• No results found

1 Numbers of Draw CAlls

N/A
N/A
Protected

Academic year: 2022

Share "1 Numbers of Draw CAlls"

Copied!
51
12
0
Vis mer ( sider)

Fulltekst

(1)

1 Numbers of Draw CAlls

(2)

NV2080Ti’ AND numCubes=1000 AND NOT scene = ’gallery’ AND ”=’ NV2080Ti’ AND numCubes=50000 AND NOT scene = ’gallery’ AND ”=’

1920x1080 1440x1600 1920x1080 1440x1600

bistro 2

P(n, ,

...

): 70.0 P(

n2

, ,

...

): 70.0 P(

n4

, , ,

...

): 70.0

P(1, , ,

...

): 70.0

P(n, ,

...

): 44.0 P(

n2

, ,

...

): 44.0 P(

n4

, , ,

...

): 44.0

P(1, , ,

...

): 44.0

P(n, ,

...

): 1017.0 P(

n2

, ,

...

): 1021.0 P(

n4

, , ,

...

): 1021.0

P(1, , ,

...

): 1021.0

P(n, ,

...

): 583.0 P(

n2

, ,

...

): 587.0 P(

n4

, , ,

...

): 587.0

P(1, , ,

...

): 587.0

4

P(n, ,

...

): 70.0 P(

n2

, ,

...

): 70.0 P(

n4

, , ,

...

): 70.0

P(1, , ,

...

): 70.0

P(n, ,

...

): 43.0 P(

n2

, ,

...

): 44.0 P(

n4

, , ,

...

): 44.0

P(1, , ,

...

): 44.0

P(n, ,

...

): 1017.0 P(

n2

, ,

...

): 1021.0 P(

n4

, , ,

...

): 1026.0

P(1, , ,

...

): 1026.0

P(n, ,

...

): 582.0 P(

n2

, ,

...

): 587.0 P(

n4

, , ,

...

): 590.0

P(1, , ,

...

): 590.0

16

P(n, ,

...

): 70.0 P(

n2

, ,

...

): 70.0 P(

n4

, , ,

...

): 71.0

P(1, , ,

...

): 71.0

P(n, ,

...

): 43.0 P(

n2

, ,

...

): 44.0 P(

n4

, , ,

...

): 45.0

P(1, , ,

...

): 46.0

P(n, ,

...

): 1017.0 P(

n2

, ,

...

): 1021.0 P(

n4

, , ,

...

): 1029.0

P(1, , ,

...

): 1044.0

P(n, ,

...

): 582.0 P(

n2

, ,

...

): 587.0 P(

n4

, , ,

...

): 596.0

P(1, , ,

...

): 606.0

32

P(n, ,

...

): 69.0 P(

n2

, ,

...

): 70.0 P(

n4

, , ,

...

): 70.0

P(1, , ,

...

): 73.0

P(n, ,

...

): 43.0 P(

n2

, ,

...

): 44.0 P(

n4

, , ,

...

): 45.0

P(1, , ,

...

): 47.0

P(n, ,

...

): 1017.0 P(

n2

, ,

...

): 1021.0 P(

n4

, , ,

...

): 1029.0

P(1, , ,

...

): 1061.0

P(n, ,

...

): 582.0 P(

n2

, ,

...

): 587.0 P(

n4

, , ,

...

): 597.0

P(1, , ,

...

): 626.0

robot lab unity

2

P(n, ,

...

): 74.0 P(

n2

, ,

...

): 77.0 P(

n4

, , ,

...

): 77.0

P(1, , ,

...

): 77.0

P(n, ,

...

): 47.0 P(

n2

, ,

...

): 51.0 P(

n4

, , ,

...

): 51.0

P(1, , ,

...

): 51.0

P(n, ,

...

): 849.0 P(

n2

, ,

...

): 884.0 P(

n4

, , ,

...

): 884.0

P(1, , ,

...

): 884.0

P(n, ,

...

): 489.0 P(

n2

, ,

...

): 534.0 P(

n4

, , ,

...

): 534.0

P(1, , ,

...

): 534.0

4

P(n, ,

...

): 72.0 P(

n2

, ,

...

): 75.0 P(

n4

, , ,

...

): 80.0

P(1, , ,

...

): 80.0

P(n, ,

...

): 46.0 P(

n2

, ,

...

): 49.0 P(

n4

, , ,

...

): 52.0

P(1, , ,

...

): 52.0

P(n, ,

...

): 831.0 P(

n2

, ,

...

): 866.0 P(

n4

, , ,

...

): 931.0

P(1, , ,

...

): 931.0

P(n, ,

...

): 479.0 P(

n2

, ,

...

): 524.0 P(

n4

, , ,

...

): 563.0

P(1, , ,

...

): 563.0

16

P(n, ,

...

): 73.0 P(

n2

, ,

...

): 76.0 P(

n4

, , ,

...

): 81.0

P(1, , ,

...

): 98.0

P(n, ,

...

): 46.0 P(

n2

, ,

...

): 49.0 P(

n4

, , ,

...

): 56.0

P(1, , ,

...

): 68.0

P(n, ,

...

): 824.0 P(

n2

, ,

...

): 859.0 P(

n4

, , ,

...

): 927.0

P(1, , ,

...

): 1139.0

P(n, ,

...

): 475.0 P(

n2

, ,

...

): 519.0 P(

n4

, , ,

...

): 606.0

P(1, , ,

...

): 747.0

32

P(n, ,

...

): 72.0 P(

n2

, ,

...

): 75.0 P(

n4

, , ,

...

): 81.0

P(1, , ,

...

): 111.0

P(n, ,

...

): 46.0 P(

n2

, ,

...

): 49.0 P(

n4

, , ,

...

): 56.0

P(1, , ,

...

): 85.0

P(n, ,

...

): 818.0 P(

n2

, ,

...

): 853.0 P(

n4

, , ,

...

): 923.0

P(1, , ,

...

): 1315.0

P(n, ,

...

): 470.0 P(

n2

, ,

...

): 513.0 P(

n4

, , ,

...

): 596.0

P(1, , ,

...

): 954.0

san miguel

2

P(n, ,

...

): 99.0 P(

n2

, ,

...

): 99.0 P(

n4

, , ,

...

): 99.0

P(1, , ,

...

): 99.0

P(n, ,

...

): 66.0 P(

n2

, ,

...

): 66.0 P(

n4

, , ,

...

): 66.0

P(1, , ,

...

): 66.0

P(n, ,

...

): 1389.0 P(

n2

, ,

...

): 1393.0 P(

n4

, , ,

...

): 1393.0

P(1, , ,

...

): 1393.0

P(n, ,

...

): 868.0 P(

n2

, ,

...

): 873.0 P(

n4

, , ,

...

): 873.0

P(1, , ,

...

): 873.0

4

P(n, ,

...

): 99.0 P(

n2

, ,

...

): 99.0 P(

n4

, , ,

...

): 99.0

P(1, , ,

...

): 99.0

P(n, ,

...

): 66.0 P(

n2

, ,

...

): 66.0 P(

n4

, , ,

...

): 66.0

P(1, , ,

...

): 66.0

P(n, ,

...

): 1387.0 P(

n2

, ,

...

): 1391.0 P(

n4

, , ,

...

): 1399.0

P(1, , ,

...

): 1399.0

P(n, ,

...

): 866.0 P(

n2

, ,

...

): 872.0 P(

n4

, , ,

...

): 877.0

P(1, , ,

...

): 877.0

16

P(n, ,

...

): 99.0 P(

n2

, ,

...

): 99.0 P(

n4

, , ,

...

): 100.0

P(1, , ,

...

): 101.0

P(n, ,

...

): 66.0 P(

n2

, ,

...

): 66.0 P(

n4

, , ,

...

): 67.0

P(1, , ,

...

): 68.0

P(n, ,

...

): 1388.0 P(

n2

, ,

...

): 1392.0 P(

n4

, , ,

...

): 1400.0

P(1, , ,

...

): 1428.0

P(n, ,

...

): 867.0 P(

n2

, ,

...

): 872.0 P(

n4

, , ,

...

): 884.0

P(1, , ,

...

): 902.0

32

P(n, ,

...

): 99.0 P(

n2

, ,

...

): 99.0 P(

n4

, , ,

...

): 100.0

P(1, , ,

...

): 102.0

P(n, ,

...

): 66.0 P(

n2

, ,

...

): 66.0 P(

n4

, , ,

...

): 67.0

P(1, , ,

...

): 69.0

P(n, ,

...

): 1388.0 P(

n2

, ,

...

): 1392.0 P(

n4

, , ,

...

): 1400.0

P(1, , ,

...

): 1446.0

P(n, ,

...

): 867.0 P(

n2

, ,

...

): 872.0 P(

n4

, , ,

...

): 883.0

P(1, , ,

...

): 923.0

sponza 2

P(n, ,

...

): 131.0 P(

n2

, ,

...

): 132.0 P(

n4

, , ,

...

): 132.0

P(1, , ,

...

): 132.0

P(n, ,

...

): 85.0 P(

n2

, ,

...

): 85.0 P(

n4

, , ,

...

): 85.0

P(1, , ,

...

): 85.0

P(n, ,

...

): 1820.0 P(

n2

, ,

...

): 1826.0 P(

n4

, , ,

...

): 1826.0

P(1, , ,

...

): 1826.0

P(n, ,

...

): 1085.0 P(

n2

, ,

...

): 1093.0 P(

n4

, , ,

...

): 1093.0

P(1, , ,

...

): 1093.0

4

P(n, ,

...

): 131.0 P(

n2

, ,

...

): 131.0 P(

n4

, , ,

...

): 132.0

P(1, , ,

...

): 132.0

P(n, ,

...

): 85.0 P(

n2

, ,

...

): 85.0 P(

n4

, , ,

...

): 86.0

P(1, , ,

...

): 86.0

P(n, ,

...

): 1817.0 P(

n2

, ,

...

): 1824.0 P(

n4

, , ,

...

): 1836.0

P(1, , ,

...

): 1836.0

P(n, ,

...

): 1083.0 P(

n2

, ,

...

): 1091.0 P(

n4

, , ,

...

): 1099.0

P(1, , ,

...

): 1099.0

16

P(n, ,

...

): 131.0 P(

n2

, ,

...

): 131.0 P(

n4

, , ,

...

): 132.0

P(1, , ,

...

): 135.0

P(n, ,

...

): 84.0 P(

n2

, ,

...

): 85.0 P(

n4

, , ,

...

): 86.0

P(1, , ,

...

): 88.0

P(n, ,

...

): 1817.0 P(

n2

, ,

...

): 1823.0 P(

n4

, , ,

...

): 1835.0

P(1, , ,

...

): 1871.0

P(n, ,

...

): 1083.0 P(

n2

, ,

...

): 1092.0 P(

n4

, , ,

...

): 1108.0

P(1, , ,

...

): 1131.0

32

P(n, ,

...

): 131.0 P(

n2

, ,

...

): 131.0 P(

n4

, , ,

...

): 132.0

P(1, , ,

...

): 137.0

P(n, ,

...

): 84.0 P(

n2

, ,

...

): 85.0 P(

n4

, , ,

...

): 86.0

P(1, , ,

...

): 90.0

P(n, ,

...

): 1817.0 P(

n2

, ,

...

): 1823.0 P(

n4

, , ,

...

): 1836.0

P(1, , ,

...

): 1898.0

P(n, ,

...

): 1083.0 P(

n2

, ,

...

): 1092.0 P(

n4

, , ,

...

): 1109.0

P(1, , ,

...

): 1165.0

viking village unity

2

P(n, ,

...

): 39.0 P(

n2

, ,

...

): 39.0 P(

n4

, , ,

...

): 39.0

P(1, , ,

...

): 39.0

P(n, ,

...

): 25.0 P(

n2

, ,

...

): 25.0 P(

n4

, , ,

...

): 25.0

P(1, , ,

...

): 25.0

P(n, ,

...

): 346.0 P(

n2

, ,

...

): 349.0 P(

n4

, , ,

...

): 349.0

P(1, , ,

...

): 349.0

P(n, ,

...

): 199.0 P(

n2

, ,

...

): 203.0 P(

n4

, , ,

...

): 203.0

P(1, , ,

...

): 203.0

4

P(n, ,

...

): 39.0 P(

n2

, ,

...

): 39.0 P(

n4

, , ,

...

): 39.0

P(1, , ,

...

): 39.0

P(n, ,

...

): 25.0 P(

n2

, ,

...

): 25.0 P(

n4

, , ,

...

): 25.0

P(1, , ,

...

): 25.0

P(n, ,

...

): 340.0 P(

n2

, ,

...

): 343.0 P(

n4

, , ,

...

): 351.0

P(1, , ,

...

): 351.0

P(n, ,

...

): 195.0 P(

n2

, ,

...

): 200.0 P(

n4

, , ,

...

): 205.0

P(1, , ,

...

): 205.0

16

P(n, ,

...

): 39.0 P(

n2

, ,

...

): 40.0 P(

n4

, , ,

...

): 40.0

P(1, , ,

...

): 43.0

P(n, ,

...

): 25.0 P(

n2

, ,

...

): 26.0 P(

n4

, , ,

...

): 26.0

P(1, , ,

...

): 28.0

P(n, ,

...

): 339.0 P(

n2

, ,

...

): 343.0 P(

n4

, , ,

...

): 350.0

P(1, , ,

...

): 369.0

P(n, ,

...

): 195.0 P(

n2

, ,

...

): 199.0 P(

n4

, , ,

...

): 208.0

P(1, , ,

...

): 219.0

32

P(n, ,

...

): 39.0 P(

n2

, ,

...

): 40.0 P(

n4

, , ,

...

): 40.0

P(1, , ,

...

): 45.0

P(n, ,

...

): 25.0 P(

n2

, ,

...

): 26.0 P(

n4

, , ,

...

): 26.0

P(1, , ,

...

): 30.0

P(n, ,

...

): 339.0 P(

n2

, ,

...

): 343.0 P(

n4

, , ,

...

): 350.0

P(1, , ,

...

): 384.0

P(n, ,

...

): 195.0 P(

n2

, ,

...

): 200.0 P(

n4

, , ,

...

): 208.0

P(1, , ,

...

): 238.0

Table 1: Note: Only the first parameters per P(....) matter for the number of draw calls! I.e. differences are only w.r.t. P(1, ...), P( n 2 , ...), P( n 4 , ...) and P(n, ...).

Referanser

RELATERTE DOKUMENTER

jeg hadde under dagens møte uttrykt min store begeistring for noe (ugjæret) druesaft de hadde servert, for ikke å snakke om noen meget velsmakende pærer som de fortalte

International guidelines recommend a repeat transurethral resection of the bladder (reTURB), within 4-6 weeks after the primary TURB for stage T1 bladder cancer (BC), to increase

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor .incididunt ut labore et dolore magna aliqua Eksempler på bruk av profilfonten Museo

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor .incididunt ut labore et dolore magna aliqua Eksempler på bruk av profilfonten Museo

Infinihte veerbehaemieh produktijve jïh dah produktijveleejne sjidtieh gaajhkijste veerbijste (Ylikoski 2009: 64). Daagka maaje vuajnam tjoelmh jijhtielieh åarjelsaemiengïelesne

Seamma vearssa maŋimuš linnjás “fargga… lean geargan du oaguheamis”, ii leat sihkar ahte son vuordá gitta oaffar muhtin beaivvi háliida su, lea doarvái boaris dahje gitta

• Skovvi mánáide gaskkal 8-20 mánu: Sánit ja seavvagat.. • Skovvi mánáide gaskkal 16-36 mánu: Sánit

Dutkanmateriálas gávdnojedje oktiibuot 16 jearaldatcealkaga main leat laktapartihkal -bat (ja eará hámit). Dán 16 jearaldatcealkaga sáhttá juohkit guovtti váldojovkui.

B3-materiálas Materiála čájeha, ahte persovdna- ja čujuheaddjipronomenat geavahuvvojit ollu ja eanaš riekta sihke nominatiivvas ja akkusatiivvas, vejolaččat danin go dát

Gielajn ij le dåssju akta vuohke man milta máhttá tsieggit gárgadisájt, le álu nav ahte máhttá tsieggit giellaåhpalasj gárgadisájt ienep vuogij milta, valla dat báhkogárges

Sihkkarastin dihte ahte buot sámi giellaservvodagaid perspektiivvat fátmmastuvvojit bargui álggu rájes juo, lea Nuorta universitehta (NU) ávžžuhuvvon searvat bargui ovttas UiTain ja

Ekspertgruppens oppdrag er å gjøre rede for barne- hagelærerrollen og gi råd om hvordan barnehage- lærerprofesjonen kan utvikles videre. I redegjørelsen skal det tas høyde for

When developing the kindergarten teaching profession further it is there- fore important to develop a practice whereby we acknowledge the need to integrate additional learning

Mauris porta, sem sit amet viverra rutrum, arcu leo conLarvik 0:35 Porsgrunn 0:55 TØNSBERG PROGRAM Skien 1:15 Lorem ipsum dolor sit amet, consectetur adipiscing elit.. In in

The unifying capacity of the averaged SED criterion is highlighted, indeed the synthesis on the basis of the local SED enables to obtain a quite narrow scatter-band, which

lexical material in original triggers dm and is retained Lorem ipsum dolor sit amet, consectetur adipiscing elit.. Ala bala drăn drăn alabala drăn drăn, DM bala drăn

Ovdalgo doarjaga sáhttá máksit, ferte doarjjaoažžu duođaštit Sámediggái ahte ii leat ožžon unnibuš doarjaga eará sajiin máksinjagis dahje guovtti ovddit jagiin mat

tapsbegrensningsplikten innebærer at selgerens ilagte sakskostnader og egne sakskostnader i avhendingssaken for tingretten og lagmannsretten, ikke kan videreføres til megleren etter

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut l hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu

Sudan har vært i medienes søkelys flere ganger på grunn av store sultkatastrofer, som alle har kommet som et direkte eller indirekte resultat av krigen.. Samtidig har det pågått

Lorem ipsum dolor sit amet, consectetuer aolore magna aliquam erat volutpat.. Lorem ipsum dolor sit amet, consectetuer aolore magna aliquam

jeg hadde under dagens møte uttrykt min store begeistring for noe (ugjæret) druesaft de hadde servert, for ikke å snakke om noen meget velsmakende pærer som de fortalte