• No results found

Molecular and immunological approaches in quantifying the air-borne food allergen tropomyosin in crab processing facilities Paper I

N/A
N/A
Protected

Academic year: 2022

Share "Molecular and immunological approaches in quantifying the air-borne food allergen tropomyosin in crab processing facilities Paper I"

Copied!
13
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

Paper I

Molecular and immunological approaches in quantifying the air-borne

food allergen tropomyosin in crab processing facilities

(2)
(3)

InternationalJournalofHygieneandEnvironmentalHealthxxx(2014)xxx–xxx

ContentslistsavailableatScienceDirect

International Journal of Hygiene and Environmental Health

j ourna l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / i j h e h

Molecular and immunological approaches in quantifying the air-borne food allergen tropomyosin in crab processing facilities

Sandip D. Kamath

a,b

, Marte R. Thomassen

c,e

, Shruti R. Saptarshi

a,b

, Hong M.X. Nguyen

d

, Lisbeth Aasmoe

c,f

, Berit E. Bang

c,f

, Andreas L. Lopata

a,b,∗

aMolecularImmunologyGroup,SchoolofPharmacyandMolecularScience,JamesCookUniversity,Townsville,QLD,Australia

bCentreforBiodiscoveryandMolecularDevelopmentofTherapeutics,JamesCookUniversity,Townsville,QLD,Australia

cDepartmentofOccupational-andEnvironmentalMedicine,UniversityHospitalofNorthNorway,Tromsø,Norway

dFacultyofFoodScienceandTechnology,NongLamUniversity,HoChiMinhCity,VietNam

eDepartmentofCommunityMedicine,FacultyofHealthSciences,UniversityofTromsø,Tromsø,Norway

fMedicalPharmacologyandToxicology,DepartmentofMedicalBiology,FacultyofHealthSciences,UiTTheArcticUniversityofNorway,Tromsø,Norway

a r t i c l e i n f o

Articlehistory:

Received27January2014

Receivedinrevisedform8March2014 Accepted8March2014

Keywords:

Tropomyosin Allergendetection Occupationalallergy Shellfish

SandwichELISA Airborneallergen

a b s t r a c t

Tropomyosinisacross-reactiveallergenicproteinpresentiningestedshellfishspecies.Exposureand sensitizationtothisproteinviainhalationisparticularlyimportantinthecrustaceanprocessingindustry whereworkersarecontinuouslyexposedtotheaerosolizedformofthisallergen.Theaimofthisstudy wastodevelopanantibody-basedimmunoassaytoenablethespecificandsensitivequantificationof aerosolizedtropomyosinpresentintheenvironmentoftwocrabprocessingfacilities.

Anti-tropomyosinantibodywasgeneratedinrabbitsagainsttropomyosinsfromfourdifferentcrus- taceanspecies.Theseantibodieswerepurifiedusingrecombinanttropomyosinusinganimmuno-affinity column.TherecombinanttropomyosinwasalsousedasanallergenstandardforthesandwichELISA.In ordertoquantifyaerosolizedtropomyosin,aircollectionwasperformedinthepersonalbreathingzoneof 80workersduringtwocrabprocessingactivities,ediblecrab(Cancerpagurus)andkingcrab(Paralithodes camtschaticus)usingpolytetrafluoroethylenefilters.Thepurifiedantibodywasabletodetecttropomyosin selectivelyfromdifferentcrustaceansbutnotfromvertebratesources.Thelimitofdetection(LOD)for thedevelopedsandwichELISAwas60picogram/m3andlimitofquantitation(LOQ)100picogram/m3. Immunoassayvalidationwasbasedonlinearity(R20.999),matrixinterferencetest(78.8±6.5%),intra- assayCV(9.8%)andinter-assayCV(11%).Thenovelimmunoassaywasabletosuccessfullyidentify workingactivities,whichgeneratedlow,mediumorhighconcentrationsoftheaerosolizedfoodallergen.

Wedescribe an IgG antibody-based immunoassayforquantification of the majorfood allergen tropomyosin,withhighsensitivityandspecificity.Thismodifiedimmunologicalapproachcanbeadapted forthedetectionofotheraerosolizedfoodallergens,assistingintheidentificationofhigh-riskallergen exposureareasinthefoodindustry.

©2014ElsevierGmbH.Allrightsreserved.

Abbreviations: Tm,tropomyosin;rTm,recombinanttropomyosin;cAb-␣TM, anti-tropomyosincaptureantibody;dAb-␣TM,detectionantibody.

Correspondingauthorat:MolecularImmunologyGroup,SchoolofPharmacyand MolecularScience,CentreforBiodiscoveryandMolecularDevelopmentofThera- peutics,Building21,MolecularSciences,JamesCookDrive,DouglasCampus,James CookUniversity,Townsville,QLD4811,Australia.Tel.:+610747814563;

fax:+610747816078.

E-mailaddresses:sandip.kamath@jcu.edu.au(S.D.Kamath),

marte.renate.thomassen@unn.no(M.R.Thomassen),Shruti.saptarshi@jcu.edu.au (S.R.Saptarshi),nmxuanhong@yahoo.com(H.M.X.Nguyen),

lisbeth.aasmoe@unn.no(L.Aasmoe),berit.bang@unn.no(B.E.Bang), andreas.lopata@jcu.edu.au(A.L.Lopata).

Introduction

Occupationalallergyandasthmahasbecomeaserioushealth concern,especiallyforworkersintheseafoodindustry.Increased globalconsumptionandchangingdietaryhabitshavegreatlyfacil- itatedseafoodproduction(LopataandJeebhay,2013;Lopataand Lehrer,2009).Thisinturn,hascausedmoreworkerstobeexposed toseafoodallergensonadailybasis.Accordingtoareportbythe FoodandAgricultureOrganization(FAO)in2010,nearly45mil- lionpeopleareinvolvedinseafoodandaquacultureproduction.

Severalstudieshaveshownthattheprevalenceofoccupational asthmaamong workersexposed toshellfish isbetween4%and 36% (Bonlokke et al., 2012; Granslo et al., 2009; Howse et al., 2006).Moreover,workerswithoccupationalasthmatoshellfish http://dx.doi.org/10.1016/j.ijheh.2014.03.006

1438-4639/©2014ElsevierGmbH.Allrightsreserved.

(4)

were shown to develop ingestion-related food allergies to the sameshellfishspecies(Jeebhayetal.,2001).Occupationalexposure toshellfishallergenscanelicitupperandlowerrespiratorytract symptomssuchasasthma,rhinitisandcanevencauseskinsymp- toms(Aasmoeetal.,2005;Bangetal.,2005;LopataandJeebhay, 2013).

In the seafood industry, workers are constantly exposed to air-borneshellfish particulatematter arisingfrom thedifferent processingtechniques.Severalstudieshaveshownthepresenceof allergenicproteinsinair-borneparticulatematter.Theseallergens areresponsibleforcausing allergicsensitizationamongaffected workers(AbdelRahman etal., 2011,2013;Taylor etal., 2000).

SerumIgEantibodyreactivitytocrabproteinsamongsnowcrab processingworkersduetooccupationalexposureofcrabmatter hasbeenreportedpreviously(Cartieretal.,1984,1986;Gilletal., 2009; Malo et al., 1997; Weytjens et al., 1999).Aerosolization of shellfish allergens occurs due to processes such as filleting, freezing, cooking, smoking, drying and techniques using high pressurewaterorair (Jeebhayetal.,2001; LopataandJeebhay, 2013). Processessuchas butchering, de-gillingand particularly boiling,havebeenshowntocauseexcessivebioaerosolformation.

Thewetordryair-borneparticlesmaythenbeinhaledbyexposed workers.AbdelRahmanetal.demonstratedelevatedlevelsofair- bornecraballergensinspecificworkstationssuchasbutchering andcookingascomparedtocleaning,packingandstorage(Abdel Rahmanetal.,2012).

The commonly consumed shellfish can be divided in two groups;crustaceans(shrimps,crabs,lobsters)andmollusks(oys- ter,mussels,octopus,squid) (Lopata and Kamath,2012; Lopata etal.,2010).Themajorshellfishallergenisa33–36kDamuscle protein called tropomyosin (TM). Over 80% of shellfish sensi- tized patients are known to react to this major allergen. As a muscle protein, tropomyosin exists in a dimeric confirma- tionwhich complexeswithtroponintocover theactin-binding sites during muscle contraction.Due tothis role, tropomyosin isa highly expressedprotein foundmainlyin theedible meat.

Tropomyosindisplaysaremarkablestabilitytoheatingandisable toretainitsallergenicity eveninheat-processed shellfishprod- ucts(Abramovitchetal.,2013;Johnstonetal.,2014;Kamathetal., 2013).

Tropomyosindisplayshighaminoacidsequence(primarystruc- ture) identity within crustaceans, ranging from 95% to 100%

(Kamathetal.,2013).Interestingly,crustaceantropomyosinshares acertaindegreeofaminoacidhomologyof75–83%sequenceiden- titywithhousedust-miteandinsecttropomyosins.Avarietyof miteandcockroachallergenshave beenimplicatedinair-borne exposureandsensitization,however,tropomyosinisonlyaminor allergeninbothallergenssources.Thisismostlikelyduetolow immunologicalcross-reactivityaswellaslowrelativeabundance ofthisproteincomparedtoconsumedshellfish(Arlianetal.,2009;

Pomesetal.,2007).

Several studies have shown that antibody reactivity to tropomyosinisagoodpredictorofshellfishallergy(Gámezetal., 2011;Kamathetal.,2013).Duetoitsexcellentstructuralstability anddetailedcharacterization,tropomyosinwaschosenasanideal molecularmarkerfordetectingair-borneshellfishallergensinthis study.

Wereportthedevelopmentand validationofahighlysensi- tiveimmunoassaytodetectandquantifyaerosolizedtropomyosin inairsamplescollectedfromcrabprocessingfactories.Usingthis immunoassay,wewereabletoquantifyair-bornetropomyosinin aworker-andactivity-specificmanner.

Theapproachofusingarecombinantproteinasstandardand purified natural allergen to generate the capture antibody for increasedsensitivityandspecificityhasnotbeenemployedpre- viously.

Thismethodologycanbemodifiedforthequantificationofother majorfoodallergensandwouldbeanimportanttoolinmonitoring air-borneallergenlevelsindifferentworkenvironments.Thiscan subsequentlyassistinestablishingsafetyparadigmstocontrolthe unintentionalgenerationofaerosolizedallergensandaccidental sensitizationofexposedworkers.

Methods

Allergenstandard:expressionandpurificationofrecombinant tropomyosin

Recombinant tropomyosin was expressed and purified as describedpreviously(Kamathetal.,2013).Briefly,totalRNAwas extracted from fresh specimens of black tiger prawn (Penaeus monodon)usingtheRNAeasyminiextractionkit(Qiagen,Hilden, Germany)accordingtothemanufacturer’sinstructions.Comple- mentaryDNA(cDNA)wasreversetranscribedfromthetotalRNA usingtheTranscriptorHighFidelitycDNA SynthesisKit (Roche, Basel,Switzerland),followingthemanufacturer’sinstructions.The codingregionfor tropomyosinwasamplifiedbyPCR usingfor- ward5-GCGGATCCGACGCCATCAAGAAGAAGATGC-3andreverse 5-GCGAATTCTTAGTAGCCAGACAGTTCGCTG-3 primers. The PCR conditionsweresetasfollows,94Cfor2min,30cyclesof94Cfor 20s,55Cfor20s,72Cfor30sandafinalelongationstep,72C for7min.The860bpamplifiedproductwasclonedintotheexpres- sionvectorpRSET-AusingtheBamH1andEcoR1restrictionsites.

Therecombinantexpressionvector,pRSET-A-TMwastransformed intoBL21Escherichiacolistrainandexpressionoftherecombinant tropomyosinwithaHIS-tag,inducedusing1mMIsopropyl␤-d- 1-thiogalactopyranoside(Amresco,USA).Thebacterialcellswere washedwithextractionbuffer(25mMTris–HCl,pH8.0,300mM NaCl,1mMimidazole)andlysedusingaFrenchpressurecell.After centrifugationat6000×gfor15min,therecombinanttropomyosin waspurifiedusing HIS-TrapFFAffinityColumn (GEHealthcare, USA).Thefractioncontainingtherecombinantproteinwasfurther purifiedusingaSuperdexG7516/600sizeexclusioncolumn(GE Healthcare,USA)onaBiologicDuoflowFPLC(BioRad,Hercules,CA, USA).Thepurifiedrecombinanttropomyosin waslabeled“rTm”

andstoredinaliquotsat−80Cuntilfurtheruse.

Sodiumdodecylsulphate-polyacrylamidegelelectrophoresis (SDS-PAGE)

SDS-PAGEwasperformedasdescribedearlier(AbdelRahman etal.,2010)toconfirmthepurityofthetropomyosinstandardand analyzethebindingcharacteristicsofthepurifiedantibodies.

Twelve micrograms of the protein samples was heated in Laemmlibuffercontainingdithiothreitolandloadedontoa12%bis- acrylamidegel.Proteinseparationwasperformedat180Vusinga Mini-ProteanTetraCellelectrophoresissystem(BioRad,Hercules, CA,USA).Theseparatedproteinswerevisualizedbystainingwith CoomassiebrilliantblueR250(BioRad,Hercules,CA,USA).

CDspectroscopyofallergenstandard

Circulardichroismspectroscopywasperformedtoanalyzethe alpha helicalcontent of rTMand compare it topurified natu- ral prawn tropomyosin. Natural and recombinant tropomyosin sampleswerepreparedinPBS,pH7.2andadjustedtoafinalcon- centration of 3␮M.CD spectroscopy wasperformed ona J715 Spectropolarimeter(Jasco,USA)withcontinuousnitrogenflushing at25C.Allmeasurementswereperformedusinga10mmquartz cuvetteoverawavelengthrangeof190–260nm.Forwavelength analysis,thetropomyosinsampleswerescannedwithastepwidth of0.2nmandbandwidthof1nmat100nm/minaveragingover

(5)

S.D.Kamathetal./InternationalJournalofHygieneandEnvironmentalHealthxxx(2014)xxx–xxx 3

eightscans.Finaldatawasexpressedasmeanresidualellipticity ()aftersubtractingPBSblankspectrum.

Productionofpolyclonalanti-tropomyosinantibodies Proteinextractionandestimation

Topreparetheantigenmixturetogenerateantibodiesinrabbits, protein extracts were generated from four crustaceanspecies;

Blacktigerprawn (Penaeusmonodon), Vannameiprawn(Litope- naeusvannamei),Bananaprawn(Fenneropenaeusmerguiensis)and School prawn (Metapenaeus macleayi) as described previously (Kamathetal.,2013).Thecompleteshellfishspecimen,initsouter shell,washeatedinliquid(PBS)at100Cfor 20min.Theouter shellofthespecimenwasthenremovedandtheedibletissuecut intosmallpieces.Fiftygramsofthemusclemasswashomoge- nizedin150mLofphosphatebufferedsaline(PBS)for10minusing anUltraturraxblender(IKA,Staufen,Germany),agitatedfor3hat 4Cfollowedbycentrifugationat14,000rpmfor15min.Thesuper- natantwasclarifiedthroughaglassfiberfilter,followedbyfiltration througha0.45␮mmembranefilter(Millipore,Billerica,MA,USA) andstoredat−80Cuntilfurtheruse.

Tocharacterize thegeneratedpolyclonal antibody,unheated proteinextractswerepreparedfromprawn(Penaeusmonodon), crab(Portunuspelagicus),lobster(Jasusedwardsii),housedustmite (Dermatophagoidespteronyssinus),fish(Latescalcarifer),andpork (Susscrofa)asdescribedelsewhere(Abramovitchetal.,2013).

Tropomyosin–antigenmixpreparation

TheproteinextractsproducedinSection“Proteinextractionand estimation”wereusedasstartingmaterialtopurifytropomyosin.

TenmilligramsoftheproteinextractwasloadedonaminiMacro- prepHighQstronganionexchangecolumn,(BioRad,Hercules,CA, USA)in30mMTris–HCl,pH6.5.Tropomyosinwaselutedfromthe columnusingalineargradientwithincreasingsodiumchloridesalt concentrationinTris–HClbufferfrom0.4Mto0.6M,over20col- umnvolumes.ThepurifiedTMfractionswerepooledandabuffer exchangewithphosphatebufferedsaline(PBS)performedusing Amikonspinfilterswitha3kDamolecularweightcut-off(Milli- pore,Billerica,MA,USA).Thetropomyosinfractionsfromthefour crustaceanspeciesweremixedandadjustedtoafinalconcentra- tionof1mg/mLinsterilePBS.

Rabbitimmunization

TheimmunizationofrabbitswasperformedatInstituteofMedi- calandVeterinaryScience(IMVS),Adelaide,Australia.NewZealand rabbitswereinjectedwiththepreparedtropomyosinimmunogen alongwithFreund’sadjuvantinfourdosesattwo-weekintervals.

Thepre-bleedwascollectedatweek0toserveasanegativecontrol.

Atestbleedwascollectedatweek7totesttheproductionofthe antibodiesandthefinalbleedconductedatweek9.Thecollected serumwasstoredat−80Cuntilfurtherprocessing.

EnrichmentandpurificationofpolyclonalIgGanti-tropomyosin antibodies(captureantibodies)

ForthedevelopmentofthesandwichELISA,IgGantibodieswere enrichedfromtherabbitserumusingsodiumsulfateprecipitation.

Sodiumsulfate(Sigma–Aldrich,USA)wasaddedto10mLofserum insmallquantitiesatatime,toafinalconcentrationof18%(w/v).

Theserumwasthencentrifugedat1500×gfor10minatambient temperature,thepelletresuspendedin18%(w/v)sodiumsulfate solution,re-centrifugedandfinallyre-dissolvedin5mLofsterile PBS,pH7.2.TheIgGenrichedserumfractionwassubsequentlydia- lyzedagainstPBSovernightandthenstoredat−80Cuntilfurther use.

TheAminolinkPlusImmobilizationkit(ThermoScientific,Mel- bourne, Australia) was used to preparea tropomyosin affinity

columnfortheisolationandpurificationoftropomyosinspecific IgGantibodiesfromtheIgGenrichedrabbitserumfraction.Thepro- cedurewasfollowedaccordingtothemanufacturer’sinstructions.

Briefly,rTmwascovalentlyboundtothecolumn,theremaining active sites blocked and washed, and equilibrated in PBS, pH 7.2.TheIgGenrichedrabbitserumfractionwasloadedontothe tropomyosinaffinitycolumnandincubatedfor30min.Theanti- tropomyosinIgGantibodyfractionwassubsequentlyelutedusing 0.2M glycine hydrochloride, pH 2.5 and neutralized with 1M Tris–HClpH8.5.Thepurifiedantibodyfractionwasthendialyzed againstPBS,pH7.2andstoredinaliquotswith0.05%sodiumazide at−20Cforfurtheruse.ThisfractionwaslabeledcAb-␣TM.

Biotinylationofdetectionantibodies

Afractionoftheanti-tropomyosinIgGantibodieswerebiotiny- lated using the EZ-Link® Sulfo-NHS-LC-Biotin (Thermo Fischer Scientific, Melbourne, Australia) following the manufacturer’s instructions.A100foldmolarexcessofbiotinwasusedtobiotiny- late theantibodiesfroma freshly prepared10mMbiotinstock solution.Afterbiotinylation,theantibodysolutionwasdialyzed againstPBS,pH7.4toremovetheexcessreactants.Sodiumazide wasaddedtotheantibodysolutiontoafinalconcentrationof0.05%

(w/v)andstoredat4CinambercoloredtubesandlabeleddAb-

␣TM.

Immunoblotting

SerumIgEimmunoblottingwasperformedtotestpatientIgE reactivitytorTmasdescribedpreviously(Abramovitchetal.,2013;

Johnstonetal.,2014).Serawerepooledfromfoursubjectswitha convincingclinicalhistoryofallergicreactivitytoingestedshellfish andconfirmedIgEbindingtonaturalpurifiedprawntropomyosin.

ThesubjectswererecruitedbyTheAlfredHospital,AllergyClinic, Melbourne,Victoria,Australia.

Toanalyzethebindingcharacteristicsofthecaptureantibody tovariousantigenicsources, theseparated proteinsonanSDS- PAGEgelweretransferredtoapolyvinylidenedifluoride(PVDF) membraneusingtheSemi-dryTransBlotApparatus(BioRad,Her- cules,CA,USA).Afterblockingwith1%(w/v)bovineserumalbumin (BSA)inPBS-T,themembranewassubsequentlyincubatedwith the capture antibody, cAb-␣TM, diluted 1:10,000 in 0.5% BSA, PBS-T and goat anti-rabbit IgG antibody conjugated with HRP (Promega,USA)diluted1:40,000.Themembranewasvisualized using the enhanced chemiluminescent technique as previously reported(AbdelRahmanetal.,2011).

Tropomyosinaminoacidsequencealignment

To predict the capture antibody binding characteristics to shellfish tropomyosin, a protein sequence alignment was per- formed to compare vertebrate and invertebrate tropomyosin.

cDNA based protein sequences for tropomyosin were collected fromtheNCBI databasewiththefollowingaccession numbers;

Blacktigerprawn,accessionnumber (AAX37288.1),Blue swim- mer crab(AGE44125.1), Rocklobster(AFY98827.1), Housedust mite (ACI32128.1), German cockroach (AAF72534.1), Cod fish (BAC44994.1) andPigtropomyosin (NP001090952.1).Sequence alignment,matrixidentityscoresandpercentsimilaritywerecal- culatedusingClustalOalgorithminJalviewprogram(Waterhouse etal.,2009).

TheevolutionaryhistorywasinferredusingtheMinimumEvo- lution method.Thetreeis drawnto scale,withbranchlengths inthesameunitsasthoseoftheevolutionarydistancesusedto inferthephylogenetictree.Theevolutionarydistanceswerecom- putedusingthePoissoncorrectionmethodandareintheunitsof thenumberofaminoacidsubstitutionspersite.TheMEtreewas

(6)

searchedusingtheClose-Neighbor-Interchange(CNI)algorithmat asearchlevelof1.Theanalysisinvolved7aminoacidsequences.

Therewereatotalof284positionsinthefinaldataset.Evolutionary analyseswereconductedinMEGA6.

Airsamplingandelutionofaerosolizedallergen,tropomyosin Collection of aerosolized tropomyosin was performed using polytetrafluoroethylene(PTFE)filterswithaporesizeof1.0␮m (Millipore, Billerica, USA). The filter cassette apparatus was attachedtoapump(SKCLtd.,UK)throughatubeandtheairflow adjustedto2.5L/min.Theaverageairflowratethroughthefilter, wascalculatedasthemeanofinitialandfinalairflowatthestart andstopofthepump,respectively.Whereachangeintheairflow fromstarttofinishwasmorethan10%,thesampleswerediscarded.

Theair-collectionapparatuswassetupinabackpackwhichwas carriedbyeachworkerduringtheirnormalshift.Theaircollection inletwasplacedintheworkerspersonalbreathingzone(PBZ)so astosampletheairavailableforbreathing.

ElutionofthecollectedallergenswasperformedusingNunc- ImmunoMinisorp tubes (Nunc, USA) to minimize the loss of allergencontentdue toadsorptiononthetubewalls.The PTFE filterswereremovedfromthecassettesandplacedintubescon- taining1mLofPhosphateBufferedSaline(PBS)with0.5%Tween 20and0.2mMSodiumazide.Theextractionwasperformed,by placingthetubesonarotationtilterfor2hatroomtemperature.

Theeluate wastransferredtoa newMinisorptubeand Bovine SerumAlbumin(BSA)addedtoafinalconcentrationof1mg/mL.

Thiseluatewasthenaliquotedin200␮Lvolumeandstoredinmini Eppendorftubesat−80Cuntilfurtheranalysis.Acleanunused filterwaseluted simultaneouslyusingtheextractionprocedure aboveandregardedasablanksample.

Assayprocedure

Allincubationswereperformedwith100␮L/wellatroomtem- peraturefor1hunlessotherwisestated.Allwashingstepswere performedusingPBSwith0.05%(v/v)Tween20,pH7.2(PBS-T) andrepeatedthreetimesonanEL405Autoplatewasher(BioTek Instruments,Winooski, USA)unlessotherwise stated.A96well highbinding Costar microtitre plate (Sigma–Aldrich, USA) was coatedwithcAb-␣TMdiluted1:500incarbonatebuffer, pH9.6 and incubatedovernightat 4C. Afterwashing, thewells were blockedwith270␮LofPierceSuperblockbuffer(ThermoFischer Scientific,Melbourne,Australia).Nexteitherthestandards,seri- allydilutedfrom10to0.02ng/mL,orthetestairsamplesortest blankswereaddedtothewellsandincubatedfor3h.Afterwash- ing,the detection antibody dAb-␣TM diluted 1:500 in dilution buffer(PBS-Tcontaining1mg/mL BSA)wasaddedtothewells.

Subsequently,thestreptavidin-horseradishperoxidaseconjugate (Sigma–Aldrich,USA)diluted1:10,000indilutionbufferwasadded tothewellsandincubatedfor30min.Thewellswerethenwashed fivetimesandpatteddry.Tovisualizeantibodybinding,100␮Lof 3,3,5,5-tetramethylbenzidinesubstrate(BectonDickinson,USA) wasaddedtothewellsuntilabluecolorationstartedformingin theblankwellsandthereactionstoppedusing1Nhydrochloric acid.Thecolordevelopmentinthewellswasmeasuredat450nm usingaVersamaxMicroplateReader(MolecularDevices,California, USA).

ValidationofsandwichELISA

Linearityofthestandardcurve,calculationoflimitofdetection (LOD)andlimitofquantitation(LOQ)andnon-specificity

The goodness of linearity of the rTm standard curve was assessedusingtheR2valuebasedonafour-parameterlogisticcurve calculatedusing SoftMax Prosoftware v5.2(Molecular Devices,

California,USA).Non-specificbindingoftheassaywasanalyzedby omittingthecaptureantibody,cAb-␣TMorthedetectionantibody, dAb-␣TM.TMlevelsintheaircollectionsampleswerederivedby interpolationoftheabsorbancereadingsoftherTmstandardcurve usingfourparametriclogisticalgorithm.Theaircollectionsamples weredilutedintherangeof1:2–1:80toobtainanabsorbancevalue withinthelinearrangeofthestandardcurve.Theallergenstandard curvewasincludedinevery96wellplateusedtoanalyzethetest samples.

Totestthesensitivityofthisassay,blanksampleswererunin 12separateexperimentsintriplicates.Thelimitofdetection(LOD) wascalculatedasthemeanoftheblanksamplesplusthreetimes thestandarddeviation.Thelimitofquantitation(LOQ)wascalcu- latedasthemeanoftheblanksamplesplustentimesthestandard deviation(Armbrusteretal.,1994).

Spikerecoveryassays

Spikingtestswereperformedtotestthematrixinterference effects of the extractionbuffer and other extraneousair-borne entitiesintheactualairsample.Seventeenrandomair-collection sampleswereselectedwitheitherlowlevelsoftropomyosinor withlevelsbelowtheLOQ,andspikedwithrTm.Anequalvolume oftestsamplesandrTm(spike)weremixedtoafinalconcentra- tionof1ng/mL.Thesespikedsampleswerethenfrozenat−80C overnighttosimulatetheaircollectionsamplepreparationprocess.

Thenextday,thespikedsampleswerethawedtoroomtemper- atureandtestedusingtheimmunoassayasdescribedinSection

“Assayprocedure”.Percentrecovery(%)wasderivedbydividing themeasuredTMconcentrationofthespikedsamplebythesum ofTMconcentrationofun-spikedsampleandthespikeconcentra- tion;[spikedsample(ng/mL)/(un-spikedsample(ng/mL)+Spike, 1ng/mL)]. The recoveryrates of the sample had tofall within 70–110%fortheassaytopass(Lexmondetal.,2011).

PrecisionoftheELISA

TheprecisionofthissandwichELISAwastestedonthebasis ofintra-assayandinter-assayvariability.Air-collectiontestsam- ples with tropomyosin levels below the LOQ were pooled and diluted1:2inextractionbuffertobespiked. Threespikedsam- pleswerepreparedatlow (0.2ng/mL),medium(0.5ng/mL)and high(1.0ng/mL)concentrationsofrTm.For intra-assayvariabil- itytests,9 replicatesweretestedfor each spikeconcentrations (low, medium and high) in one single 96 well plate which includedastandardcurve.Totesttheinter-assayvariability,the 3spikedsamplesweretested insix differentexperimentsover threedaysbytwoindependentoperators.Eachtestsamplewas tested in triplicates and each experiment included a standard curve.For the assaytopass, theco-efficient ofvariation (%CV) ofthereplicateshadtofallwithin20%,forbothintra-assayand inter-assay tests. In addition, the percent recovery had to fall within20%ofthetheoreticalconcentration(Kelleyand DeSilva, 2007).

Statisticalanalysis

TheMann–WhitneyUTestwasusedtocomparetheallergen exposurelevelsineachcategoryofwork-tasks.Apvalueofless than0.05wasconsideredsignificant.Allstatisticalanalysiswas performedusingGraphPadPrismversion6.02(GraphPad,USA).

Results

Characterizationoftheallergenstandard(rTm)

Theallergenstandard,rTmwassuccessfullyexpressedinaBL21 E.coli bacterialexpressionsystemasrepresentedin Fig.1.rTm

(7)

S.D.Kamathetal./InternationalJournalofHygieneandEnvironmentalHealthxxx(2014)xxx–xxx 5

Fig.1.Schematicrepresentationofthemethodologyandsetupusedforthedetectionandquantificationoftheair-borneshellfishallergentropomyosin.

Fig.2.Characterizationoftheimmunoassayallergenstandard,recombinanttropomyosin,rTm.(A)ProteinpurificationprofileofrTmusingsizeexclusionchromatography.

(B)SDS-PAGEanalysisofthevariouspurificationstagesoftheallergenstandardusingnickelaffinity(IMAC),sizeexclusionchromatography(SEC)andIgEimmunoblotting analysisofrTmusingpooledpatientsera.(C)Threedimensionalhomologymodelofcrustaceantropomyosinindimericform.(D)Comparisonofalpha-helicalcontentof allergenstandard,rTm(green)andnaturaltropomyosin,nTM(orange)usingCDspectroscopy.(Forinterpretationofthereferencestocolorintext,thereaderisreferredto thewebversionofthisarticle.)

(8)

wasexpressedasafusionproteinwitha6XHistidine-tagatthe N-terminal end of the proteinto facilitate purification.Affinity chromatographywasperformedtopurifyrTmfromthecrudebac- teriallysate.However,severaladditionalbandscouldbeobserved in theaffinity purified fraction(Fig.2A).Therefore, size exclu- sion chromatography (SEC) was subsequently performed as an additionalpurificationstep.Thefinalproductwasvisibleasasin- glebandofapproximately40kDa.Todemonstrateimmunological reactivity,immunoblottingexperimentswereperformed(Fig.2B).

ImmunoblottingwithpatientseraconfirmedIgEantibodyreactiv- ityandthustheallergenicityofrTm.Proteinhomologymodeling of theallergen tropomyosin representsits highlystable alpha- helicalstructureandthefavorableformationofahomo-dimeric state(Fig.2C).

CDspectroscopicanalysisofrTmandnaturaltropomyosinwas performed,toconfirmappropriateproteinfoldingand structure oftherecombinantproteinanditssubsequentuseasanallergen standard(Fig.2D).Adistinctnegativesignalat208and222nmis typicalforanalphahelicalprotein.Thiswasalsoobservedforthe rTmascomparedtothepurifiednaturaltropomyosin.TheCDspec- trumforrTmwasalmostidenticaltothatofnaturaltropomyosin.

Bindingpropertiesofthecaptureantibody

Thepolyclonalanti-tropomyosinantibody,cAb-␣TMwassuc- cessfullyisolatedfromtheIgGenrichedfractionoftheimmunized rabbitserumasshowninFig.1.Immunoblottingdemonstratedspe- cificbindingofcAb-␣TMtoa37kDabandfromprawncrudeextract (Fig.3A).Specificantibodyreactivitytotropomyosinwasconfirmed withstrongbindingtorTm(Fig.3B).Moreover,antibodyreactiv- itywasobservedtothedimericformoftropomyosinformedat 75kDa.TheantibodybindingcharacteristicsofcAb-␣TMwasana- lyzedagainstvariousantigenicsources.cAb-␣TMshowedstrong bindingtotropomyosinfromthecrustaceansanalyzed;crab,prawn andlobster.Ontheotherhand,nobindingwasobservedtoextracts fromfish,chickenandE.coli(Fig.3C).Interestingly,antibodybind- ingwasobserved totropomyosin fromhousedustmite extract at37kDaregion.Thus,antibodyspecificitywasdemonstratedto invertebratetropomyosin.

Selective antibody binding to crustacean tropomyosin may beattributedto moleculardifferences inthe primary structure of tropomyosin among vertebrates and invertebrates (Fig. 4A).

Thecompared crustaceantropomyosinwasat least94%identi- calamong each other.However, when compared tovertebrate tropomyosin,themaximumpercentidentitywasonly58%(Fig.4B).

Cockroachandhousedustmitetropomyosin,bothofwhichhave beencharacterizedasallergens,werecloselyrelatedtocrustacean tropomyosinwith79–82%sequenceidentity(Fig.4BandC).

Linearityofallergenstandardcurve

AtenpointserialdilutioncurveofrTmwasusedintherange of0.02–10ng/mLconcentration,dilutedusingairsampleextrac- tionbuffer. Astandard curvewasgenerated usingtheabsolute allergenconcentrationsinng/mLanditscorrespondingabsorbance valuesmeasuredat450nmusingafour-parameterlogisticregres- sionalgorithm. Errorbarsrepresentthestandarddeviation.The goodnessoffit(R2)was0.998averagedfromsixindividualexper- iments(n=6)(Fig.5A).Thelinearregionofthestandardcurve, 0.02–1.25ng/mLwasusedforthequantificationoftropomyosin intheaircollectionsamples.

Toquantifytropomyosinintheaircollectionsamplestheyhad tobedilutedfromatleast1/2to1/80tobringtheabsorbanceval- ueswithinthelinearrangeofthestandardcurve.Thisallowedfor accuratemeasurementofsampleswithveryhighorlowallergen content.UseofhigherconcentrationsofrTm,beyond2.5ng/mL,

Table1

MatrixinterferenceandspikerecoveryanalysisoftheTmsandwichELISA.Spike recoveryassaywasperformedon17randomaircollectionsamplesbyspikingwith 0.5ng/mLofrTmstandard.%recoverywascalculatedbycomparingthetheoreti- calconcentrationanddetectedconcentrationofrTminng/mL.Meanrecoverywas calculatedas78.8±6.5%.

Sampleno. Unspiked air-collection samples

Spikedsamples withrTm (0.5ng/mL)

Recoveryof spikeTm

Tm(ng/mL) Tm(ng/mL) Percent(%)

1 <LOQ 0.36 71.0

2 <LOQ 0.39 78.0

3 <LOQ 0.40 80.0

4 <LOQ 0.34 67.6

5 <LOQ 0.43 86.0

6 <LOQ 0.41 81.2

7 <LOQ 0.36 71.6

8 <LOQ 0.40 79.0

9 <LOQ 0.34 68.4

10 <LOQ 0.46 91.8

11 <LOQ 0.40 79.4

12 0.69 0.94 78.9

13 0.31 0.64 79.6

14 0.36 0.71 83.2

15 0.89 1.24 89.2

16 0.29 0.60 76.2

17 0.49 0.78 79.0

did not result in a proportional increase in the absorbance values(Fig.5B).Thelimitofdetection(LOD)wascalculatedtobe 60pg/mLandthelimitofquantitation(LOQ)wasdeterminedtobe 100pg/mL.

Assayspecificity

Theaccuracyofanimmunoassaydependsontheabsenceof non-specificantibodybinding.Thiscanbeattributedtospecific non-specificbindingandnon-specific,non-specificbinding(Kelley andDeSilva,2007).WetestedcAb-␣TMforspecific,non-specific bindingandasshowninFig.3nobindingwasobservedtoanyother proteinbuttropomyosin.Subsequently,weperformedtheassay withtheentirestandardcurvebyomittingthecaptureantibody, cAb-␣TMorthedetectionantibody.Thisconfirmedthespecificity ofthisassaytorTmwithabsenceofnon-specificbindingtoother reagents,sinceacompletelossofsignalwasobserved(Fig.5A).

Finally,weperformedthespikerecoverytesttoanalyzetheinter- ferencefromnon-relatedmatrixagentspresentintheair-borne particulatemattercollectedintheairsamples(Table1).Resultsare shownaspercentrecoveryoftherTmspike(0.5ng/mL)inblank samplesand test sampleswithtropomyosin contentbelowthe assayLOQ.Themeanrecoveryofthespikewascalculatedtobe 78.8±6.5%whichpassedourpre-setcriteria(KelleyandDeSilva, 2007;Leeetal.,2006;LeeandHall,2009).Moreover,therewere nocasesofpositiveinterferenceamongcontrolsamples.Twoof17 sampleshadarecoverybelow70%suggestingpossibleinterference withthesamplematrix.

Intra-assayandinter-assayvariability

Intra-andinter-assayvariabilitytestswereconductedtotestthe precisionandaccuracyoftheassay(Table2).Variabilitywastested forlow,mediumandhighconcentrationoftropomyosin(Fig.5C).

Themeanrecoveriesofthesampleswereover70%andtheco- efficientofvariationwas<20%forallthreeconcentrationsofrTm tested.Thisdataareinconcordancewiththeacceptancecriteria forassayvalidation(KelleyandDeSilva,2007;Leeetal.,2006;Lee andHall,2009).

(9)

S.D.Kamathetal./InternationalJournalofHygieneandEnvironmentalHealthxxx(2014)xxx–xxx 7

Fig.3.Bindingcharacteristicsofpolyclonalrabbitanti-tropomyosinIgGantibody.(A)Antibodybindingpatternsofvariousstagesofrabbitantibodypurificationagainst prawnproteinextract.(B)SDS-PAGEandimmunoblottingoftheallergenstandardrTmusingcAb-␣TMantibody.(C)SpecificantibodybindingofcAb-␣TMagainstdifferent proteinextractsofinvertebrateandvertebratespecies.

Analysisofairsamplesfromcrabprocessingfactory

Air-samplesweretested fromthePBZsofworkersfromtwo differentprocessingactivities;kingcrabandediblecrab(Table3).

Theaverageairvolumesampledwas1095±118Land830±371L forediblecrabandkingcrabprocessing,respectively.Theamount ofair-bornetropomyosinandexposurepatternsdifferedamong thetwoprocessingplants(Fig.6).Tropomyosininthekingcrab plantmeasuredintherangeof0.15–75.89ng/m3 whereasinthe ediblecrab,itwas0.42–138ng/m3.

Intheedible crabprocessing,highest tropomyosin exposure wasdemonstrated for workers handlingboiledmeat and spin- celler(separatorofmeatfromboiledcrab).Thelowestexposure

was in the scanning process, freezer and raw crab handling area.Thetropomyosinexposureconcentrationsvariedsignificantly among workersinthehighexposureactivities,handlingboiled crab.

Kingcrabprocessing wasperformedin batchesinterspersed withfishprocessing,duetotheseasonalavailabilityofthecrab.

Thehighesttropomyosinconcentrationswereidentifiedforpro- cessessuchascleaning,crackingandcrabdegilling.Amongworkers sharingworktasks betweencrabandfishprocessing,moderate concentrationsoftropomyosinexposurewasobserved.Locations and taskssuchastruck driving,fishpacking,receivingstations and fishgutting didnotshow anysignificantconcentrationsof air-bornetropomyosin.

Table2

Assayprecisionoftheimmunoassay.Intra-andInter-assayvariabilityoftheassaywastestedusing0.2ng/mL,0.5ng/mLand1ng/mLofrTmaslow,mediumandhighantigen concentrations,respectively.Theassayvariabilityisshownintermsofthecalculatedmeanconcentration,standarddeviationandpercentageofthecoefficientofvariation.

RecoveryoftherTmconcentrationswerecalculatedasapercentageoftheratioofcalculatedversustheoreticalconcentrations.Numberofreplicates;n=9(intra-assay)and n=6(inter-assay).

rTm(ng/mL) Mean(ng/mL) Standarddeviation,SD Coefficientofvariation,CV(%) Recovery(%)

Intra-assayvariability

0.2 0.14 0.013 9 70.5

0.5 0.40 0.025 6.3 79.8

1.0 0.76 0.074 9.8 76.4

Inter-assayvariability

0.2 0.16 0.018 11.0 80.0

0.5 0.41 0.043 10.4 82.0

1.0 0.81 0.074 9.1 81.0

(10)

Fig.4.Comparisonofinvertebratetropomyosinprimarystructure.(A)Aminoacidsequencealignment,forvisualcomparisonofprimarystructuresimilarityofinvertebrate andvertebratetropomyosins.Accessionnumber(Genbanknucleotidesequencedatabase)Prawn,Penaeusmonodon,accessionnumber(AAX37288.1);Crab,Portunuspelagicus (BAF47266.1);Lobster,Jasuslalandii(AFY98827.1);Housedustmite,Dermatophagoidespteronyssinus(ACI32128.1);Cockroach,Blatellagermanica,(AAF72534.1);Fish,Gadus chalcogrammus(BAC44994.1);andPig,Susscrofatropomyosin(NP001090952.1).Thecoloredshadingintensityindicatespercentidentity.(B)Tropomyosinaminoacid sequenceidentitytablecalculatedusingClustalOmega.(C)Phylogenetictreeofinvertebratetropomyosininferredusingtheminimumevolutionmethod.

Discussion

Frequentoccurrencesofallergicreactionsamongseafoodwork- ersduetoair-borneallergenexposurehavebeenreported(Lopata andJeebhay,2013).Occupationalasthmahasbeencommonlyasso- ciatedwithshellfishprocessingandpreviousstudieshaveshowna prevalenceofupto36%(JeebhayandCartier,2010).Astrongcor- relationbetweenthehighair-borneallergenconcentrationsand developmentofallergenicsensitizationandasthmahasbeensug- gested(Brisman,2002;JeebhayandCartier,2010).Anumberof tasksintheshellfishprocessingworkplaceputtheworkersata greaterriskofexposureandconsequentsensitizationtoshellfish

allergens(Cartier,2010;LopataandJeebhay,2013).Currently,there isa lackof standardized,validated methodsfor monitoringthe allergenconcentrationsinbioaerosolsproducedduringshellfish processing.

Theaimofthisstudywastodevelopandvalidateasensitive antibody-basedimmunoassayforthedetectionandquantification oftheshellfishallergentropomyosininbioaerosolsproduceddur- ingcrabprocessing.

Traditionally, serum IgE antibodies from shellfish-sensitized individuals have been used to detect air-borne allergens, using an inhibition ELISA setup (Malo et al., 1997; Weytjens et al., 1999). This approach is useful for quantifying air-borne

(11)

S.D.Kamathetal./InternationalJournalofHygieneandEnvironmentalHealthxxx(2014)xxx–xxx 9

Fig.5.Standardcurvefortheallergenstandard,recombinanttropomyosin(rTm).(A)A10pointserialdilutioncurvefrom10to0.02ng/mL,errorbarsindicatethestandard deviationofeachdilutionoversixindividualexperiments.(B)Assayreproducibilityandspecificity:TestAandBindicatethestandardcurvesfromtwoseparateexperiments.

“䊉”and“X”indicateomissionofthecaptureordetectionantibodiesrespectivelytoanalyzenon-specificbindingpropertiesoftheimmunoassay.(C)Inter-assayvariability testusingrTmspikedsamplesatthreedifferentconcentrations;0.2,0.5and1.0ng/mL(n=6).

IgE-reactiveallergens,withtheassayhavingasensitivedetection limit of 1ng/mL. However,the majordisadvantage ofIgE anti- bodies istheirlow titerand difficultyindeveloping a standard assaymodelduetovariedantibodyreactivityindifferentpatient sera.

ELISAbasedimmunoassayshavebeenpreviouslyappliedfor thedetectionoftropomyosininfoodmatrices,usingmonoclonal orpolyclonalantibodybasedplatforms(Jeoungetal.,1997;Seiki etal.,2007;Werneretal.,2007).However,theassaysensitivity, precisionandmatrixinterferencelevelsvariedlargelyamongthe differentassays.Monoclonalantibodybasedassayshavetheadvan- tageofhighspecificityandlackoffalse-positiveresultsinallergen detection(Lopataetal.,2002,2005).Nevertheless,anymodifica- tionsorchangesintheconformationofthemAb-epitopeonthe allergenic protein maylead to lossof binding. Polyclonal anti- bodybasedassaysontheotherhand,canbindtotheallergensat

multipleepitopes,thusminimizingtheriskofproteinconforma- tionalchangesaffectingthebindingtotheallergen.

Inthepresentstudy,wehaveemployedamodifiedapproachfor developingahighlysensitiveimmunoassayforthequantification ofaerosolizedcrustaceanallergens.Oneoftheinitialhurdleswasto developapolyclonalantibodybasedassaywithhighspecificityand minimizedunspecificbinding.Naturaltropomyosinspurifiedfrom fourdifferentcrustaceanspecieswereusedforthegenerationof polyclonalrabbitantibodies.Thisincreasedthebindingcapacityof theantibodytotropomyosinswithanaminoacidsequencevaria- tionofover95%.Moreover,arecombinantcrustaceantropomyosin ofhighpuritywasusedasthestationaryphaseforaffinitypurifica- tionoftropomyosin-specificIgGantibodiesfromtherabbitserum.

Theresultantfinalantibodyfractiondemonstratedhighspecificity tocrustaceantropomyosinwithnonon-specificbindingtoother homologousproteinsasshowninourvalidationtests.

Table3

Exposuretoair-borneallergentropomyosinamongworkersincrab-processingworkplaceaccordingtospecifictasksperformed.

Designation Taskfunction Numberofsamples Allergenexposure pValue*

Median(ng/m3) Range(ng/m3)

A Handlingboiledmeat 9 61.4 21.95–138.8 <0.0001

B Crabcracking 22 23.48 <LOQ-75.89 <0.0001

Gutting

Rawmeathandling Cutting

Cleaning

C Receivingstation 17 1.11 <LOQ-71.92 <0.0016

Scanning Sorting Packing

D Transport/logistics 27 0.25 <LOQ-6.74

Fish-relatedtasks

*PvalueswerecalculatedusingtheMann–WhitneyUtestincomparisontocategoryD.

(12)

Fig.6. Allergenexposuretocrabprocessingworkersinvolvedinvarioustasksand locations.Allergenexposuretoworkersprocessingediblecrabsisdisplayedasblue dotsandkingcrabsinreddots.Themeanexposureforeachtaskcategoryisshown asahorizontallineinblueandredforediblecrabandkingcrab,respectively.Tasks:

(A)Handlingboiledmeat,(B)crabcracking,gutting,rawmeat,cuttingandcleaning, (C)crabreceivingstation,handling,scanning,sortingandpacking,and(D)logistics andfish-relatedtasks.(Forinterpretationofthereferencestocolorintext,thereader isreferredtothewebversionofthisarticle.)

Interestingly,thecaptureantibodywasabletorecognizehouse dustmitetropomyosin,duetothelatter’shighpercentidentityto crustaceantropomyosin.Thishowevermaynotsignificantlyaffect thequantificationofcrabtropomyosininawetprocessingenviron- ment.Previousstudieshaveshownthatdustmitescontainverylow amountsoftropomyosin(Arlianetal.,2009).Moreover,ithasbeen shownthattropomyosinmaynotbethemainallergeninvolvedin seafood-mitesensitization(Boqueteetal.,2011).

Toimprovetheassayspecificity,recombinanttropomyosinwas usedasanallergenstandardintheassaytoquantifytheamountof tropomyosininthesamples.Theadvantageofusingarecombinant protein as a standard is the unlimited availability and consis- tentperformanceasopposed tothenatural sourcewhichoften demonstratesbatchtobatchvariations.Previousstudiesonaller- gendetection have developed assays withsensitivities ranging from1ng/m3to105ng/m3(Lopataetal.,2005;Maloetal.,1997).

Theimmunoassaydevelopedinthisstudywasabletoachievean allergendetectionlimitof60pg/m3.However,assayswithhigher sensitivity(10pg/m3)havebeendevelopedformouseorraturinary allergens(Renstrometal.,2002).

Themainparametersofperformanceoftheassaywereestab- lished by our in-house validation. Spike recovery tests were performedto test the matrix interferenceeffects and recorded as79%.Whiletheoutcomefellwithintheacceptancecriteria,it highlightedtheeffectsofmatrixcomponentsonallergen–antibody binding.Thisinterferenceseemstoresultmainlyfromtheextrac- tionbufferusedtoelutetheallergensfromairsamplingfilters.

Theperformanceoftheallergenstandardcurvewastestedinthe presenceandabsenceofthebufferandshowedamarkedeffecton theabsorbancevaluesoftheallergenstandard(datanotshown).

Therefore, tomaintainsimilarlevelsof matrix effects fromthe bufferonthetestsamplesaswellasthestandards,thelaterwas dilutedusingthesameextractionbufferasforthesampleanaly- sis.Theaccuracyandprecision(reproducibility)oftheassaywas testedusinginter-assayandintra-assayvariabilitytests.Boththe testsmettheacceptancecriteriaoffallingwithin20%co-efficientof variation.

Thisdeveloped immunoassaywasutilizedtoassessthecon- centrationsofaerosolizedtropomyosinintwodifferentprocessing activities; edible crab and king crab. In general, the levels of bioaerosolsand subsequently the air-borneallergen concentra- tionsaredependentonvariablessuchasthekindofseafoodbeing processed,amount of seafood beingprocessed, size of thefac- tory,layoutofprocessingequipmentandlocationsofventilation

system.Thesevariablesvarywithdifferentlocationsanddifferent seasonsofseafoodprocessing.Forexample,inthisstudy,someking crabprocessingfactoriesweremainlyinvolvedinfishprocessing andonlytemporarilyconvertedtocrabprocessing,dependingon theavailability and fishing season.Due tothis, a small lineof crabprocessingassembly wasplacedinrelativelylargeproduc- tionroomswhereventilationmaynothavebeenoptimalnearthe processingactivity.Someoftheediblecrabprocessingactivities involvedcookingthecrabs.Thiswasperformedindefinedloca- tionsorseparateroomswithpointventilations.Althoughmeasures weretakentolimittheexposuretothefumesfromthecooking vats,manyworkersnotinvolvedinthecookingactivitiesweresta- tionedclosebyandwereexposedtothefumes.Theediblecrab processingfacilitywasdesignedspecificallyforcrabproduction anditinvolvedworkersstandingclosetogetheronaprocessing line.Inthekingcrabfactories,thelargerroomsandfewerworkers involvedinprocessingandmoremanuallabormightaccountfor someofthedifferencesinallergenconcentrationsintheairsamples ascomparedtotheediblecrabfactory.

Several shellfish allergens have been identified and charac- terizedincommonlyconsumed shellfishspecies (Kamathetal., 2013,2014;Lopataetal.,2010).Tropomyosin,howeveristhemost abundantandheat-stableinvertebrateallergencapableofinduc- ingallergic sensitization.In this study,thehighestexposureto tropomyosinwasdemonstratedduringheatingandboilingpro- cesses as shown previously (Malo et al., 1997).Recent studies haveshowntheabilityofnaturalorheatgeneratedtropomyosin fragmentstoelicitIgEreactivity.Moreover,enhancedIgEreactiv- ityoftropomyosinafterheatingwasdemonstrated(Abramovitch etal., 2013;Kamathetal., 2013).Thisis ofclinicalimportance sincetheheatingprocessesdonotonlyincreasetheaerosolization ofallergensbutcanalsoexacerbatetheIgEsensitizationamong affectedworkers.Fromthedetectionpoint-of-view,itisanadvan- tagetoemployapolyclonalantibodybasedassay,sincemonoclonal basedassaysmaynotbeabletodetecttheseallergenfragments aerosolizedduringtheheatingorboilingprocesses(Kamathetal., 2013).Theimportanceofallergenfragmentsisparticularlyimpor- tantinthecaseoftropomyosin,aseightIgEbindingepitopeshave beendiscoveredspanningitsentirelengthofthealpha-helicalsec- ondarystructure(Kamathetal.,2013;Lopataetal.,2010;Reese etal., 2005).Thismaydramaticallyincrease possibleIgEcross- linkinginsensitizedindividualsduetoexposuretotropomyosin fragments.

Insummary,wehavedevelopedandvalidatedahighlysensi- tiveassayforair-bornetropomyosindetection.Usingthisassay, wewereabletoquantifytropomyosininthePBZofworkersper- formingdifferentworkactivitiesincrabprocessingfactories.High concentrationsoftropomyosin weredetectedmainlyin boiling, heating and de-gilling stations. Thedeveloped immunoassay is currentlyemployedformonitoringallergenexposureindifferent crabprocessingfactoriesaspartofabiggerwork-safetystudyin Norway.The methodologicalapproach usedfor developing this assayoffersopportunitiestootherfoodindustriestomonitorair- borneallergens,soastoimprovework-safetyand occupational health.

Acknowledgements

This study received financial support from the Norwegian Asthma and AllergyAssociation witha grant from the Norwe- gianExtraFoundationforHealthandRehabilitationthroughEXTRA funds.ALisholderofAustralianResearchCouncil–FutureFellow- ship.PatientserawerekindlyprovidedbyRobynE.O’Hehirand Jennifer Rolland, The Alfred Hospital, Prahran, Melbourne, VIC, Australia.

Referanser

RELATERTE DOKUMENTER

Kamchatka crab (Paralithodes camtschatica) and the Atlantic Canadian snow crab (Chionoecetes) stocks are apparently in a phase of expansion with effort, catch, and CPUE increasing

The percentage of snow crab [weight (g), of total stomach contents consisting of snow crab] weighted by length-based biomass illus- trates that most of the snow crab is found

Main patterns in functional features and sediment reworking in soft bottom species communities in the Varanger area in relation to gradients in time (king crab invasion) and

tistics for edible crab for the two northernmost zones, most likely due to scarce occurrences of the species. camtschaticus) has increased in Norwegian waters through the same

To determine the electrical parameters required for stunning edible crabs, one crab at the time was placed in between the electrodes and exposed to 110-220 V 50 Hz AC for 1, 5 and 10

Processing yield, moisture, protein, and ash content, pH, total volatile basic nitrogen (TVB-N), and color param- eters (L*, a*, b*, ΔE* cooked , ΔE* cooked+P ) of the meat

Both crabs (red king crab and the snow crab) are non-indigenous animals for the Barents Sea, playing quite important role in ecosystem and fishery. Brief history of crab

The objectives were to describe the distribution and abundance of larvae of the edible crab in the English Channel, to assess if crab spawning grounds in the Channel are