• No results found

suppl-acp-12-10033-2012.pdf (231.8Kb)

N/A
N/A
Protected

Academic year: 2022

Share "suppl-acp-12-10033-2012.pdf (231.8Kb)"

Copied!
7
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

1995 2000 2005 2010 year

0 100 200 300 400 500 600 700

HCFC−22 emissions (Gg/year)

1995 2000 2005 2010

year 0

100 200 300 400 500 600 700

HCFC−22 emissions (Gg/year)

optimized emissions (this study) polynomial fit prior (this study)

"raw" prior (this study)

bank emissions estimate (IPCC/TEAP, 2005; UNEP, 2007)

"bottom−up" emissions estimate (UNEP/TEAP, 2006) AGAGE 12−box model emissions estimate (this study) 1−box model emissions estimate (Montzka et al., 2009)

Fig. S1. Global total HCFC-22 emissions derived using measurements including pollution

events. Prior emission estimates using EDGAR v4, the growth rate between 1990 - 2000

(McCulloch et al., 2003), and HCFC-22 consumption between 2001 - 2009 (UNEP, 2011) are

shown in diamonds. Polynomial fit of these “raw” prior values that we used in our global inver-

sion are shown as a red line with a shaded (pink) 40% uncertainty range. Optimized emissions

from this study are shown in blue with our calculated posterior uncertainty. Previously published

bank emission estimates (blue crosses) (IPCC/TEAP, 2005; UNEP, 2007), “bottom-up” emis-

sion estimates (green stars) (UNEP/TEAP, 2006), 1-box model emission estimates (Montzka

(2)

CGO

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

CGO

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

CMN

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

CMN

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

CPI

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

CPI

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

GSN

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

GSN

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

MHD

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

MHD

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

RPB

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

RPB

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

Fig. S2a. Monthly atmospheric mole fractions: measurements (black solid lines with standard

deviations), and MOZART v4 model results using prior emissions (red dash lines) and opti-

(3)

SMO

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

SMO

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

THD

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

THD

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

ZEP

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

ZEP

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

HAT

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

HAT

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

OCI

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

OCI

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

SDZ

2005 2006 2007 2008 2009 2010

150 200 250 300 350 400

ppt

SDZ

2005 2006 2007 2008 2009 2010

150 200 250 300 350 400

ppt

Fig. S2b. Monthly atmospheric mole fractions: measurements (black solid lines with stan-

dard deviations), and MOZART v4 model results using prior emissions (red dash lines) and

(4)

ALT

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

ALT

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

BRW

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

BRW

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

LEF

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

LEF

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

NWR

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

NWR

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

KUM

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

KUM

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

MLO

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

MLO

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

Fig. S2c. Monthly atmospheric mole fractions: measurements (black solid lines with standard

deviations), and MOZART v4 model results using prior emissions (red dash lines) and opti-

(5)

PSA

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

PSA

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

HFM

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

HFM

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

SUM

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

SUM

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

AMT

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

AMT

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

BAO

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

BAO

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

SCT

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

SCT

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

Fig. S2d. Monthly atmospheric mole fractions: measurements (black solid lines with stan-

dard deviations), and MOZART v4 model results using prior emissions (red dash lines) and

(6)

STR

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

STR

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

WBI

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

WBI

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

WGC

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

WGC

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

WKT

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

WKT

2005 2006 2007 2008 2009 2010

160 180 200 220 240 260 280 300

ppt

Fig. S2e. Monthly atmospheric mole fractions: measurements (black solid lines with stan-

dard deviations), and MOZART v4 model results using prior emissions (red dash lines) and

optimized emissions (blue dash lines).

(7)

Table S1. Root-mean-square deviations of the differences between measurements and mod- eled mixing ratios. The first column shows the model results using prior emissions and the second column shows the same with posterior emissions.

Station prior mixing ratio RMSD posterior mixing ratio RMSD Global inversion

CGO 80.4 30.7

MHD 151.9 39.2

RPB 68.6 24.5

SMO 88.5 24.0

THD 101.5 22.2

ZEP 112.5 20.6

Regional inversion

CGO 104.1 10.6

CMN 203.8 50.7

CPI 129.7 20.1

GSN 136.2 90.7

MHD 160.9 15.6

RPB 125.8 22.8

SMO 106.1 12.8

THD 157.2 22.7

ZEP 158.1 15.2

HAT 167.8 48.7

OCH 205.4 49.3

SDZ 316.4 414.0

ALT 159.3 15.4

BRW 159.6 15.9

LEF 175.8 37.0

NWR 188.1 42.0

KUM 174.4 32.1

MLO 83.4 9.74

PSA 255.0 135.6

HFM 143.7 15.9

SUM 84.0 11.3

AMT 91.8 39.1

BAO 145.0 16.4

SCT 96.0 36.0

STR 105.0 89.7

WBI 153.9 31.6

WGC 71.5 96.2

Referanser

RELATERTE DOKUMENTER

The enhancements of observations and model simulations are evaluated as difference of the measurements / model simulations and the background mole fractions, (1) integrated over

Note that in these maps POA in- cludes both all anthropogenic POA (including residential wood combustion) and POA from vegetation fires. SOA SI all includes SOA formed from

Bottom: Scaled ATOFMS mass concentration for ECbiomass (assuming a particle density of 1.3 g cm -3 ) compared with hourly average modelled aethalometer BC bb

The black crosses connected by dashed lines correspond to experimental data, while the filled symbols connected by solid lines correspond to calculated results based on the

measurements corresponding to the in situ data points were sampled along the flight

Figure S2: Posterior simulated HFC-134a mole fractions (color lines) overlaid over observations (thick grey line) at the three sites Jungfraujoch, Mace Head and Monte Cimone...

Using reasonable prior estimates of global annual HCFC- 22 emissions and the three-dimensional chemical transport model, Model for Ozone and Related Chemical Tracers ver- sion 4

Kernel weighted total columns of CO (10 18 molec cm -2 ) as retrieved from the IASI satellite instrument (left), and as modelled with WRF-Chem using FINN (middle) and GFED