfer pinch point in evaporator. Applied Thermal Engineering, 62(1):176–186.

Heywood, J. B. (1988). Internal combustion engine fundamentals, volume 930. Mcgraw-hill New York.

Hirata, K., Iwamoto, S., Toda, F., and Hamaguchi, K. (1997). Performance evaluation for a 100 w stirling engine. InProceedings of Eighth International Stirling Engine Conference, pages 19–28.

Hofstrand, D. (2014). Natural Gas and Coal Measurements and Conversions. Iowa State Univer-sity.

Ioannis Vlaskos, Peter Feulner, A. A. I. K. (2010). Exhaust gas heat recovery on large engines, potential, opportunities, limitations. InCIMAC World Congress on Combustion Engine, 26th, Bergen, NO, 2010-06-14.

IPCC (2013). Climate change 2013: The physical science basis. contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. Technical report, Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.).

Kalyan Annamalai, I. K. P. (2001).Advanced thermodynamics engineering. CRC Press.

Katsanos, C., Hountalas, D., and Pariotis, E. (2012). Thermodynamic analysis of a rankine cycle applied on a diesel truck engine using steam and organic medium. Energy Conversion and Management, 60(0):68 – 76. Special issue of Energy Conversion and Management dedicated to {ECOS} 2011 - the 24th International Conference on Efficiency, Costs, Optimization, Simu-lation and Environmental Impact of Energy Systems.

Kidnay, A. J., Parrish, W. R., and McCartney, D. G. (2011). Fundamentals of Natural Gas Process-ing, volume 218. CRC Press.

BIBLIOGRAPHY 126

Klein, S. and Alvarado, F. (2002). Engineering equation solver. F-Chart Software, Madison, WI.

Klein, S. and Nellis, G. (2012).Thermodynamics. Cambridge University Press.

Kongtragool, B. and Wongwises, S. (2005). Investigation on power output of the gamma-configuration low temperature differential stirling engines. Renewable Energy, 30(3):465 – 476.

Ladam, Y. and Skaugen, G. (2007). Co2 as working fluid in a rankine cycle for electricity produc-tion from waste heat sources on fishing boats. Technical report, SINTEF.

Lemmon, E., Huber, M., and McLinden, M. (2007). Reference fluid thermodynamic and trans-port properties, refprop, nist standard reference database 23, version 8.0. National Institute of Standards and Technology, Gaithersburg, MD.

Linde Industrial Gases (2015). Nitrogen. <http://www.linde-gas.com/en/products_and_

supply/gases_atmospheric/nitrogen.html>Retrived 20.02.2015.

Machinery Spaces (2010). Modern refrigerants for cargo ships. <http://www.

machineryspaces.com/refrigerants.html>Retrived 19.01.2015.

Maizza, V. and Maizza, A. (2001). Unconventional working fluids in organic rankine-cycles for waste energy recovery systems.Applied thermal engineering, 21(3):381–390.

Majeski, J. (2002). Stirling engine assessment. Technical Report 1007317, EPRI, Palo Alto, CA.

Martini, W. R. (1983). Stirling engine design manual. National Aeronautics and Space Organiza-tion, NASA, second edition.

MATLAB (2014). MATLAB and Statistics Toolbox Release 2014a. The MathWorks, Inc., Natick, Massachusetts, United States.

Millikin, M. (2012). First reference installation of Opcon Waste Heat Recovery technology for ships; potential for 5 to10% fuel savings. <http://www.greencarcongress.com/2012/08/

opcon-20120826.html>Retrived 12.01.2015.

BIBLIOGRAPHY 127 Moran, M. J., Shapiro, H. N., Boettner, D. D., and Bailey, M. B. (2010).Fundamentals of

engineer-ing thermodynamics. John Wiley & Sons.

NFPA (2015). NFPA 704: Standard system for the identification of the hazards of ma-terials for emergency. National Fire Protection Association, <http://www.nfpa.org/

codes-and-standards/document-information-pages?mode=code&code=704> Retrived 14.02.2015.

Nouman, J. (2012). Comparative studies and analyses of working fluids for organic rankine cy-cles - orc. Master’s thesis, KTH School of Industrial Engineering and Management.

Obernberger, I., Carlsen, H., and Biedermann, F. (2003). State of the art and future developments regarding small scale biomass chp systems with a special focus on orc and stirling engine technologies. International Nordic Bioenergy. Jyvaskyla.

Olsen, E. A. (2006). Energibaereren hydrogen. <http://www.forskningsradet.no/

prognett-hydrogen/21_Energibreren_hydrogen/1234130628284>Retrived 26.02.2015.

Opcon (2012). Opcon powerbox orc brochure. <http://www.opcon.se/web/Opcon_

Powerbox_2.aspx>Retrived 12.01.2015.

Opcon Marine (2015). Commissioning and testing of first reference installation of Opcon tech-nology for ships. <http://www.opcon.se/web/First_installation_1_1.aspx>Retrived 1.02.2015.

Pedersen, M. F. (2015). Sulfur content of fuel. <https://www.dieselnet.com/standards/

inter/imo.php#s>Retrived 12.10.2014.

Poullikkas, A. (2005). An overview of current and future sustainable gas turbine technologies.

Renewable and Sustainable Energy Reviews, 9(5):409 – 443.

Quoilin, S., Broek, M. V. D., Declaye, S., Dewallef, P., and Lemort, V. (2013). Techno-economic survey of organic rankine cycle (orc) systems. Renewable and Sustainable Energy Reviews, 22(0):168 – 186.

BIBLIOGRAPHY 128 Quoilin, S., Declaye, S., Tchanche, B. F., and Lemort, V. (2011). Thermo-economic optimization

of waste heat recovery organic rankine cycles. Applied Thermal Engineering, 31:2885–2893.

Rakesh K. Bumataria, N. K. P. (2013). Stirling engine performance prediction using schmidt analysis by considering different losses. International Journal of Research in Engineering and Technology (IJRET), 02(08).

Rettig, A., Lagler, M., Lamare, T., Li, S., Mahadea, V., McCallion, S., and Chernushevich, J. (2011).

Application of organic rankine cycles (orc). InProceedings of the World Engineers Convention, Geneva, Switzerland, pages 4–8.

Roy, J., Mishra, M., and Misra, A. (2011). Performance analysis of an organic rankine cycle with superheating under different heat source temperature conditions.Applied Energy, 88(9):2995 – 3004.

Sayin, C., Hosoz, M., Canakci, M., and Kilicaslan, I. (2007). Energy and exergy analyses of a gasoline engine.International Journal of Energy Research, 31(3):259–273.

Senft, J. R. (2002). Optimum stirling engine geometry. International Journal of Energy Research, 26(12):1087–1101.

Shu, G., Liang, Y., Wei, H., Tian, H., Zhao, J., and Liu, L. (2013). A review of waste heat recovery on two-stroke {IC} engine aboard ships.Renewable and Sustainable Energy Reviews, 19(0):385 – 401.

SINTEF (2015). <http://www.sintef.no/home/about-us/>Retrived 9.01.2015.

Sprouse, C. and Depcik, C. (2013). Review of organic rankine cycles for internal combustion engine exhaust waste heat recovery. Applied Thermal Engineering, 51(1-2):711–722.

SunPower (2015). Stirling cycle. <http://sunpowerinc.com/engineering-services/

technology/stirling-cycle/>Retrived 13.03.2015.

Tchanche, B. F., Lambrinos, G., Frangoudakis, A., and Papadakis, G. (2011). Low-grade heat con-version into power using organic rankine cycles–a review of various applications. Renewable and Sustainable Energy Reviews, 15(8):3963–3979.

BIBLIOGRAPHY 129 The Linde Group (2015). Refrigerants. <http://www.linde-gas.com/en/products_and_

supply/refrigerants/index.html>Retrived 21.02.2015.

Thombare, D. and Verma, S. (2008). Technological development in the stirling cycle engines.

Renewable and Sustainable Energy Reviews, 12(1):1 – 38.

UNEP (2012). Handbook for the The Montreal Protocol on Substances that Deplete the Ozone Layer. Number ISBN 978-9966-20-009-9. Secretariat for The Vienna Convention for the Pro-tection of the Ozone Layer & The Montreal Protocol on Substances that Deplete the Ozone Layer, United Nations Environment Programme PO Box 30552-00100 Nairobi Kenya, ninth edition.

Walker, G. (1980).Stirling engines. Oxford University Press, New York, NY.

Wärtsilä (2013). Product guide wärtsilä 50df. <http://www.wartsila.com/docs/

default-source/product-files/engines-generating-sets/dual-fuel-engines/

wartsila-o-e-w-50df-pg.pdf?sfvrsn=3>Retrived 21.10.2014.

Wärtsilä (2014). Wärtsilä 50df engine technology. <http://www.wartsila.com/en/engines/

df-engines/wartsila50df>Retrived 21.10.2014.

West, C. D. (1986). Principles and applications of Stirling engines. Van Nostrand Reinhold Com-pany.

White, M. F. (2008).Marine Engineering Systems. Institute of Marine Technology, NTNU.

Woodyard, D. (2009). Pounder’s marine diesel engines and gas turbines. Butterworth-Heinemann.

Wu, D. and Wang, R. (2006). Combined cooling, heating and power: A review.Progress in Energy and Combustion Science, 32(5-6):459–495.

Appendix A