• No results found

Automobile in transition? An economic and environmental Analysis of policies for reducing CO2 emissions from transport

N/A
N/A
Protected

Academic year: 2022

Share "Automobile in transition? An economic and environmental Analysis of policies for reducing CO2 emissions from transport"

Copied!
142
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)
(2)

CO2

(3)

a b ility St a n d a r d s : Aver a ge or M a r gin a l E m ission s ? A n E x a m p le of Fer t ilizer

U se a n d C or n E t h a n ol 57

3.1 Int roduction . . . . . 3.2 The Analyt ical Framework . 3.3 A Numerical Example . . . 3.4 Discussion and conclusions .

59 62 71

79

4 A Fr amework t o Evaluat e P olicy Opt ions for Support ing Elect ric Vehicles in

U rban Fr eight Tr ansport 83

4.1 4.2

4.4 4.5

Int roduction . . . Lit erat ur e review

4.3 A framework for policy evaluat ion Numerical Experiment s

Conclusion .

84 87 89 98 107

11

(4)

A cknow ledgem ent

T here are a numb er of people who have played p ar t icular ly imp ort ant roles dur ing my P hD degree and deserve t o b e named .

I owe sp ecial t hanks t o my primary sup ervisor , Gunnar S. Eskeland who sp ent countless hour s discussing my resear ch , supp ort ed me for various research act ivit ies, and int roduced me t o int erest ing and helpful p eople in b ot h t he academia and t he business. T h ank you for being a good collab orat or and a firm friend as well. Many t h anks for Linda Nøst bakken and Knut Einar R osendahl who provided t heir supp ort s and professional advice t o my research .

T he collab orat ion , feedback and supp ort provided dur ing my resear ch has b een highly appr e- ciat ed , not ably t hat received from J onas Andersson (Norwegian School of Economics) , Xueqin Zhu (Wageningen Universit y & R esearch) , Edwar d Sm eet s (LEI- Wageningen Universit y &

Research ) , Leif Krist offer Sandal (Norwegian School of Economics) , J oshu a Linn (R esour ces for t he Fut ur e) , Seyed Most afa Mirhedayat ian (Norwegian School of Economics) , F loris Tobias Zout m an (Norwegian School of Economics) , and Vivienne Bowery Knowles (Norwegian School of Economics) .

My friends and P hD colleagues, Bendik , Mai , Yun , Xingyu , Lar s, Ondfej, Aij a , Evan , P at rick , F inn , Xiaoyu , Yuanming, Xunhua , Mario, Chunb o and Andreas, among ot her s: It has b een a pleasur e t o know you . Your friendships and advice have been a great sour ce of mot ivat ion t hese last four years. It were you t hat h ave accomp anied me in t he cold , dar k , raining wint ers and also t he spirit ed , st unning, sunny summer s in Bergen , Norway where I finished my P hD . T he final acknowledgem ent s must go t o my p ar ent s, Qin Chen and Weihong Yan for t eaching me t he value of educat ion , for cheering me up when I feel discour aged and for giving me t he confidence t o chase my dreams.

Shiyu Yan Bergen , Sept emb er 2017

(5)

CO2

(6)

CO2

CO2

CO2 CO2

CO2

CO2

CO2 CO2 CO2

CO2

CO2 CO2

CO2

CO2

CO2 CO2

(7)

CO2

CO2

(8)

CO2

CO2 CO2

CO2 CO2

CO2

CO2

CO2 CO2

CO2

(9)

CO2

CO2

(10)

g CO2eq./ M J

(11)
(12)

CO

2

CO2 CO2

CO2 CO2 CO2

CO2

CO2

CO2

(13)

CO2

CO2g/ km

CO2

CO2

CO2

CO2 CO2

CO2

CO2

CO2

CO2

CO2

CO2

CO2 CO2

CO2

CO2

CO2

CO2

CO2 NOx

(14)

CO2

CO2

CO2

CO2 CO2

CO2

(15)

CO2

CO2

CO2

g/ km g/ km

(16)

CO2

CO2 CO2

CO2

CO2

CO2

CO2

CO2

CO2

NOx

CO2

CO

(17)

CO2

CO2

CO2

CO2

CO2

(18)

CO2

CO2

CO2

CO2

(19)

CO2 CO2

CO2

CO2

(20)

CO2

CO2 CO2

CO2

CO2 CO2

CO2

CO2

CO2 CO2

QH QL

U = U(QL, QH)

(21)

QH

Tc < 0 < QL Tc

CO2

CO2

Ci = (Pi ,t0+ Ti , t0) + Tt = 0i Mi t+ a cti t+ ( f p( 1+ )t+ f tt t) f eiDi t Pi , t0

t0 Ti ,t0 i

t0 (Pi ,t0 vr ti ,t0) acti t

Di t f pt f tt

f ei i

(22)

CO2

CO2

CO2 CO2

CO2

g/ km CO2

g/ km g/ km

(23)

j i

i t

i

CO2

(24)

j

Ti t

CO2 CO2

(25)

i j t

j t i

j t

CO2

CO2

g/ km CO2

(26)

CO2 CO2

k

ln Qi t = 1Ti t+ 2Ti tgk+ 1F Ci t + j t + i + i t

(27)

i t 2 i t 2 i t j t i i t

1× 2

(28)

CO2

(29)

CO2

R2

CO2

CO2

g/ km g/ km g/ km g/ km g/ km

g/ km g/ km g/ km g/ km

(30)

CO2

(31)

R2

(32)

R2

R2

(33)

g/ km CO2

g/ km CO2

CO2

(34)

g/ km g/ km g/ km g/ km

± g/ km

R2

CO2 CO2

(35)

CO2 CO2

g/ km g/ km

CO2 g/ km

CO2

CO2 CO2

CO2

CO2 CO2

CO2 CO2

CO2

CO2

CO2

CO2 CO2

CO2

CO2 CO2

CO2

CO2 CO2

(36)

× × CO2

CO2 CO2

CO2 CO2

CO2

CO2 CO2

(37)

CO2

CO2

CO2

CO2

CO2

CO2

(38)

CO2

CO2

CO2

CO2

CO2 CO2

CO2

CO2 CO2

CO2 CO2

CO2

CO2

CO2

(39)

CO2

CO2

(40)

A cknow ledgem ent

We are grat eful for help and comm ent s from Linda Nøst bakken , It ziar Lazkano, J onas An- dersson , F loris Zout man , J ar le Møen , Lasse Friedst rom, Vegar Østli, and ot her colleagues at t he Norwegian School of Economics and discussant s in workshops and conferences. We grat e- fully acknowledge financial supp ort from t he Norwegian Resear ch Council t hrough t he Cen SE S program, and delivery and help wit h dat a from t he Informat ion Office of Road Traffic, ofv .no.

(41)

CO2

(42)

CO2

CO2

(43)
(44)

$/ kW h $/ kW h

CO2

(45)
(46)

CO2

(47)

CO2

CO2

CO2

CO2 g/ km

CO2 g/ km g/ km

g/ km g/ km g/ km g/ km

CO2 g/ km g/ km

CO2

CO2 g/ km CO2 CO2 g/ km

CO2 g/ km

NOx CO2

CO2

CO2 CO2

(48)

CO2 g/ km

e g/ km

e

CO2 NOx

(49)

T Civ = pvi + vr tvi +

l

t = 0

actvi t (1 + )t +

l

t = 0

(epvi t+ etvi t) × eev× di t

(1 + )t +

l

t = 0

mcvi t (1 + )t

pvi v i cev bev i

vr tvi l

mcvi t i t actvi t

di t epvi t

v = i cev v = bev etvi t eev

N Bi

T Ci i cev T Cibev

N Bi = pvi + vr tvi +

l

t = 0

actvi t (1 + )t +

l

t = 0

(epvi t+ etvi t) × eev× di t (1 + )t +

l

t = 0

mcvi t (1 + )t

(50)

i nci

i nci = (vr ti cevi +

l

t = 0

acti cevi t

(1 + )t) (vr tevi +

l

t = 0

actevi t (1 + )t)

R2

i m t

ln si m t = ln i nci m t + ln f ueli m t + ct+ m t + i m t

si m t m i t

(51)

f ueli m t

m t

ct

(52)

E Bi

E Ci tv i

ecmitv ecevi t

ecnvi t

E Bi = E Ci i cev E Cibev

E Civ=

l

t = 0

(ecmvi t+ ecevi t × eev× di t+ ecnvi t × di t) (1 + )t

CO2

CO2

(53)

ecevi =

j

rvi j + cvi j

ri jv v i cev bev

rbevi j j i

ri cevi j

j i cvi j v i cev bev

ecnvi t

(54)

km

(55)
(56)

e

(57)

l s

Italy Austria Hungary Portugal Germany ci rc ulation tax change - Energy price change

Norway France UK Austria Italy Portugal Hungary Germany - Registra!ion tax change - Circulation tax change

En e rgy tax change En ergy poncechange

Maintenancecostchange

(a) Mit subishi i-M iEV/(mini ) (b) N issan Leaf ( comp act)

(c) B MW i3 (m id size) ( d) T esla (sp orts)

F igur e 2.2: Benefit s of swit ching from an ICEV t o a BEV by car model.

Cross-driver comparison

T he net ben efits of swit ching t o a BEV vary wit h drivers who t r avel different dist ances annually.

Table 2.2 present s t he requirement s of annual dist ance t r avelled t o achieve breakeven condit ions in which t he t ot al ownership cost s of BEVs and ICEVs ar e equal. Drivers wit h higher annual dist ance t ravelled are more likely t o buy BEVs, because more energy cost s will be saved by swit ching from an ICEV t o a BEV . In addit ion , t ravelling longer dist ances means lower pur chase cost of a BEV per kilomet re. In Norway, Fr ance, and t he UK , where huge t ax incent ives are provided , drivers can benefit from swit ching t o BEVs wit hin a norm al r ange of annual dist ance t ravelled . Ot her count ries require drivers t o have an ext remely high annual dist ance t r avelled in order t o b enefit from driving BEVs. However , owing t o t echnical limit at ions, BEVs are not able t o fulfil t he necessary annual dist ance t r avelled sufficient ly. In fact , t his conflict leads t o low sales of BEVs.

46

(58)

km

e / km

(59)

R2

R2

(60)

CO2

kg CO2

CO2 e / kg

CO2 e / kg

CO2

(61)
(62)

CO2

(63)

BEVs. It is imp ort ant t o p oint out t hat key prerequisit es for t he success of BEV adopt ion are t he availability of clean elect ricity and t he significant reduct ion of BEV product ion cost s.

Fur t hermore, futur e resear ch on t he deployment of new vehicle t echnology ( e.g. BEVs) needs t o t ake int o account local incent ives ( e.g. regional dist ribut ions of char ging st at ions, commut ing rout es, access t o bus lane, and free par king for elect ric vehicles) in order t o b et t er assess t heir sp ecific merit s relat ive t o alt ernat ive vehicle opt ions ( e.g. ICEVs) .

A cknow ledgem ent

I am grat eful for help and comm ent s from Gunnar S. Eskeland , Linda Nøst bakken from t he Norwegian School of Economics, and Knut Einar Rosendahl as well as Eirik Romst ad and St åle Navrud from t he Norwegian Universit y of Life Scien ces and discussant s in workshops and conferences.

52

(64)

A pp endix A

Table 2.5: Summary st at ist ics.

Variable Observat ion M ean St d . D ev . M in M ax

B EV sales numb er 746 128.2386 513.4582 0 5970

B EV sales share 746 0.000463 0.002614 0 0.033155

Incent ive (5% discount rat e ) 746 3811.982 10373.92 0 128947.7 Incent ive ( 10% discount rat e ) 746 3699.247 10278.77 0 127761.5 Vehicl e regist rat ion t ax 746 3128.461 9886.945 0 12 1963.5

A nnual ci rculat ion t ax 746 84.10644 190.4441 0 1899

Fu el sav ing 746 6319.933 3598.464 2091.94 19438.61

(65)

Table 2.6: Vehicle pairs of BEV and ICEV models. NissanRenaultRenaultTeslaMitsubishiCitroenPeugeotSmartVolksw BEVLeafFlucncc Z.E.ZoeModel SBMWi3i-MiEVC-ZeroiOnFortwo EVc-up! Basic price26400287842400044925310131800018000180001875022 Engine power80706626012547474755 Energy efficiency0.1730.140.1460.1810.1290.1350.1350.1350.151 Weight15211543146820901195108010801080900 NissanRenaultRenaultBMWBMWMitsubishiMitsubishiMitsubishiSmartVolksw ICEVNoteFlucncc Z.E.Clio740iScricslImiragcImirageImirageFortwo ICEup Basic price12000200001300058000280001040010400104001000015000 Engine power64826623512559595952 Engine size1198159889829791598119311931193999 Energy efficiency0.0490.0680.0430.1060.0480.0370.0370.0370.043 Cr J Weight15461747100918251315845845845780 CO2 intensity1391559918413796969697

(66)

ln si t = ln i nci t+ ln Xi t+ pr oi+ yeart + i t

si t i t i nci t

Xi t

pr oi

i yeart i t pr oi

(67)
(68)

Chapt er 3

How t o Measure Greenhouse Gas Emissions by Fuel Ty pe for B inary Sust ainability St andards : Average or Marginal Emissions? A n Ex ample of Fert ilizer U se and Corn Et hanol

Xueqin Zhu

Environment al Economics and Nat ur al Resources Group , Wageningen University, Hollandseweg l , 6706KN, Wageningen , t he Net herlands

Shiyu Yan

Depart ment of Business and Management Science, Norwegian School of Economics, N-5045 Bergen , Norway

Edward Smeet s

LEI Wageningen UR , The Hague, t he Net herlands

Siemen van Berkum

LEI Wageningen UR , The Hague, t he Net herlands

(69)
(70)

kgCO2 eq./ M J

(71)

kg CO2 eq./ GJ kg CO2 eq./ GJ

(72)

t he m arginal emissions of a biofuel ( e.g. emissions from t he last unit of biofuel produced from t he last unit of corn) for evaluat ion of emission savings.

Fur t hermore, t he biofuel sect or is closely connect ed t o ot her economic sect ors. T here is a close economic linkage b etween t he input s of corn et hanol (e.g. nat ur al gas) t hrough commodity m ar ket s and government p olicies (T yner et al. , 2012; Bab cock, 2013) . P rice changes in t he oil m ar ket have a direct impact on t he dem and for et hanol and t he price of gasoline t hrough en ergy m ar ket s (Tyner and Taherip our , 2007; Serra et

al.,

2011) , whi ch influences t he use of input s for et hanol product ion ( corn and fert ilizers) and t here by G H G emissions. Cur rent biofuel policies (e.g. t ax for fossil fuels and t ax credit s for biofuels) change t he economic incent ives of economic agent s t o choose t heir energy product s, which have impact s on GHG emissions.

T he aim of t he resear ch present ed in t his chapt er is t o develop a modelling framework for evalu- at ing t he impact of t he economics of nit rogen fert ilizer use on GHG emissions, based on average and m arginal GHG emissions, considering t he int eract ions of en ergy and agricult ur al market s.

T he model is applied t o t he case of corn et hanol product ion in t he US, and it p ar t icular ly concerns t he impact s of oil price development s and et hanol p olicies, especially t he Volumet ric Et h anol Excise Tax Credit (VEET C) , on average and marginal GHG emissions. T he novelty of t his resear ch is t hat we ar e able t o calculat e b ot h average and m argin al GHG emissions of biofuels, which can b e comp ar ed t o t hose of fossil fuels, and provide useful insight s on t he act ual emission savings of biofuels.

T he rest of t his chapt er is st ruct ur ed as follows. Sect ion 3.2 pr esent s an analyt ical framework for calculat ing t he average and m ar gin al GHG emissions of corn et h anol, t aking int o account energy and agricult ur al market int eract ions. T he framework consist s of an economic model t hat links t he oil price t o t he prices of gasoline, corn et h anol, and corn, t he price of fert ilizers used for t he product ion of corn, and t he price of nat ur al gas for t he product ion of corn et hanol. GHG emissions from corn product ion dep end , among ot hers, on t he applicat ion rat e of fert ilizers.

An economically maximized rat e was recommended in t he Corn Belt in t he US (Sawyer et al. , 2006) . T herefore, we det ermine t he economically opt im al nit rogen applicat ion rat e based on profit m aximizat ion . To calculat e t he average and m argin al emissions of corn et hanol, t he economic model is combined wit h t he dat a on t he GHG balance of corn et hanol from t he Greenhouse Gases, Regulat ed Emissions, and Energy Use in Transp ort at ion (GRE ET ) life

(73)
(74)

out put s in t his st age influences t he nit rogen applicat ion rat e, which definit ely impact s t he GHG emissions from corn cult ivat ion . In t he st age of et hanol product ion , in which corn is convert ed t o et hanol, nat ur al gas is t he second import ant input aft er corn. T herefore, any exogenous forces which influence t he price of nat ur al gas and t hus, t he cost of product ion of corn ( e.g. a change in oil price) impact t he price of et hanol. T his has a feedback effect on corn product ion and fert ilizer use in t he first st age, and t hereby result s in changes in GHG emissions. In t he st age of blending wit h gasoline, exogen ous changes ( e.g. oil price changes) have implicat ions for t he price of gasoline and et hanol t hrough t he en ergy m ar ket . T his again has a feedback effect on t he product ion of corn as well as fert ilizer use, and influences final GHG emissions. Below, we present t he quant it at ive relat ionships t hat describ e t he opt imal applicat ion rat e of nit rogen and t he market int eract ions of input s and out put s, which finally det ermine t he GHG emissions of corn et hanol.

(75)

ransporto fdry

·I

GHGemi s sions

Fuel com

Nat ural gas GHGemissions

Corn-ethano l conversion

Transport of GHGemi ssions

Fuel ethanol

Ethanol blending OHO emissions

Gasoline (distrib utio n)

Biofuel

po licy Ethanol

prod uel

---·

F igur e 3.1: T he analyt ical fr amework for calculat ing GHG emissions from corn et h anol produc- t ion .

3 .2 .1 E co no mi c analy sis

In t his subsect ion , we elaborat e in a m at hem at ical model t he opt imal applicat ion r at e of nit rogen fert ilizer in corn cult ivat ion , t he price relat ionship of input s and out put s in et hanol product ion , and t he price relat ionship bet ween et hanol and gasoline under biofuel policies. T he opt im al applicat ion rat e of nit rogen fert ilizers is det ermined by t he profit m aximizat ion of corn farmers, t aking int o account t he yield resp onse t o t he nit rogen input . T he price relat ionship of corn, nat ur al gas as an input , and et hanol as an out put in et hanol product ion is det ermined by t he equilibrium condit ion in which no posit ive profit of et hanol product ion is earned under const ant-ret urn-t o-scale t echnology. As for t he price relat ionship of et hanol and gasoline , energy

64

(76)

kgN / ha $/ kgN

cor n = Qcor nPcor n N Pn i t r og en Cot her

Qcor n kg/ ha Pcor n Pn i t r og en

$/ kg $/ kgN N

kgN / ha Cot her

$/ ha

Qcor n = m + n × N kN2

m n k N

(77)

N = [(Pn i t r og en/ Pcor n) n]/ ( 2k)

Qcor n = [4mk + (Pni t r og en/ Pcor n)2 n2]/ ( 4k)

$/ m3

et han ol = Pet hanol Pcor n Pnat ur al g as+ PD D GS c0

Pethan ol $/ m3 Pcor n $/ kg Pnat ur al

$/ m3 PD D GS $/ kg c0

m3 kg m3

kg m3

PD D GS = xPcor n x

(78)

ethanol = Pet han ol ( x)Pcor n Pnat ur al g as c0

Pcor n = ( Pet hanol Pnat ur al g as c0)/ ( x)

m3

km m3

Pet hanol Pg asol i n e

Pet hanol = (Pg asol i n e+ t) t

(79)

Pet hanol = Pg asol i ne (1 )t + tc

tc

$/ m3

Pn at ur al g as = a1+ a2Pcr udeoi l

Pg asol i ne= b1+ b2Pcr udeoi l

Pnat ur al g as Pg asol i ne Pcr udeoi l

$/ m3 a1 a2 b1 b2

Pf er ti l i z er = c1+ c2Pcr udeoi l

(80)

c1 c2

CO2 M J

M J CO2

g CO2 eq./ M J

(81)

Eet

kg / m3

kg/ ha m3/ ha

Qcor n = Qet hanol

ha

T E (N , Qet hanol) = Ecc(N , Qet hanol) + Ect( Qet hanol) + Eep(Qet hanol) + Eet(Qet hanol)

m3 Eav er ag e

Eav er ag e= T E (N , Qethan ol) Qethan ol

m3 M J

(82)

T E Qethan ol

T E Qet hanol

T E Qet han ol

N N N N N

Qcor n(= Qcor n + Qcor n)

Qet hanol(= Qet han ol+ Qet han ol) T E N

Qethan ol

Em ar g ai n l

Em ar g inal = T E (N , Qet hanol) Qethanol

T E (N , Qethan ol) T E (N , Qet hanol) Qet hanol Qet han ol

lb kg

Pcr udeoi l

$/ bar r el

$/ bar r el

g CO2 eq./ M J

(83)

m n k

B tu bushel gallon l b.

c0 $/ bushel

x

t $/ gal lon

tc $/ gal lon

a1

a2

b1

b2

c1

c2

(84)

$/ bar r el $/ bar r el

$/ m3

$/ kg

$/ kgN

kgN/ ha kg/ ha

$/ ha M J/ ha

g CO2 eq./ M J g CO2 eq./ M J

$/ bar r el

$/ bar r el

$/ bar r el

$/ m3

$/ m3

(85)

$/ ha

$/ ha

(86)

kg

bar r el kg hectar e

(87)

$/ bar r el

$/ bar r el

(88)

g CO2 eq./ M J

(89)

c1 c2

(90)

CO2

$/ bar r el $/ bar r el

$/ m3)

$/ kg

$/ kgN

kgN / ha kg/ ha

M J/ ha

g CO2 eq./ M J

g CO2 eq./ M J

(91)

saving p ot ent ial of biofuels. For example, t he product ion and use of nit rogen fert ilizers account s for one-t hird or more of t he GHG emissions of corn et hanol p roduct ion in t he US. T hus, changes in fert ilizer use can have a large imp act on t he G HG-saving p ot ent ial of corn et hanol. T herefore, we apply t he modelling framework developed t o evalu at e t he impact of t he correlat ion b et ween oil m ar ket s and t he market s for et hanol and corn in t he US on nit rogen fert ilizer use and on t he GHG emissions of corn et hanol.

T he result s show t hat a higher oil price result s in higher gasoline, et hanol, and corn prices.

T he profit-m aximizing b eh aviour of far mer s result s in an increase in t he use of fert ilizers t o increase t he product ion of corn. T he effect is t hat t he average GHG emissions p er unit of corn et hanol remain fairly const ant , but t hat t he m arginal emissions increase somewhat (5%) , m ainly as a result of decreasing m arginal yield wit h resp ect t o fert ilizer use. T he conclusion is t hat alt hough higher corn yields result in higher GHG emissions, increasing corn et h anol product ion for fuel reduces GHG emissions on average compar ed t o t he alt ernat ive of increasing gasoline product ion .

It should be not ed t hat our analysis is based on an economically opt imal applicat ion rat e of fert ilizers. In reality, risk-averse farmers might overuse fert ilizers owing t o lack of knowledge ab out decreasing marginal yields wit h respect t o nit rogen fert ilizers. T hus, our calculat ion based on economically opt im al applicat ion rat es might underest im at e real emissions. Next , we do not include t he ot her indirect effect s of et hanol product ion , such as land-use change. Hence, our num erical result s on t he margin al emissions reflect only t he lower bound of real emissions relat ed t o t he last unit of et hanol product ion . Fur t hermore, t he use of a linear relat ionship for t he market int eract ions of energy and agricult ur al product s based on hist orical dat a b efore 2007, wit hout considering t he recent development of shale gas, might lead t o over est im at ion of t he economic response of higher oil prices. T he obj ect ive of t he exercise present ed in t his chapt er is not t o produce a t horough calculat ion of GHG emissions of corn et hanol product ion in t he US, which requires est im at ing t he act ual applicat ion rat es in different r egions. R at her , t he modelling framework pr esent ed in t his ch apt er aims t o illust rat e how different effect s can b e

80

(92)

t aken int o account when calculat ing emissions. T he novelty is t hat t he diminishing product ivity of corn wit h r esp ect t o nit rogen fert ilizers can h ave profound impact s on t he m arginal emissions of biofuels. T he result s show t h at t he m argin al emissions of corn et hanol product ion in t he US can b e subst ant ially higher t han average emissions, t her eby quest ioning t he efficien cy and effect iveness of biofuel p olicies t o reduce GHG emissions.

An imp ort ant limit at ion of t he modelling framework applied in t his st udy is t hat it represent s only short -t erm economic corr elat ions. Our numerical example t akes t he relat ionship b et ween oil price and nat ur al gas based on hist orical dat a b efore 2007. T herefore, we should be aware t hat t he huge increase in shale gas supplies in r ecent year s might have changed t his quant it at ive relat ionship . Increasing t he use of fert ilizers is, in t he short t erm , a logical and simple way t o increase yields and t o opt imize economic r et urns in resp onse t o higher corn prices. In t he long run , high er corn prices might induce higher corn yields t hrough t echnological changes, such as t he development and use of improved seeds and t he increased use of irrigat ion and agricult ur al m achinery. In t hat case, t he increase in GHG emissions will b e reduced owing t o t he use of improved corn product ion t echnologies and higher corn yields.

Anot her limit at ion of t he research is t hat t he numerical example for applying t he modelling framework does not include ot her indirect effect s, alt hough t he m ar ket int eract ions of input s and out put s are considered . However , we can calculat e t he margin al emissions of corn et hanol, which provides useful insight s for environm ent al m anagement . Economic inst rument s, such as emission t ax , are based on m argin al emissions in order t o det ermine t he opt im al product ion level. T her efore, ident ifying marginal emissions creat es t he basis for p olicy int ervent ion . Moreover , t he prices of oil, nat ur al gas, and agricult ur al commodit ies (including corn) have fluct uat ed subst ant ially dur ing t he t imeframe of t his st udy. T his means t h at t he empirically observed corr elat ions and paramet er values considered in t his st udy are par t ially uncert ain . More det ailed analyses t hat consider longer t imeframes ar e needed t o improve t he accur acy of t he paramet ers used in our modelling framework. Fur t her r esearch is also en cour aged t o model t he economic int eract ions b etween oil, et h anol, and corn m ar ket s in more det ail. T herefore, t his st udy should b e regarded as a first -order assessment t hat , despit e it s uncert aint ies, clear ly shows t he p ot ent ial imp act of t he economic correlat ions between energy and agricult ur al market s on t he average and margin al GHG emissions of corn et hanol. To include ot her indirect effect s of

(93)

82

(94)

Chapt er 4

A Framework to Evaluate Policy Opt ions for Support ing Electric Vehicles in U rban Freight Transport

Seyed Most afa Mirhed ayat ian

Depart ment of Business and Management Science, Norwegian School of Economics, N-5045 Bergen , Norway

Shiyu Yan

Depart ment of Business and Management Science, Norwegian School of Economics, N-5045 Bergen , Norway

A bst ract

Elect ric vehicles (EVs) ar e considered as a feasible alt ernat ive t o gasoline/ diesel vehicles. Few st udies have addressed t he impact s of p olicies for EVs in ur ban freight t r ansp ort . To cast light on t his t opic, we est ablished a framework combining an opt imizat ion model wit h economic analysis t o det ermine t he opt im al b eh avior of an individual delivery service p rovider company and social impact s (e.g., ext ernalit ies and welfare) in response t o p olicies for supp ort ing EVs, such as pur chase subsidy, limit ed access (zone fee) t o congest ion / low-emission zones wit h exempt ions for EVs, and vehicle t axes wit h exempt ions for EVs. Numerical exp eriment s showed t hat t he zone fee can increase t he comp any 's t ot al cost s but improve t he social welfar e. It great ly reduced t he ext ernal cost inside t he congest ion / low-emission zone wit h a high p opulat ion , dense pollut ion , and heavy t raffic. Alt hough t he vehicle t axes and subsidy have alm ost t he same influences on t he company and societ y, t hey p erform different ly at low t ax/ subsidy rat es due t o t heir different effect s on vehicle rout ing plans. F inally, we performed sensit ivity analyses, which shows t hat local fact ors at t he company and city levels ( e.g., typ es of vehicle and t r ansp ort network) are imp ort ant t o designing efficient p olicies for supp ort ing EVs in t he ur ban freight t ransp ort . K ey words : elect ric vehicle, social welfare, congest ion / low-emission zone, ur ban freight t ransp ort , logist ics, het erogeneous vehicle rout ing problem

(95)

(96)

CO2

(97)
(98)

4 .2 Lit erat ure rev iew

In t his sect ion , we review relevant research on b ot h economic and logist ics research for t he use and evaluat ion of EV p olicies in t he cont ext of ur ban freight t r ansp ort .

Tradit ionally, evaluat ion of t r ansp ort p olicies in ur ban freight t ransp ort involves social and economic issues (Lagorio et al ., 2016) . For example, Hosoya et al . (2003) , And erson et al.

(2005) , Qu ak and De Kost er (2006) , and Holguin-Verasand et al . (2010) p erformed general assessment s of policies t hat affect ur ban freight t ransp ort . Hosoya et al . (2003) st udied Tokyo and used a sur vey t o evaluat e a numb er of freight p olicies: bans on lar ge t rucks, road pricing, and t he const ruct ion of logist ic cent ers. Anderson et al. (2005) provided an ex ant e assessment of regulat ion measur es in UK cit ies, in cluding t ime windows and char ging. Quak and De Kost er (2006) addressed regulat ions based on t ime windows. T hey reviewed pract ices in Dut ch cit ies and assessed p ossible changes t o cur rent p olicy. Holguin-Verasand et al. (2010) evaluat ed t he impact s of p olicy incent ives for encour aging off-hour deliveries on carriers, receivers and societ y.

In part icular , t hey used t he Discret e Choice Model and t he Comprehen sive Modal Emissions Model wit h GP S b ased dat a t o simulat e t he consum er choice of delivering t ime and changes of emissions.

However , t his is st ill an evolving field of research b ecause of t he great er sensit ivity t o envi- ronm ent al issues, new policy measur es, and int roduct ion of new t echnologies . In t he case of promot ing t he pur chase and use of EVs, sever al t ypes of p olicies are involved ( e.g., access t o low-emission zones, exempt ions from vehicle t axes, and pur chase subsidy) . Taefi et al. (2016) reviewed policy m easur es direct ed at emission-free ur ban road freight t r ansp ort . T hey assessed and compar ed p olicies against ot her prosp ect ive opt ions by mult i-crit eria analysis. In t he previ- ous economic resear ch , evaluat ion of EV-supp ort ing p olicies m ainly focused on ex post analysis based on empirical dat a and economet ric approaches, such as t he consumer choice model (Lee et al ., 2016; Greene et al ., 2014) , t he fixed effect model (Chandra et al ., 2010; Gallagher and Mu ehlegger , 2011), and ot her ordinary least squares models (Sierzchula et al. , 2014; Diamond , 2009; J enn et al ., 2013; J imenez et

al.,

2016; Yan and Eskeland, 2016) .

From t he p er sp ect ive of logist ics, t he lit erat ur e on ur ban freight t ransp ort does not yet provide an ample discussion of sp ecific p olicy measur es t o support EVs in ur ban freight t ransp ort . T he

(99)

a limit ed or unlimit ed fleet of vehicles wit h different at t ribut es ( e.g., cap acity, fixed cost , and driving range) in order t o serve a set of cust omers wit h given demand . T he obj ect ive is t o decide t he vehicle fleet composit ion and rout es while minimizing t he vehicle rout ing and usage cost s.

J uan et al. (2014) ext ended t he het erogeneous vehicle rout ing problem t o consider mult iple driving ranges for vehicles. T he mult iple driving range variant implies t hat t he t ot al dist ance t raveled by each type of vehicle is limit ed and is not necessarily t he same for all vehicles. T his problem arises in rout ing of EVs (Schneider et al. , 2014; Goeke and Schneider , 2015) and hybrid elect ric vehicles for which t he driving range is limit ed due t o limit ed capacity of bat t eries. Sassi et al. (2014) int roduced a new real-life het erogeneous vehicle rout ing problem where t he mixed fleet consist s of ICEVs and het erogeneous EVs wit h different bat t ery capacit ies (i.e., driving range limit ) and fixed cost s. P art ial recharging for EVs at available recharging st at ions dur ing t rips is allowed , as well as int ermit t ent recharging at t he dep ot . T he m ain challenges facing use of EVs are t heir limit ed driving range and considerably long charging t ime. T he limit ed driving range will probably remain t he m ain obst acle t o using EVs in t he medium t erm as long as t here is no global infrast ruct ur e for replacing bat t eries or direct power induct ion t o EVs dur ing t heir t rip .2

Alt hough t he driving range limit of EVs makes t hem less pract ical for use in real life, advant ages such as free or cheap access t o a congest ion zone, provide an incent ive t o use t hem as an alt ernat ive fleet . T he zone-dep endency asp ect of t he problem t hat we discuss in t his pap er , is similar t osit e dep en den cyin t hesit e-dep endent vehicle routing p roblem int roduced by Nag et al.

(1988) . In t heir problem , different types of vehicles could only visit t heir preassigned cu st omers;

t hat is, no vehicle t raveled from one cust omer t o anot her cust omer unless bot h cust omers were assigned t o t he same typ e of vehicle. T he difference between t he sit e-depen den t vehicle routing p roblem and our problem is t hat , in t he lat t er , t he cust omers are not preassigned t o each type of vehicle. T here are two types of cust omers wit h regard t o t heir geographic locat ion : inside or out side congest ion/ low- emission zones. ICEVs are charged a zone fee when t hey cross t he congest ion/ low- emission zone. Hence, cust omers of bot h t ypes can be p ot ent ially visit ed by

h t t p :/ / www.isoe.de/ eng lish / pr oj ect s/ fut ur efleet. ht m

88

(100)
(101)

G(V, A ) V

(102)

A V = D J D J

VO i V

A i V j V

i j i , j D A = { (i , j )|i , j V \ { (i , j )|i , j D } } di j

(i , j ) (i , j ) A AZ A (i , j ) A

i , j VO i j

(i , j ) A

Dj j J KE V KI C E V

Qk k Kt, t { E V, I CE V } fk

k Kt, t { E V, I CE V } Sk

k Kt, t { E V, I CE V } Ck

k Kt, t { E V, I CE V } Pk Tk

k Kt, t { E V, I CE V } Ek

W h/ km L / km k Kt, t { E V, I CE V } Fk

k KI C E V

k KI C E V (i , j ) A \ AZ Fk

k KE V Rk

xi j k { 0, 1}

(i , j ) k, k K , (i , j ) A

yk { 0, 1} k K

(103)

A A (i , j ) A i , j V

Dj j j J

di j (i , j ) (i , j ) A

i j (i , j ) (i , j ) A

KE V

KI C E V

K = KE V KI C E V

Qk k Kt, t { E V, I CE V }

fk

k Kt, t { E V, I CE V }

Sk k Kt, t { E V, I CE V }

Ck k Kt, t { E V, I CE V }

Fk k KI C E V

Rk k KE V

Pk

k Kt, t { E V, I CE V } Tk

k Kt, t { E V, I CE V }

Ek k Kt, t { E V, I CE V }

M

xi j k { 0, 1} (i , j )

k k K , (i , j ) A

yk { 0, 1} k K

(104)

min

k K (i ,j ) A

(Pk + Tk)Ekdi jxi j k +

k K i D j J

(fk+ Ck Sk)xi j k +

k KI C E V

Fkyk

i D j J

xi j k 1 k K

i V k K

xi j k = 1 j J

i V

xi j k =

i V

xj i k j V, k K

i S j S

xi j k |S| 1 S J, k K

j V

(105)

i V j J

Djxi j k Qk k K

(i ,j ) A

di jxi j k Rk k KE V

i D j V

xi j k

i D j V

xi j k 1 k Kt = Kt1, t { E V, I CE V }

k

k 1 Kt 1 Kt, t { E V, I CE V }

xi j k { 0, 1} (i , j ) A, k K ; yk { 0, 1} k K

(106)

W = S + R E C

W

S CS P S

S = CS + P S

W P Pc

CS = W P Pc

Pp T C

P S = Pp T C

(107)

L E Z

R = P S + V T + F T + L E Z

10 × 365

P S =

k K i D j J

Skxi j k V T =

k K i D j J

(fk + Ck)xi j k F T =

k K (i ,j ) A

TkEkdi jxi j k L E Z =

k K

Fkyk

E C

ejk, k Kt, t { E V, I CE V } , j { I , O}

I

O i j (i , j ) A

Ek k Kt, t { E V, I CE V }

(108)

E C =

k K (i ,j ) A

i jeIkEkdi jxi j k+

k K (i ,j ) A

(1 i j)eOkEkdi jxi j k

e1jk e2jk e3jk

ejk = e1jk+ e2jk+ e3jk k Kt, t { E V, I CE V } , j { I , O}

• CO2

CO2 kW h

CO2

CO2 e1Ik

e1Ok, k Kt, t { E V, I CE V }

• NOx SO2 CO2

3 NOx SO2

P M2.5 CO2 kW h

e2II C E V >

e2O I C E V

I O

(109)

Ek L / km kW h/ km

Sk fk Ck Fk

(110)

% % dj U(0.15 QI C E V, 0.25 QI C E V)

kg

CO2 CO2 g/ km

W h/ km L / km

(111)

%

%

(112)

kW h kW h L L

CO2 e kW h

CO2 e L

e kW h e L e km

k Kt (i ,j ) A i jEkdi jxi j k t { E V, I CE V }

k K (i ,j ) A(1 i j)Ekdi jxi j k t { E V, I CE V }

R E C S

W

Referanser

RELATERTE DOKUMENTER

Reguleri ngsanlegget s eier underkast er seg de best emm elser som t il enhver t id måt t e bli t ruffet av vedkomm ende depart ement t il kon- t roll med

We want interreligious dialogue because we believe that this will contribute to social and political integration in a pluralistic society.. Human rights preclude that

ments of the trade union movement in a state of hope. T his book focuses on the role of labour in uprooting apartheid and contributing to a stable democracy. T he report

3.6 T HE IMPORTANCE OF EVOLUTIONARY RATES. T HE MONOMORPHIC STOCHASTIC MODEL.. The Red Queen hypothesis states that biological entities rather than abiotic factors constitute

Figure 3.7 Detonation threshold curves for an acceptor filled with PAX-48/MCX-8100 composition with calculated properties and shock sensitivity 54.6 kbar, and worst

Tabellene i det følgende avsnittet oppsummerer omsøkt forbruk og utslipp knyttet til boring, komplettering og plugging av brønn 7220/11-5 S (Lundin Norway AS, 2018) og omsøkte

Midlertidig ansettelse. Saken gjaldt tolkingen av art. 4 i Rammeavtalen om midlertidig ansettelse mellom EFF, UNICE og CEEP. 1 skal tolkes slik at bestemmelsen kan påberopes

[r]