• No results found

A complexity dichotomy for critical values of the b-chromatic number of graphs

N/A
N/A
Protected

Academic year: 2022

Share "A complexity dichotomy for critical values of the b-chromatic number of graphs"

Copied!
15
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

Contents lists available atScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

A complexity dichotomy for critical values of the b-chromatic number of graphs

Lars Jaffke

∗,1

, Paloma T. Lima

∗,2

DepartmentofInformatics,UniversityofBergen,Bergen,Norway

a rt i c l e i n f o a b s t ra c t

Articlehistory:

Received12July2019

Receivedinrevisedform30January2020 Accepted8February2020

Availableonline12February2020 CommunicatedbyL.M.Kirousis

Keywords:

b-coloring b-chromaticnumber Complexitydichotomy

Ab-coloringofagraph G isaproper coloringofitsverticessuch thateachcolorclass contains a vertex that has at least one neighbor in all the other color classes. The b-Coloring problem asks whether a graph G has a b-coloring with k colors. The b- chromaticnumberofagraphG,denotedby

χ

b(G),isthemaximumnumberksuchthatG admitsab-coloringwithkcolors.Weconsiderthecomplexityoftheb-Coloringproblem, wheneverthevalue ofkis closetooneoftwo upperbounds on

χ

b(G):The maximum degree (G) plus one, and the m-degree, denoted by m(G), which is defined as the maximum number i such that G has i vertices ofdegree at least i1. We obtaina dichotomyresultforallfixedk∈Nwhenkisclosetooneofthetwoabovementioned upperbounds.Concretely,weshow thatifk∈ {(G)+1p,m(G)p},theproblemis polynomial-time solvable whenever p∈ {0,1} and,even when k=3,it is NP-complete whenever p2.We furthermoreconsiderparameterizationsoftheb-Coloringproblem thatinvolvethemaximumdegree(G)oftheinputgraphGandgivetwoFPT-algorithms.

First, weshow that deciding whether agraph G has ab-coloring with m(G) colors is FPTparameterizedby(G).Second,weshowthatb-ColoringisFPTparameterizedby (G)+k(G),wherek(G)denotesthenumberofverticesofdegreeatleastk.

©2020TheAuthor(s).PublishedbyElsevierB.V.Thisisanopenaccessarticleunderthe CCBYlicense(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Givenasetofcolors,apropercoloringofagraphisan assignmentofacolortoeach ofits verticesinsuch awaythat no pairofadjacentverticesreceivethesamecolor.InthedeeplystudiedGraphColoringproblem,we aregivenagraph andthequestionistodeterminethesmallestsetofcolorswithwhichwecanproperlycolortheinputgraph.Thisproblem isamongKarp’sfamouslistof21NP-completeproblems [16] andsinceitoftenarisesinpractice,heuristicstosolveitare deployed inawiderangeofapplications.Averynaturalsuchheuristicisthefollowing.Wegreedilyfindapropercoloring ofthegraph,andthentrytosuppressanyofitscolorsinthefollowingway:saywewanttosuppresscolorc.Ifthereisa vertex v that hasreceivedcolorc,andthereis anothercolorc

=

c that doesnot appearintheneighborhoodof v,then wecansafelyrecolorthevertexv withcolorc withoutmakingthecoloringimproper.Weterminatethisprocessoncewe cannotsuppressanycoloranymore.

*

Correspondingauthors.

E-mailaddresses:lars.jaffke@uib.no(L. Jaffke),paloma.lima@uib.no(P.T. Lima).

1 SupportedbytheBergenResearchFoundation(BFS).

2 SupportedbyResearchCouncilofNorwayviatheproject“CLASSIS”,grantnumber249994.

https://doi.org/10.1016/j.tcs.2020.02.007

0304-3975/©2020TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

(2)

Topredicttheworst-casebehavioroftheaboveheuristic,IrvingandManlovedefinedthenotionsofab-coloring andthe b-chromaticnumberofagraph [14].Ab-coloringofagraphG isapropercoloringsuch thatineverycolorclassthereisa vertexthathasaneighborinalloftheremainingcolorclasses,andtheb-chromaticnumberofG,denotedby

χ

b

(

G

)

,isthe maximumintegerksuchthatGadmitsab-coloringwithkcolors.Weobservethatinab-coloringwithkcolors,thereisno colorthatcanbesuppressedtoobtainapropercoloringwithk

1 colors,hence

χ

b

(

G

)

describestheworst-casebehavior ofthe previously described heuristic on thegraph G.We consider thefollowing two computational problemsassociated withb-coloringsofgraphs.

Input: GraphG,integerk

Question: DoesGadmitab-coloringwithkcolors?

b-Coloring

Input: GraphG,integerk Question: Is

χ

b

(

G

)

k?

b-Chromatic Number

Wewouldliketopointoutanimportantdistinctionfromthe‘standard’notionofpropercolorings ofgraphs:IfagraphG hasab-coloringwithkcolors,thenthisimpliesthat

χ

b

(

G

)

k.However,if

χ

b

(

G

)

kthenwecaningeneralnotconclude that G hasa b-coloringwithk colors. Agraphforwhich thelatter implicationholdsaswell is calledb-continuous.This notionismostlyofstructuralinterest,sincetheproblemofdeterminingifagraphisb-continuous isNP-completeevenif anoptimalpropercoloringandab-coloringwith

χ

b

(

G

)

colorsaregiven [2].

Besides observing that

χ

b

(

G

)(

G

) +

1 where

(

G

)

denotes the maximum degree of G, Irving andManlove [14]

defined the m-degree of G as the largest integer i such that G has i vertices of degree at least i

1. It follows that

χ

b

(

G

)

m

(

G

)

;observealsothatm

(

G

)(

G

) +

1.Sincethedefinitionoftheb-chromaticnumberoriginatedintheanalysis oftheworst-casebehaviorofgraphcoloringheuristics,graphswhoseb-chromaticnumberstakeoncriticalvalues,i.e.values that are close to theseupper bounds, are of special interest. In particular, identifying them can be helpful instructural investigationsconcerningtheperformanceofgraphcoloringheuristics.

Intermsofcomputationalcomplexity,IrvingandManloveshowedthatbothb-Coloringandb-ChromaticNumberare NP-complete [14] andSampaioobservedthat b-ColoringisNP-completeevenforeveryfixed integerk

3 [19]. Panolan etal. [18] gaveanexact exponentialalgorithmforb-ChromaticNumberrunningintime O

(

3nn4 logn

)

andanalgorithm that solves b-Coloring in time O(n

k

2nkn4logn

)

. From the perspective of parameterized complexity [6,8], it has been shownthat b-ChromaticNumberis W

[

1

]

-hard parameterized by k [18] andthat the dual problemof deciding whether

χ

b

(

G

)

n

k,wherendenotesthenumberofverticesinG,isFPTparameterizedbyk[13].

Sincetheabove mentionedupperbounds

(

G

) +

1 andm

(

G

)

ontheb-chromaticnumberare trivialto compute,itis naturalto ask whetherthereexist efficientalgorithms that decide whether

χ

b

(

G

) = (

G

) +

1 or

χ

b

(

G

) =

m

(

G

)

. Itturns outboththeseproblemsareNP-completeaswell [12,14,17].However,itisknownthattheproblemofdecidingwhethera graphGadmitsab-coloringwithk

= (

G

) +

1 colorsisFPTparameterizedbyk[18,19].

TheDichotomyResult.Oneofthemaincontributionsofthispaperisacomplexity dichotomyoftheb-Coloringproblem forfixedk,wheneverkisclosetoeither

(

G

) +

1 orm

(

G

)

.Inparticular,forfixedk

∈ {(

G

) +

1

p

,

m

(

G

)

p

}

,weshow thattheproblemispolynomial-timesolvablewhenp

∈ {

0

,

1

}

and,eveninthecasek

=

3,NP-completeforallfixed p

2.

More specifically, we give XPtime algorithms forthe casesk

=

m

(

G

)

,k

= (

G

)

, andk

=

m

(

G

)

1 which together with theFPTalgorithmforthecasek

= (

G

) +

1 [18,19] andtheaforementioned NP-hardnessresultfork

=

3 completesthe picture.Wenowformallystatethisresult.

Theorem1.LetG beagraph,p

Nandk

∈ { (

G

) +

1

p

,

m

(

G

)

p

}

.TheproblemofdecidingwhetherG hasab-coloringwithk colorsis

(i) NP-completeifk ispartoftheinputandp

∈ {

0

,

1

}

, (ii) NP-completeifk

=

3andp

2,and

(iii) polynomial-timesolvableforanyfixedpositivek andp

∈ {

0

,

1

}

.

Maximum DegreeParameterizations. The positive results in our dichotomy theorem provide XP-algorithms to decide whethera graphhas a b-coloring witha number ofcolors that either preciselymeets or isonebelow one of two upper boundsontheb-chromaticnumber,theparameterbeingthenumberofcolorsineachofthecases.Towardsmore‘flexible’

(parameterized)tractability results,we considerparameterizations oftheb-Coloringproblemthat involvethemaximum degree

(

G

)

of the input graph G, butask forthe existence ofb-colorings witha numberof colors that in generalis differentfrom

(

G

) +

1 or

(

G

)

.

(3)

First,asanadditiontotheresultthatinFPTtimeparameterizedby

(

G

)

,one candecidewhetherG hasab-coloring with

(

G

) +

1 colors [18,19], we show that in thesame parameterizationwe can decide inFPT time whether G has a b-coloringwithm

(

G

)

colors.

Theorem2.LetG beagraph.TheproblemofdecidingwhetherG hasab-coloringwithm

(

G

)

colorsisFPTparameterizedby

(

G

)

. One of the cruciallyused facts inthe algorithm of theprevious theoremis that if we ask whethera graph G has a b-coloringwithk

=

m

(

G

)

colors,then thenumberofverticesofdegreeatleastkisatmostk.We generalizethissetting andparameterizeb-Coloringbythemaximumdegreeplusthenumberofverticesofdegreeatleastk.Weshowthatthis problemisFPTaswell.

Theorem3.LetG beagraph.TheproblemofdecidingwhetherG hasab-coloringwithk colorsisFPTparameterizedby

(

G

) +

k

(

G

)

, where

k

(

G

)

denotesthenumberofverticesofdegreeatleastk inG.

We now argue that parameterizing by only one of the two invariants used in Theorem 3 is not sufficient to obtain efficient parameterized algorithms. From the result of Kratochvíl et al. [17], statingthat b-Coloringis NP-complete for k

= (

G

) +

1, it follows that b-Coloring is NP-complete when

(

G

)

is unbounded and

k

(

G

) =

0. On the other hand, Theorem 1(ii) implies that b-Coloring is already NP-complete when k

=

3 and

(

G

) =

4. Together, this rules out the possibility ofFPT- andevenof XP-algorithms forparameterizationsby one ofthetwo parametersalone, unlessP

=

NP.

Parameterizationsofgraphcoloring problemsbythenumberofhighdegree verticeshavepreviouslybeenconsidered for vertexcoloring [1] andedgecoloring [10].

AnextendedabstractofthisworkappearedintheproceedingsofMFCS2019 [15].

Organization.Therestofthepaperisorganizedasfollows.AftergivingpreliminarydefinitionsinSection2,wepresentthe hardness resultsinSection 3,thealgorithmic resultsofthedichotomy inSection 4,andthe algorithmsforthemaximum degreeparameterizationsinSection5.WeconcludeinSection6.

2. Preliminaries

Weusethefollowingnotation:Fork

N,

[

k

] := {

1

, . . . ,

k

}

.Forafunction f

:

X

Y and X

X,wedenoteby f

|

X the restriction of f to X andby f

(

X

)

theset

{

f

(

x

) |

x

X

}

. Foraset X andan integern,we denoteby X

n

thesetofall size-nsubsetsof X.

Graphs.Throughoutthepapera graphG withvertexsetV

(

G

)

andedgeset E

(

G

)

V(G)

2

isfiniteandsimple.Weoften denote anedge

{

u

,

v

} ∈

E

(

G

)

by theshorthand uv.Forgraphs G and H we denoteby H

G that H isasubgraph ofG, i.e. V

(

H

)

V

(

G

)

and E

(

H

)

E

(

G

)

. Weoften usethe notation n

:= |

V

(

G

)|

.Fora vertex v

V

(

G

)

,we denote by NG

(

v

)

the openneighborhoodof v in G,i.e. NG

(

v

) = {

w

V

(

G

) |

v w

E

(

G

) }

,andby NG

[

v

]

the closedneighborhood of v in G, i.e.NG

[

v

] := {

v

} ∪

NG

(

v

)

.Forasetofvertices X

V

(

G

)

,weletNG

(

X

) :=

vXNG

(

v

) \

X andNG

[

X

] :=

X

NG

(

X

)

.When Gisclearfromthecontext,weabbreviate‘NG’to‘N’.Thedegreeofavertexv

V

(

G

)

isthesizeofitsopenneighborhood, andwedenoteitbydegG

(

v

) := |

NG

(

v

)|

orsimplybydeg

(

v

)

ifGisclearfromthecontext.Foranintegerk,wedenoteby

k

(

G

)

thenumberofverticesofdegreeatleastkinG.Agraphisk-regularifallitsverticeshavedegreek.

Foravertexset X

V

(

G

)

,wedenotebyG

[

X

]

thesubgraphinducedby X,i.e.G

[

X

] := (

X

,

E

(

G

)

X

2

)

.Wefurthermore let G

X

:=

G

[

V

(

G

) \

X

]

bethesubgraphofG obtainedfromremovingtheverticesinX andforasinglevertexx

V

(

G

)

, weusetheshorthand‘G

x’for‘G

− {

x

}

’.

AgraphG issaidtobeconnectedifforany2-partition

(

X

,

Y

)

of V

(

G

)

,thereisanedgexy

E

(

G

)

suchthat x

X and y

Y, anddisconnected otherwise.Aconnectedcomponentof agraph G isa maximalconnectedsubgraph ofG.A pathis a connected graphofmaximum degree two,having preciselytwo vertices ofdegree one, calledits endpoints. The length of apath isits numberofedges. Givena graph G andtwo verticesu andv,thedistancebetween u andv,denotedby distG

(

u

,

v

)

(orsimplydist

(

u

,

v

)

ifG isclearfromthecontext),isthelengthoftheshortestpathinG thathasuandv as endpoints.

AgraphG isacompletegraphifeverypairofverticesofGisadjacent.AsetC

V

(

G

)

isacliqueifG

[

C

]

isacomplete graph. Aset S

V

(

G

)

is an independentsetif G

[

S

]

has noedges. A graph G isa bipartitegraph if its vertexset canbe partitioned into two independent sets. A bipartite graph with bipartition

(

A

,

B

)

is a completebipartitegraph if all pairs consistingofonevertexfrom A andonevertexfromB areadjacent,andwitha

= |

A

|

andb

= |

B

|

,wedenoteitby Ka,b.A staristhegraph K1,b,withb

2,andwecallcentertheuniquevertexofdegreeb andleavestheverticesofdegreeone.

Colorings.GivenagraphG,amap

γ :

V

(

G

) → [

k

]

iscalledacoloringofG withk colors.Ifforeverypairofadjacentvertices, uv

E

(

G

)

,wehavethat

γ (

u

) = γ (

v

)

,thenthecoloring

γ

iscalledproper.Fori

∈ [

k

]

,wecallthesetofverticesu

V

(

G

)

suchthat

γ (

u

) =

i thecolorclassi.Ifforalli

∈ [

k

]

,thereexistsavertexxi

V

(

G

)

suchthat

(4)

(i)

γ (

xi

) =

i,and

(ii) foreach j

∈ [

k

] \ {

i

}

,thereisaneighbor y

NG

(

xi

)

ofxisuchthat

γ (

y

) =

j,

then

γ

iscalledab-coloring ofG.Fori

∈ [

k

]

,wecallavertexxi satisfyingtheabovetwoconditionsab-vertexforcolori.

ParameterizedComplexity.Let

beanalphabet.Aparameterizedproblemisaset

×

N.Aparameterizedproblem

is said to be fixed-parametertractable,or contained inthe complexity class FPT,if there exists an algorithm that for each

(

x

,

k

)

×

N decides whether

(

x

,

k

)

in time f

(

k

) · |

x

|

c for some computable function f and fixed integer c

N.Aparameterizedproblem

issaidtobe containedinthecomplexity classXPifthereisanalgorithmthatforall

(

x

,

k

)

×

Ndecideswhether

(

x

,

k

)

intime f

(

k

) · |

x

|

g(k)forsomecomputablefunctions f andg.

Akernelizationalgorithmfora parameterizedproblem

×

N isapolynomial-timealgorithm thattakesasinput an instance

(

x

,

k

)

×

N andeithercorrectlydecides whether

(

x

,

k

)

oroutputsan instance

(

x

,

k

)

×

N with x

+

k

f

(

k

)

forsomecomputablefunction f forwhich

(

x

,

k

)

ifandonlyif

(

x

,

k

)

.Wesaythat

admitsakernel ifthereisakernelizationalgorithmfor

.

3. Hardnessresults

Inthis section weprove the hardness resultsofour complexity dichotomy.First, we showthat b-ChromaticNumber andb-Coloring are NP-complete fork

=

m

(

G

)

1

= (

G

)

, based on a reduction dueto Havet et al. [12] who showed NP-completenessforthecasek

=

m

(

G

)

.

Theorem3.1.b-ChromaticNumberandb-ColoringareNP-complete,evenwhenk

=

m

(

G

)

1

= (

G

)

.

Proof. Asintheproof ofHavetetal. [12],the reductionisfromthe NP-completeproblem3-EdgeColoringof3-regular graphs, whichtakes asinput a 3-regular graph G and askswhetherthe edges of G can be properly colored withthree colors.

Given an instance G of 3-EdgeColoring, an instance H of b-ChromaticNumber and b-Coloring is constructed as follows.Thegraph HhasonevertexforeachvertexofG,that wedenoteby v1

, . . . ,

vn,onevertexforeachedge,thatwe denotebyu1

, . . . ,

um andasetof4n

+

13 verticesthat wedenoteby S.Theedgesetof Hissuchthat H

[{

v1

, . . . ,

vn

}]

is aclique, H

[

S

]

isthedisjointunionofonecopyofthecompletebipartitegraph Kn,n+3 andtwocopiesofK2,n+3 and viuj is an edgeif theedge corresponding to uj isincident to the vertexcorresponding to vi in G. The constructedgraph H issuch that

(

H

) =

n

+

3 and H hasn

+

4 verticesofdegree n

+

3,which impliesthatm

(

H

) =

n

+

4.The differenceto theconstructionusedin [12] isthatinsteadofthethreecompletebipartitegraphsmentionedabove,theauthorsusethree copiesofthestarK1,n+2.

Claim3.1.1.AconnectedcomponentofH thatisacompletebipartitegraphcancontainb-verticesofatmostonecolorin anyb-coloringof Hwithatleastn

+

3 colors.

Proof. Consideracomponentof H thatinducesa Ki,n+3,withi

∈ {

2

,

n

}

.Inanyb-coloringwithk

n

+

3 colors,onlythe verticesofdegreeatleastn

+

2,sointhiscasetheverticesofdegreen

+

3 canbeb-verticesin H.Ifxisab-vertexfora givencolor,thentheremaining k

1 colorsappearontheverticesof N

(

x

)

.We concludethatanyothervertexofdegree n

+

3 ofthiscomponentwillbeassignedthesamecolorasx.

WeprovethatHhasab-coloringwithk

=

n

+

3 colorsifandonlyifGisaYes-instancefor3-EdgeColoringbyusingthe samestepsasintheproofofTheorem3of[12] andwiththeadditionaluseofClaim3.1.1.ThisprovestheNP-completeness ofb-Coloringwhenk

=

m

(

G

)

1

= (

G

)

.Furthermore,weprovethat

χ

b

(

H

)

n

+

3 ifandonlyifHhasab-coloringwith n

+

3 colors.Thisyieldstheanalogousresultforb-ChromaticNumber.

First,assume that G isaYes-instancefor3-EdgeColoring.Let

γ

E

:

E

(

G

) → [

3

]

be aproper 3-edgecoloringforG.We constructab-coloring

γ

H forH inthefollowingway.Foreach1

i

≤ |

E

(

G

) |

,

γ

H

(

ui

) = γ

E

(

ei

)

andeach1

j

n,welet

γ

H

(

vj

) =

j

+

3. Note that since

γ

E is a 3-edgecoloring for G, thevertices v1

, . . . ,

vn in H are b-verticesfor thecolors 4

, . . . ,

n

+

3:AnyvertexinGisincidentwith3 edgessinceGis3-regular,andsince

γ

E isproper,eachsuchedgereceivesa differentcolor.Hence,foranyvertexvi,thecolors

{

1

,

2

,

3

}

appearonNH

(

vi

) ∩ {

u1

, . . . ,

u|E(G)|

}

.Nowwecancolortherest ofthegraphHinsuchawaythateachconnectedcomponentthatisacompletebipartitegraphcontainsab-vertexforone ofthethreeremainingcolors.

Nowweconsidertheotherdirection.WestartbyobservingthatClaim3.1.1impliesthat H doesnotadmitab-coloring withn

+

4

=

m

(

H

) = (

H

) +

1 colors,sincethesetofverticesofdegreen

+

3 cancontainb-verticesforatmostthreecolors inanysuchab-coloring.Thisimpliesthat

χ

b

(

H

)

m

(

H

)

1

= (

H

)

ifandonlyifHhasab-coloringwithm

(

H

)

1

= (

H

)

colors.

Assume H hasab-coloring

γ

H withn

+

3 colors. Sinceby Claim3.1.1 theset S contains b-verticesforatmostthree colors,wehavethattheverticesv1

, . . . ,

vn areb-verticesinthiscoloring.Moreover, sincetheyinduceacliqueinH,they

(5)

allhavedistinctcolors.Assume,withoutlossofgenerality,that

γ

H

( {

v1

, . . . ,

vn

} ) = {

4

, . . . ,

n

+

3

}

.Thisimpliesthatforeach i,

γ

H

(

N

(

vi

) ∩ {

u1

, . . . ,

u|E(G)|

} ) = {

1

,

2

,

3

}

.Itfollowsthat

γ

E

:

E

(

G

)

N,definedas

γ

E

(

ei

) = γ

H

(

ui

)

,fori

∈ {

1

, . . . , |

E

(

G

)|}

, is a 3-edgecoloring of G.We arguethat

γ

E isproper. Suppose fora contradictionthat thereexist adjacentedge ei and ej,sharingtheendpoint vs,such that

γ

E

(

ei

) = γ

E

(

ej

) =

c.SincedegG

(

vs

) =

3,andtwo ofitsincident edgesreceived the samecolorc,we canconcludethatatleastoneofthecolors

{

1

,

2

,

3

}

doesnot appearintheneighborhoodof vs in H,a contradictionwiththefactthatvsisab-vertexofitscolorin

γ

H.

Theprevioustheorem,togetherwiththeresultthatb-ColoringisNP-completewhenk

= (

G

) +

1 [17] andwhenk

=

m

(

G

)

[12], proves Theorem 1(i). We now turnto the proof of Theorem1(ii), that is, we show that b-Coloringremains NP-completefork

=

3 ifk

= (

G

) +

1

pork

=

m

(

G

)

pforany p

2,basedonareductionduetoSampaio [19].Note thatthefollowingpropositionindeedprovesTheorem1(ii) asforfixed p

2,wehavethat3

∈ {(

G

) +

1

p

,

m

(

G

)

p

}

if andonlyif

(

G

) =

p

+

2 orm

(

G

) =

p

+

3.

Proposition3.2.Foreveryfixedintegerp

2,theproblemofdecidingwhetheragraphG hasab-coloringwith3colorsisNP- completewhen

(

G

) =

p

+

2orm

(

G

) =

p

+

3.

Proof. SampaioshowedthattheproblemofdecidingwhetheragraphG hasab-coloringwithkcolorsisNP-completefor anyfixedk

N [19,Proposition4.5.1].Forthecaseofk

=

3,thereductionisfrom 3-Coloringonplanar 4-regulargraphs whichisknowntobe NP-complete [11].Inthisreduction,onetakesthegraphofthe 3-Coloringinstanceandaddsthree starswithtwoleaveseachtothegraphwhichcanserveastheb-verticesintheresultinginstanceofb-Coloring.Sincethis doesnotincreasethemaximumdegree,weimmediatelyhavethattheproblemofdecidingwhetheragraphofmaximum degree 4 has a b-coloringwith3 colors isNP-complete.Inother words, thisproves NP-completenessof thequestion of whether a graph G with maximumdegree p

+

2 admits a b-coloring with3 colors in the case p

=

2. Furthermore, by addingmoreleavestooneofthestarsandtherebyincreasingthemaximumdegreeofthegraphintheresultinginstance, we havethatforanyfixedinteger p

2,itisNP-completetodecidewhethera graphofmaximumdegree

(

G

) =

p

+

2 hasab-coloringwiththreecolors.

Towardsthestatement regardingm

(

G

)

,wefirstobservethat fora 4-regulargraphG on atleastfivevertices,wehave thatm

(

G

) =

5.Weobservethatinanystarwithatleasttwoleaves,thecentervertexcanbeab-vertexinacoloringwith3 colors.WeconstructagraphGbyaddingfivestarswithfourleaveseachtoG,andweagainhavethat G hasa3-coloring ifandonlyifG hasab-coloringwith3 colors,showingthat theproblemofdecidingwhethera graphH withm

(

H

) =

5 hasa b-coloring with3 colors,is NP-complete.Inother words,itisNP-completetodecideifagraph H hasab-coloring withm

(

H

) =

p

+

3 hasab-coloringwith3 colorsinthecasep

=

2.Notethatinthisreduction,thecenterverticesofthe starscanberegardedastheverticesdeterminingthem-degreeofthegraphintheresultinginstanceofb-coloringwith3 colors,sowecanextendthisresultinasimilarwayasabove.Thatis,foranyp

2,givena4-regulargraphG,wecanadd p

+

3 starswithp

+

2 leaveseachtoG,implyingthatfortheresultinggraphG,m

(

G

) =

p

+

3.Again, Ghasa3-coloring ifandonlyifGhasab-coloringwith3 colors,implyingthesecondstatementoftheproposition.

Weconcludethissectionbyconsideringthecomplexityofthetwoproblemsongraphswithfewverticesofhighdegree.

Sinceb-ChromaticNumberandb-ColoringareknowntobeNP-completewhenk

= (

G

) +

1 [17],wemakethefollowing observationwhichisofrelevancetoussinceinSection5.2,weshowthatb-ColoringisFPTparameterizedby

(

G

) +

k

(

G

)

.

Observation3.3.b-ChromaticNumberandb-ColoringareNP-completeongraphswith

k

(

G

) =

0,wherek istheintegerassoci- atedwiththerespectiveproblem.

4. Dichotomyalgorithms

In thissectionwe give thealgorithms inourdichotomy result, provingTheorem 1(iii). Weshow thatforfixed k

N, theproblemofdecidingwhetheragraphG admitsab-coloringwithkcolorsispolynomial-timesolvablewhenk

=

m

(

G

)

(Section4.2),whenk

= (

G

)

(Section4.3),andwhenk

=

m

(

G

)

1 (Section4.4),byprovidingXP-algorithmsforeachcase.

Anaturalwayofsolvingtheb-Coloringproblemistotrytoidentifyasetofk b-vertices,andforeachvertexintheseta setofk

1 neighborsthatcanbeusedtomakeavertexab-vertexforitscolor,andthenextendtheresultingcoloringto theremainder ofthegraph.Weguessallsuchsetsandcolorings,andshowthattheproblemofdecidingwhetheragiven coloringcanbe extendedtoapropercoloringoftheremainderofthegraphissolvableinpolynomialtimeineachofthe abovecases.

The strategy of identifying the set of b-vertices andsubsets of their neighbors that make them b-vertices was (for instance) alsoused to give polynomial-timealgorithms tocompute theb-chromatic number oftrees [14] andof graphs withlargegirth [4].Wecaptureitbydefiningthenotionofab-precoloringinthenextsubsection.

(6)

4.1. b-precolorings

Allalgorithmsinthissectionarebasedonguessingapropercoloringofseveralverticesinthegraph,forwhichwenow introducethenecessaryterminologyandestablishsomepreliminaryresults.

Definition4.1(Precoloring).LetGbeagraphandk

N.AprecoloringwithkcolorsofagraphGisanassignmentofcolors toasubsetofitsvertices,i.e.for X

V

(

G

)

,itisamap

γ

X

:

X

→ [

k

]

.Wecall

γ

X proper,ifitisapropercoloringofG

[

X

]

. Wesaythatacoloring

γ :

V

(

G

) → [

k

]

extends

γ

X,if

γ |

X

= γ

X.

Weusethefollowingnotation.Fortwoprecolorings

γ

X and

γ

Y with X

Y

= ∅

,we denoteby

γ

X

γ

Y theprecoloring that colors thevertices in X accordingto

γ

X andthevertices in Y accordingto Y, i.e.theprecoloring

γ

XY

:= γ

X

γ

Y definedas:

γ

XY

(

v

) =

γ

X

(

v

),

ifv

X

γ

Y

(

v

),

ifv

Y for allv

X

Y

Next,wedefineaspecialtypeofprecoloringwiththepropertythatanypropercoloringthat extendsitisa b-coloring ofthegraph.

Definition4.2(b-precoloring).Let G be agraph,k

N, X

V

(

G

)

and

γ

X a precoloring.We call

γ

X ab-precoloringwithk colorsif

γ

X isab-coloringofG

[

X

]

.Ab-precoloring

γ

X iscalledminimalifforanyY

X,

γ

X

|

Y isnotab-precoloring.

Itisimmediatethatanyb-coloringcanbeobtainedbyextendingaminimalb-precoloring,afactthatwecaptureinthe followingobservation.

Observation4.3.LetG beagraph,k

N,and

γ

ab-coloringofG withk colors.Then,thereisasetX

V

(

G

)

suchthat

γ |

X isa minimalb-precoloring.

Thenext observationcapturesthestructureofminimalb-precoloringswithk colors.Roughlyspeaking,each suchpre- coloring onlycolors aset ofk b-verticesandforeach b-vertex a setofk

1 of its neighborsthat makethat vertexthe b-vertex ofitscolor.We willusethispropertyinthe enumerationalgorithminthissection toguaranteethat we indeed enumerateallminimalb-precoloringswithagivennumberofcolors.

Observation4.4.Let

γ

Xbeaminimalb-precoloringwithk colors.Then,X

=

B

Z ,where (i) B

= {

x1

, . . . ,

xk

}

andfori

∈ [

k

]

,

γ

X

(

xi

) =

i,and

(ii) Z

=

i∈[k]Zi,whereZi

N(xi)

k1

and

γ

X

(

Zi

) = [

k

] \ {

i

}

.

Wearenowreadytogivetheenumerationalgorithmforminimalb-precolorings.

Lemma4.5.LetG beagraphonn verticesandk

N.Thenumberofminimalb-precoloringswithk colorsofG isatmost

β(

k

) :=

nk

·

k(k1)

· (

k

1

) !

k

,

(1)

where

:= (

G

)

andtheycanbeenumeratedintime

β(

k

) ·

kO(1).

Proof. ByObservation4.4,anyminimalb-precoloringonlycolorsasetofk b-vertices,andforeachofthemasize-

(

k

1

)

subsetofitsneighborsthatarecoloredbijectivelywiththeremainingcolors.

To guessall b-verticesin G,we enumerateall ordered vertex sets of size k, let

{

x1

, . . . ,

xk

}

be such a set.Next, we enumerate all size-

(

k

1

)

subsets ofneighbors of each xi that can make xi theb-vertex ofcolor i. Let

(

Z1

, . . . ,

Zk

)

be a tupleofsuch setsofneighbors.Then we enumerateforeach i

∈ [

k

]

,all bijectivecolorings of

π

i

:

Zi

→ [

k

] \ {

i

}

these areprecisely thecoloringsof Zi thatcanmake xi theb-vertexforcolori.Givensucha tuple

( π

1

, . . . , π

k

)

,we makesure thatitisconsistent:foreachi

,

j

∈ [

k

]

andeachvertexv

Zi

Zj,weensurethat

π

i and

π

j assign v thesamecolor,i.e.

π

i

(

v

) = π

j

(

v

)

; similarly, ifxi

Zj,then we ensurethat

π

j

(

xi

) =

i (recallthat xi is supposed tobe theb-vertex of color i).Ifso,weconstructa precoloring

γ

BZ accordingtoourchoiceof B

= {

x1

, . . . ,

xk

}

and

( π

1

, . . . π

k

)

andifitisaminimal b-precoloringweoutputit.WegivethedetailsinAlgorithm1.

Wenowshowthatthealgorithmiscorrect.

Claim4.5.1.Aprecoloring

γ

X isaminimalb-precoloringwithkcolorsifandonlyifAlgorithm1returnsitinline8insome iteration.

(7)

Input :AgraphG,apositiveintegerk.

Output:Allminimalb-precoloringswithkcolorsofG

1 foreachB

V(G)

k

andeveryorderingx1

, . . . ,

xkoftheelementsofBdo

2 foreach

(

Z1

, . . . ,

Zk

)

N(x1)

k1

× · · · ×

N(xk)

k1

do

3 foreach

( π

1

, . . . , π

k

)

,

(i) whereforalli

∈ [

k

]

,

π

i

:

Zi

→ [

k

] \ {

i

}

isabijection, (ii) foralli

,

j

∈ [

k

]

andallv

Zi

Zj,

π

i

(

v

) = π

j

(

v

)

,and (iii) foralli

,

j

∈ [

k

]

,ifxi

Zj,then

π

j

(

xi

) =

i

4 do

5 LetZ

:= ∪

i∈[k]Ziand

γ

BZ

:

B

Z

→ [

k

]

;

6 fori

∈ [

k

]

do

γ

BZ

(

xi

) :=

i;

7 fori

∈ [

k

]

andv

Zido

γ

BZ

(

v

) := π

i

(

v

)

;

8 if

γ

BZisaminimalb-precoloringthen output

γ

BZ andcontinue;

Algorithm 1:Enumerating all minimalb-precolorings withkcolors of a graph.

Proof. SupposeAlgorithm1returnsaprecoloring

γ

X.Wefirstarguethat

γ

X iswell-defined.Let X

=

B

Z followingthe notation ofAlgorithm1.Itisimmediatethat

γ

X

|

B iswell-defined.Fortheremainingverticesv

Z,weverifyascondition (ii) inline3 thatwhenever v

Zi

Zj,

π

i

(

v

) = π

j

(

v

)

.Moreover, condition (iii) inline3ensures that whenever xi

Zj, then

π

j

(

xi

) =

i.Henceifthetuple

( π

1

, . . . , π

k

)

passesthecheckinline3,thenforeachvertexv

Z thereispreciselyone color that

γ

X assigns to v inline7, andif v

Zj

B,then

π

j assigns v acolor that isconsistent withline 6. We can concludethat

γ

X iswell-defined.Bythecheckperformedinline8,wecanconcludethat

γ

X isaminimalb-precoloring.

NowsupposethatGcontainsaminimalb-precoloring

γ

X.ByObservation4.4,X consistsofan(ordered)setofb-vertices B

= {

x1

, . . . ,

xk

}

with

γ

X

(

xi

) =

i fori

∈ [

k

]

,andaset Z thatcontains,foreachxi,asetofk

1 neighborsZi

Z suchthat

γ

X

(

Zi

) = [

k

] \ {

i

}

.SinceAlgorithm1enumeratesall suchpossiblesetsinlines 1and2,we havethatinsome iteration,it guessed B

Z asthesetofvertices tocolor.Since thealgorithmenumerates allcombinationsof possibilitiesofcoloring the sets Zi bijectively withcolors

[

k

] \ {

i

}

inline 3, it guessed a tupleof bijections

( π

1

, . . . , π

k

)

from whichwe obtain

γ

X.Clearlywe havethatinthat case,

( π

1

, . . . , π

k

)

passesthecheck inline3andbyassumption,

γ

X passesthecheck in line8.

It remainstoargueits runtime.Inline1,therearen

k

choicesfortheset B andk

!

choicesforitsorderings, inline2, thereareatmost

k1

k

choicesofk-tuplesofsize-

(

k

1

)

setsofneighbors,andinline3,weenumerate

(

k

1

) !

kk-tuples of bijectionsof setsof sizek

1. Theremaining steps can beexecuted in timekO(1): Byconstruction,

|

B

Z

| ≤

k2,and every colorhas a b-vertex. It remains to verify whetherthe coloring

γ

BZ is proper on G

[

B

Z

]

to conclude that it is a b-precoloring. Ifso, we can verifyminimality in polynomial time by simplytrying foreach vertex x

B

Z,whether

γ

BZ\{x}isstillab-precoloring.Ifwecanfindsuchavertexx,then

γ

BZ isnotminimal,otherwiseitis.Thetotalruntime amountsto

n k

k

! ·

k

1

k

· (

k

1

) !

k

·

kO(1)

nk

·

k(k1)

· (

k

1

) !

k

·

kO(1)

= β(

k

) ·

kO(1)

,

asclaimed.Theupperboundof

β(

k

)

onthenumberofb-precoloringswithkcolorsfollowssincethekO(1)factorintherun- timeonlyconcernstheconstructionoftheprecoloringsandtheverificationofwhethertheyareindeedb-precolorings.

4.2. Algorithmfork

=

m

(

G

)

OurfirstapplicationofLemma4.5istosolvetheb-Coloringprobleminthecasewhenk

=

m

(

G

)

intimeXPparame- terizedbyk.Itturnsoutthat inthiscase,we aredealingwithaYes-instanceassoonaswe foundab-precoloringinthe inputgraphthatalsocolorsallhigh-degreevertices(seeClaim4.6.1).

Theorem4.6.LetG beagraph.ThereisanalgorithmthatdecideswhetherG hasab-coloringwithk

=

m

(

G

)

colorsintimenk2

·

2O(k2logk).

Proof. Let D

V

(

G

)

denotethe setofverticesin G that havedegreeatleastk.Notethat by thedefinitionofm

(

G

)

,we havethat

|

D

| ≤

k.

Claim4.6.1. Ghasab-coloringwithkcolorsifandonlyifG hasab-precoloring

γ

X suchthat D

X andthereexistsS

D suchthat

γ

X

|

(X\S)isaminimalb-precoloring.

Referanser

RELATERTE DOKUMENTER

There had been an innovative report prepared by Lord Dawson in 1920 for the Minister of Health’s Consultative Council on Medical and Allied Services, in which he used his

In this thesis I aim to study the economic fraction of the upper class’ (EUC) relationship to politics. Politics and class are often conceptualized as being entwined – different

Parameterizations of graph coloring problems by the number of high degree vertices have previously been considered for vertex coloring [1] and edge coloring [9].. Throughout the

Based on the above-mentioned tensions, a recommendation for further research is to examine whether young people who have participated in the TP influence their parents and peers in

The particle size distributions were characterized by the means of a disc centrifuge, and the effect of dispersion time, power density, and total energy input, for both bath

Overall, the SAB considered 60 chemicals that included: (a) 14 declared as RCAs since entry into force of the Convention; (b) chemicals identied as potential RCAs from a list of

An abstract characterisation of reduction operators Intuitively a reduction operation, in the sense intended in the present paper, is an operation that can be applied to inter-

Azzam’s own involvement in the Afghan cause illustrates the role of the in- ternational Muslim Brotherhood and the Muslim World League in the early mobilization. Azzam was a West