Pacific Graphics 2019
C. Theobalt, J. Lee, and G. Wetzstein (Guest Editors)
(2019),
High Dynamic Range Point Clouds for Real-Time Relighting - Additional Material
Manuele Sabbadin1 , Gianpaolo Palma1 , Francesco Banterle1 , Tamy Boubekeur2, Paolo Cignoni1
1Visual Computing Lab - ISTI CNR, Pisa, Italy
2Telecom Paris, Institut Polytechnique de Paris & Adobe
1. Introduction
This document contains the supporting information of the paper
"High Dynamic Range Point Cloud for Real-Time Relighting". In particular, Figures1,2and3show the input data of tested scenes with an equirectangular view of the point cloud and the input HDR photo. Figures, from4to15, show the rendering obtained with the expanded point cloud of scenes with HDR ground truth (SPONZA, SIBENIK, FIREROOM, ATRIUM, BUILDINGand KITCHEN) with the relative the probability maps to detect differences from the ground truth rendering computed with HDR-VDP-2.2. Below each figure, there is a table with the error measures of each rendering from the ground truth. The used error metrics are the RMS er- ror, the quality of HDV-VDP-2.2, and the Structure Similarity In- dex (SSIM). Figures18and 19show the time and memory per- formance comparison of the three versions of the PBGI algorithm (Classic, MIP-PBGI, and X-PBGI) by changing the viewport size and the microbuffer size. For (SPONZAand TOYROOM), we used two viewpoints (see Figure17): VIEW1 with a detail of the ob- ject that gets all the viewport; VIEW2 the second one where the entire object is visible in the viewport. Figure20shows the ren- derings of three different scenes, obtained with the three PBGI al- gorithms. For MIP-PBGI and X-PBGI, the PSNR value obtained from the comparison with the classic PBGI is reported. Figures, from21to26, show the comparison of the X-PBGI rendering with the ground truth obtained with a path tracing, the classical environ- ment mapping and two different versions of the Voxel Cone Trac- ing (VCT) algorithm (16 cones plus a specular cone for VCT16 and 1024 cones for VCT1024). Each rendering shows the relative error map from the ground truth using CIE LAB color space. Each figure shows the results for a pure diffuse BRDF and a GGX BRDF changing the roughness parameters.
References
[BCD∗13] BANTERLEF., CALLIERIM., DELLEPIANEM., CORSINI M., PELLACINIF., SCOPIGNOR.: Envydepth: An interface for recover- ing local natural illumination from environment maps.Computer Graph- ics Forum 32, 7 (October 2013), 411–420.3
Panoramic view point cloud HDR image
SPONZAFIREPLACESIBENIK
Figure 1:Input dataset with an equirectangular view of the point cloud and the input HDR image used for the expansion. These dataset have a ground truth HDR color for each point of the cloud. The point clouds are obtained by a Monte Carlo point sampling of three synthetic scenes after baking of the HDR diffuse color response using path tracing.
Panoramic view point cloud HDR image
ATRIUMBUILDINGKITCHEN
Figure 2:Input dataset with an equirectangular view of the point cloud and the input HDR image used for the expansion. These dataset have a ground truth HDR color for each point of the cloud. The point clouds were reconstructed from a single HDR panoramic image with a user-assisted method [BCD∗13].
Panoramic view point cloud HDR image
CORRIDOROFFICEDESKTOYROOM
SPONZA(VIEW1)
GROUNDTRUTH LDR PMATCHRGB PMATCHLUM ENDORGB ENDOLUM
EILERRGB EILERLUM LANDIS LANDISPC BANTERLE BANTERLEPC
Figure 4:Ground truth comparison of the renderings obtained with the different HDR expanded versions of the expanded point cloud Sponza computed with the methods in Section 6.2. The bottom images show the probability map to detect differences from the rendering obtained with the ground truth HDR cloud. The probability map is computed with HDR-VDR-2.2.
RENDERINGS POINTCLOUD
RMS HDR-VDP SSIM RMS
LDR 1.137 78.86 0.796 3.454
BANTERLE 10.58 78.03 0.843 8.314
LANDIS 16.97 77.60 0.833 12.97
BANTERLEPC 4.940 78.18 0.865 9.147
LANDISPC 6.844 78.11 0.857 17.15
EILERLUM 0.572 79.51 0.909 3.507
EILERRGB 0.567 79.50 0.909 3.507
ENDOLUM 1.045 79.00 0.811 3.454
ENDORGB 1.058 79.03 0.811 3.454
PMATCHLUM 0.442 79.73 0.941 3.555
PMATCHRGB 0.425 79.68 0.941 3.555
Table 1:The table contains the error measures of the expanded point clouds with respect to the ground truth HDR point cloud. The columns contain the error measures of the renderings in Figure4obtained with the X-PBGI. The used error metrics are the RMS error, the quality of HDV-VDP-2.2, and the Structure Similarity (SSIM). The green text highlights the best result for each test (for HDR-VDP and SSIM higher values are better).
SPONZA(VIEW2)
GROUNDTRUTH LDR PMATCHRGB PMATCHLUM ENDORGB ENDOLUM
EILERRGB EILERLUM LANDIS LANDISPC BANTERLE BANTERLEPC
Figure 5:Ground truth comparison of the renderings obtained with the different HDR expanded versions of the expanded point cloud Sponza computed with the methods in Section 6.2. The bottom images show the probability map to detect differences from the rendering obtained with the ground truth HDR cloud. The probability map is computed with HDR-VDR-2.2.
RENDERINGS POINTCLOUD
RMS HDR-VDP SSIM RMS
LDR 0.040 80.59 0.978 3.454
BANTERLE 0.469 78.30 0.896 8.314
LANDIS 0.820 77.70 0.871 12.97
BANTERLEPC 0.225 79.18 0.936 9.147
LANDISPC 0.351 78.69 0.909 17.15
EILERLUM 0.020 82.14 0.996 3.507
EILERRGB 0.019 82.10 0.996 3.507
ENDOLUM 0.038 80.80 0.982 3.454
ENDORGB 0.039 80.80 0.982 3.454
PMATCHLUM 0.013 83.30 0.998 3.555
PMATCHRGB 0.012 83.29 0.998 3.555
ATRIUM(VIEW1)
GROUNDTRUTH LDR PMATCHRGB PMATCHLUM ENDORGB ENDOLUM
EILERRGB EILERLUM LANDIS LANDISPC BANTERLE BANTERLEPC
Figure 6:Ground truth comparison of the renderings obtained with the different HDR expanded versions of the expanded point cloud Atrium computed with the methods in Section 6.2. The bottom images show the probability map to detect differences from the rendering obtained with the ground truth HDR cloud. The probability map is computed with HDR-VDR-2.2.
RENDERINGS POINTCLOUD
RMS HDR-VDP SSIM RMS
LDR 0.231 78.55 0.832 3.649
BANTERLE 0.114 81.82 0.938 2.383
LANDIS 0.175 80.03 0.932 3.349
BANTERLEPC 0.193 80.01 0.804 5.099
LANDISPC 0.150 80.52 0.948 2.834
EILERLUM 0.257 79.10 0.881 5.554
EILERRGB 0.240 79.11 0.881 5.554
ENDOLUM 0.245 78.87 0.824 3.549
ENDORGB 0.245 78.85 0.824 3.549
PMATCHLUM 0.109 81.33 0.969 2.145
PMATCHRGB 0.068 81.69 0.969 2.145
Table 3:The table contains the error measures of the expanded point clouds with respect to the ground truth HDR point cloud. The columns contain the error measures of the renderings in Figure6obtained with the X-PBGI. The used error metrics are the RMS error, the quality of HDV-VDP-2.2, and the Structure Similarity (SSIM). The green text highlights the best result for each test (for HDR-VDP and SSIM higher values are better).
ATRIUM(VIEW2)
GROUNDTRUTH LDR PMATCHRGB PMATCHLUM ENDORGB ENDOLUM
EILERRGB EILERLUM LANDIS LANDISPC BANTERLE BANTERLEPC
Figure 7:Ground truth comparison of the renderings obtained with the different HDR expanded versions of the expanded point cloud Atrium computed with the methods in Section 6.2. The bottom images show the probability map to detect differences from the rendering obtained with the ground truth HDR cloud. The probability map is computed with HDR-VDR-2.2.
RENDERINGS POINTCLOUD
RMS HDR-VDP SSIM RMS
LDR 0.127 79.32 0.938 3.649
BANTERLE 0.061 82.53 0.982 2.383
LANDIS 0.101 80.45 0.973 3.349
BANTERLEPC 0.100 80.75 0.941 5.099
LANDISPC 0.088 80.93 0.974 2.834
EILERLUM 0.137 79.65 0.964 5.554
EILERRGB 0.126 79.72 0.964 5.554
ENDOLUM 0.136 79.55 0.937 3.549
ENDORGB 0.136 79.54 0.937 3.549
PMATCHLUM 0.060 81.86 0.990 2.145
PMATCHRGB 0.035 82.35 0.990 2.145
BUILDING(VIEW1)
GROUNDTRUTH LDR PMATCHRGB PMATCHLUM ENDORGB ENDOLUM
EILERRGB EILERLUM LANDIS LANDISPC BANTERLE BANTERLEPC
Figure 8:Ground truth comparison of the renderings obtained with the different HDR expanded versions of the expanded point cloud Building computed with the methods in Section 6.2. The bottom images show the probability map to detect differences from the rendering obtained with the ground truth HDR cloud. The probability map is computed with HDR-VDR-2.2.
RENDERINGS POINTCLOUD
RMS HDR-VDP SSIM RMS
LDR 0.129 82.13 0.833 0.064
BANTERLE 0.182 81.63 0.913 0.087
LANDIS 0.352 80.87 0.845 0.137
BANTERLEPC 0.107 83.08 0.911 0.493
LANDISPC 0.128 82.35 0.930 0.049
EILERLUM 0.310 80.79 0.880 0.130
EILERRGB 0.278 80.78 0.880 0.130
ENDOLUM 0.154 80.77 0.835 0.100
ENDORGB 0.157 80.69 0.835 0.100
PMATCHLUM 0.059 83.38 0.985 0.046
PMATCHRGB 0.043 83.54 0.985 0.046
Table 5:The table contains the error measures of the expanded point clouds with respect to the ground truth HDR point cloud. The columns contain the error measures of the renderings in Figure8obtained with the X-PBGI. The used error metrics are the RMS error, the quality of HDV-VDP-2.2, and the Structure Similarity (SSIM). The green text highlights the best result for each test (for HDR-VDP and SSIM higher values are better).
BUILDING(VIEW2)
GROUNDTRUTH LDR PMATCHRGB PMATCHLUM ENDORGB ENDOLUM
EILERRGB EILERLUM LANDIS LANDISPC BANTERLE BANTERLEPC
Figure 9:Ground truth comparison of the renderings obtained with the different HDR expanded versions of the expanded point cloud Building computed with the methods in Section 6.2. The bottom images show the probability map to detect differences from the rendering obtained with the ground truth HDR cloud. The probability map is computed with HDR-VDR-2.2.
RENDERINGS POINTCLOUD
RMS HDR-VDP SSIM RMS
LDR 0.080 82.93 0.890 0.064
BANTERLE 0.065 82.78 0.933 0.087
LANDIS 0.080 81.80 0.909 0.137
BANTERLEPC 0.090 82.83 0.815 0.493
LANDISPC 0.066 82.99 0.938 0.049
EILERLUM 0.073 82.10 0.917 0.130
EILERRGB 0.071 82.16 0.917 0.130
ENDOLUM 0.076 82.52 0.893 0.100
ENDORGB 0.078 82.49 0.893 0.100
PMATCHLUM 0.065 83.61 0.938 0.046
PMATCHRGB 0.067 83.68 0.938 0.046
SIBENIK(VIEW1)
GROUNDTRUTH LDR PMATCHRGB PMATCHLUM ENDORGB ENDOLUM
EILERRGB EILERLUM LANDIS LANDISPC BANTERLE BANTERLEPC
Figure 10:Ground truth comparison of the renderings obtained with the different HDR expanded versions of the expanded point cloud Sibenik computed with the methods in Section 6.2. The bottom images show the probability map to detect differences from the rendering obtained with the ground truth HDR cloud. The probability map is computed with HDR-VDR-2.2.
RENDERINGS POINTCLOUD
RMS HDR-VDP SSIM RMS
LDR 0.042 80.99 0.986 5.090
BANTERLE 0.093 80.45 0.974 17.10
LANDIS 0.102 80.34 0.972 59.09
BANTERLEPC 0.117 80.11 0.946 15.51
LANDISPC 0.106 80.25 0.951 19.69
EILERLUM 0.028 82.17 0.994 4.878
EILERRGB 0.024 82.46 0.994 4.878
ENDOLUM 0.026 82.37 0.996 5.088
ENDORGB 0.025 82.31 0.996 5.088
PMATCHLUM 0.020 82.91 0.998 5.026
PMATCHRGB 0.017 83.04 0.998 5.026
Table 7:The table contains the error measures of the expanded point clouds with respect to the ground truth HDR point cloud. The columns contain the error measures of the renderings in Figure10obtained with the X-PBGI. The used error metrics are the RMS error, the quality of HDV-VDP-2.2, and the Structure Similarity (SSIM). The green text highlights the best result for each test (for HDR-VDP and SSIM higher values are better).
SIBENIK(VIEW2)
GROUNDTRUTH LDR PMATCHRGB PMATCHLUM ENDORGB ENDOLUM
EILERRGB EILERLUM LANDIS LANDISPC BANTERLE BANTERLEPC
Figure 11:Ground truth comparison of the renderings obtained with the different HDR expanded versions of the expanded point cloud Sibenik computed with the methods in Section 6.2. The bottom images show the probability map to detect differences from the rendering obtained with the ground truth HDR cloud. The probability map is computed with HDR-VDR-2.2.
RENDERINGS POINTCLOUD
RMS HDR-VDP SSIM RMS
LDR 0.073 80.83 0.976 5.090
BANTERLE 0.186 80.27 0.941 17.10
LANDIS 0.207 80.14 0.935 59.09
BANTERLEPC 0.281 79.76 0.905 15.51
LANDISPC 0.250 79.92 0.917 19.69
EILERLUM 0.034 82.38 0.991 4.878
EILERRGB 0.030 82.75 0.991 4.878
ENDOLUM 0.076 80.64 0.975 5.088
ENDORGB 0.076 80.60 0.975 5.088
PMATCHLUM 0.032 82.72 0.993 5.026
PMATCHRGB 0.027 82.85 0.993 5.026
FIREPLACE(VIEW1)
GROUNDTRUTH LDR PMATCHRGB PMATCHLUM ENDORGB ENDOLUM
EILERRGB EILERLUM LANDIS LANDISPC BANTERLE BANTERLEPC
Figure 12:Ground truth comparison of the renderings obtained with the different HDR expanded versions of the expanded point cloud FirePlace computed with the methods in Section 6.2. The bottom images show the probability map to detect differences from the rendering obtained with the ground truth HDR cloud. The probability map is computed with HDR-VDR-2.2.
RENDERINGS POINTCLOUD
RMS HDR-VDP SSIM RMS
LDR 0.052 81.97 0.972 0.551
BANTERLE 0.050 81.87 0.962 0.611
LANDIS 0.156 80.52 0.901 0.994
BANTERLEPC 0.093 80.40 0.912 1.223
LANDISPC 0.176 79.97 0.862 0.939
EILERLUM 0.160 80.30 0.914 1.690
EILERRGB 0.160 80.31 0.914 1.690
ENDOLUM 0.048 81.57 0.963 0.638
ENDORGB 0.050 81.52 0.963 0.638
PMATCHLUM 0.012 83.53 0.990 0.544
PMATCHRGB 0.012 83.54 0.991 0.544
Table 9:The table contains the error measures of the expanded point clouds with respect to the ground truth HDR point cloud. The columns contain the error measures of the renderings in Figure12obtained with the X-PBGI. The used error metrics are the RMS error, the quality of HDV-VDP-2.2, and the Structure Similarity (SSIM). The green text highlights the best result for each test (for HDR-VDP and SSIM higher values are better).
FIREPLACE(VIEW2)
GROUNDTRUTH LDR PMATCHRGB PMATCHLUM ENDORGB ENDOLUM
EILERRGB EILERLUM LANDIS LANDISPC BANTERLE BANTERLEPC
Figure 13:Ground truth comparison of the renderings obtained with the different HDR expanded versions of the expanded point cloud FirePlace computed with the methods in Section 6.2. The bottom images show the probability map to detect differences from the rendering obtained with the ground truth HDR cloud. The probability map is computed with HDR-VDR-2.2.
RENDERINGS POINTCLOUD
RMS HDR-VDP SSIM RMS
LDR 0.023 82.31 0.992 0.551
BANTERLE 0.015 82.73 0.993 0.611
LANDIS 0.051 81.21 0.978 0.994
BANTERLEPC 0.050 81.27 0.970 1.223
LANDISPC 0.085 80.55 0.955 0.939
EILERLUM 0.049 81.17 0.983 1.690
EILERRGB 0.049 81.19 0.983 1.690
ENDOLUM 0.032 81.04 0.975 0.638
ENDORGB 0.032 81.01 0.975 0.638
PMATCHLUM 0.010 83.30 0.995 0.544
PMATCHRGB 0.010 83.24 0.995 0.544
KITCHEN(VIEW1)
GROUNDTRUTH LDR PMATCHRGB PMATCHLUM ENDORGB ENDOLUM
EILERRGB EILERLUM LANDIS LANDISPC BANTERLE BANTERLEPC
Figure 14:Ground truth comparison of the renderings obtained with the different HDR expanded versions of the expanded point cloud Kitchen computed with the methods in Section 6.2. The bottom images show the probability map to detect differences from the rendering obtained with the ground truth HDR cloud. The probability map is computed with HDR-VDR-2.2.
RENDERINGS POINTCLOUD
RMS HDR-VDP SSIM RMS
LDR 0.087 80.14 0.955 1.806
BANTERLE 0.124 80.47 0.957 1.696
LANDIS 0.130 80.40 0.955 3.202
BANTERLEPC 0.141 80.16 0.949 3.857
LANDISPC 0.129 80.28 0.954 3.064
EILERLUM 0.009 84.31 0.998 1.248
EILERRGB 0.010 84.33 0.998 1.248
ENDOLUM 0.127 80.43 0.956 1.724
ENDORGB 0.122 80.47 0.956 1.724
PMATCHLUM 0.004 86.60 0.999 1.067
PMATCHRGB 0.004 86.56 0.999 1.067
Table 11:The table contains the error measures of the expanded point clouds with respect to the ground truth HDR point cloud. The columns contain the error measures of the renderings in Figure14obtained with the X-PBGI. The used error metrics are the RMS error, the quality of HDV-VDP-2.2, and the Structure Similarity (SSIM). The green text highlights the best result for each test (for HDR-VDP and SSIM higher values are better).
KITCHEN(VIEW2)
GROUNDTRUTH LDR PMATCHRGB PMATCHLUM ENDORGB ENDOLUM
EILERRGB EILERLUM LANDIS LANDISPC BANTERLE BANTERLEPC
Figure 15:Ground truth comparison of the renderings obtained with the different HDR expanded versions of the expanded point cloud Kitchen computed with the methods in Section 6.2. The bottom images show the probability map to detect differences from the rendering obtained with the ground truth HDR cloud. The probability map is computed with HDR-VDR-2.2.
RENDERINGS POINTCLOUD
RMS HDR-VDP SSIM RMS
LDR 0.225 79.06 0.905 1.806
BANTERLE 0.493 79.28 0.897 1.696
LANDIS 0.510 79.23 0.894 3.202
BANTERLEPC 0.511 79.16 0.896 3.857
LANDISPC 0.483 79.24 0.901 3.064
EILERLUM 0.065 81.82 0.980 1.248
EILERRGB 0.062 81.87 0.980 1.248
ENDOLUM 0.501 79.25 0.895 1.724
ENDORGB 0.485 79.28 0.896 1.724
PMATCHLUM 0.028 83.52 0.993 1.067
PMATCHRGB 0.024 83.55 0.993 1.067
Figure 16:X-PBGI rendering of a sphere inside the sceneTOYROOM by varying the parameters of a Disney Principled BRDF. (Top) Rendering with increasing roughness (from 0.1 to 1.0) with fixed metalness (1.0). (Bottom) Rendering with increasing metalness (from 0.1 to 1.0) with fixed roughness (0.2).
SPONZA- VIEW1 SPONZA- VIEW2 TOYROOM- VIEW1 TOYROOM- VIEW2
Figure 17:Viewpoints used for the performance comparison in Fig.18and19of the three version of the PBGI algorithms.
TOYROOM- VIEW1
MICRO-BUFFER16×16 MICRO-BUFFER24×24 MICRO-BUFFER32×32
Time(ms)
9.7 37.8
138.9 752
15.2 40
131.1
604.6
9.1 19.3 62.1
285.3
0 100 200 300 400 500 600 700 800
128 256 512 1024
21.3
85.1
598
31.2 88
293
13.3 41.4
156.7
0 100 200 300 400 500 600 700 800
128 256 512
35.2
254.5 3272
51.9
151
565.2
24.7 82.3
316.2
0 100 200 300 400 500 600 700 800
128 256 512
CLASSIC MIP-PBGI X-PBGI
Memory(MB)
11 38
147
756
6 22
89
356
0 100 200 300 400 500 600 700 800
128 256 512 1024
16 56
206
10 40
159
0 100 200 300 400 500 600 700 800
128 256 512
28
91
325
19 77
306
0 100 200 300 400 500 600 700 800
128 256 512
CLASSIC MIP-PBGI X-PBGI
Viewport Size Viewport Size Viewport Size
TOYROOM- VIEW2
MICRO-BUFFER16×16 MICRO-BUFFER24×24 MICRO-BUFFER32×32
Time(ms)
7.5 15.6
41.1 306.2
9.9 22.6
64.5
244.7
6.5 9.9 24.2
115.8
0 50 100 150 200 250 300 350
128 256 512 1024
16.7 35.2
173.5
16.4
47.9
148.4
8.8 16.9
53.1
0 50 100 150 200 250 300 350
128 256 512
27
81.2 920.6
24.8
77.9
281.6
11.5 29.8
108.5
0 50 100 150 200 250 300 350
128 256 512
CLASSIC MIP-PBGI X-PBGI
Memory(MB)
4 15
51
183
1 4 18
71
0 20 40 60 80 100 120 140 160 180 200
128 256 512 1024
7
24
81
2 8
33 0
20 40 60 80 100 120 140 160 180 200
128 256 512
11
40
135
4 15
61
0 20 40 60 80 100 120 140 160 180 200
128 256 512
CLASSIC MIP-PBGI X-PBGI
Viewport Size Viewport Size Viewport Size
Figure 18:Performance comparison (time and memory occupancy) of the three PBGI algorithms – Classic PBGI, and the proposed MIP- PBGI and X-PBGI – varying the viewport and the micro-buffer size. These tests are performed on the point cloudsTOYROOMfor the two viewpoints in Fig17. For the memory occupancy, we report the additional memory required to store the output primitives of the Geometry Shader in the Transform Feedback buffers.
SPONZA- VIEW1
MICRO-BUFFER16×16 MICRO-BUFFER24×24 MICRO-BUFFER32×32
Time(ms)
32.7
146.3
584.9 3025.8
45.4
144.8
515.5
19.2 58.2
205.1
874.1
0 100 200 300 400 500 600 700 800 900 1000
128 256 512 1024
79.9
374.9 2093.5
115.8
370.4
42.3
150
568.1
0 100 200 300 400 500 600 700 800 900 1000
128 256 512
135.9
953.3 10k
194.7
606.9
64.6
233.4
927.6
0 100 200 300 400 500 600 700 800 900 1000
128 256 512
CLASSIC MIP-PBGI X-PBGI
Memory(MB)
30 113
440
21 82
330
1342
0 200 400 600 800 1000 1200 1400
128 256 512 1024
84
304 46
184
735
0 200 400 600 800 1000 1200 1400
128 256 512
128
435
80 0
320
1280
0 200 400 600 800 1000 1200 1400
128 256 512
CLASSIC MIP-PBGI X-PBGI
Viewport Size Viewport Size Viewport Size
SPONZA- VIEW2
MICRO-BUFFER16×16 MICRO-BUFFER24×24 MICRO-BUFFER32×32
Time(ms)
23.8 36.8
126.5 890.1
24.1 75.7
242.8
930.7
9.6 20.1 58.5
227
0 100 200 300 400 500 600 700 800 900 1000
128 256 512 1024
58.9 90.3
380.6
53.1
184.7
640
15.8 41.2
132.7 0
100 200 300 400 500 600 700 800 900 1000
128 256 512
90.8 161.9
1680
81
292.5
1237.1
22.1 67.8
243.7
0 100 200 300 400 500 600 700 800 900 1000
128 256 512
CLASSIC MIP-PBGI X-PBGI
Memory(MB)
13 47
156
603
4 14 56
227
0 100 200 300 400 500 600 700
128 256 512 1024
27
101
361
7 29
115 0
100 200 300 400 500 600 700
128 256 512
45
174
643
13 52
209
0 100 200 300 400 500 600 700
128 256 512
CLASSIC MIP-PBGI X-PBGI
Viewport Size Viewport Size Viewport Size
Figure 19:Performance comparison (time and memory occupancy) of the three PBGI algorithms – Classic PBGI, and the proposed MIP- PBGI and X-PBGI – varying the viewport and the micro-buffer size. These tests are performed on the point cloudsSPONZAfor the two viewpoints in Fig17. For the memory occupancy, we report the additional memory required to store the output primitives of the Geometry Shader in the Transform Feedback buffers.
Classic PBGI MIP-PBGI X-PBGI
SIBENIK(HDR)
PSNR 46.98dB PSNR 56.63dB
FIREPLACE(HDR)
PSNR 46.33dB PSNR 48.69dB
TOYROOM(LDR)
PSNR 51.21dB PSNR 61.30dB
Figure 20:Comparison of the three different algorithms (columns) on different scenes (rows). The reported PSNR values show that changing the classic PBGI algorithm with the proposed ones (MIP-PBGI and X-PBGI) does not affect the quality of the final result.
DIFFUSIVEBRDF
Ground Truth X-PBGI Environment Map VCT 16 VCT 1024
Time 140ms Time 17.19s Time 11ms Time 6300ms
RMSE 0.0419 RMSE 0.0381 RMSE 0.1212 RMSE 0.0709
PSNR 36.83dB PSNR 37.67dB PSNR 27.62dB PSNR 34.78dB
Time 165ms Time 17.19s Time 9ms Time 4500ms
RMSE 0.0183 RMSE 0.0258 RMSE 0.0745 RMSE 0.0555
PSNR 40.77dB PSNR 37.78dB PSNR 28.56dB PSNR 31.12dB
Figure 21:Comparison of the X-PBGI rendering with the ground truth obtained with a path tracing, the classical environment mapping and two different versions of the Voxel Cone Tracing (VCT) algorithm (16 cones plus a specular cone for VCT16 and 1024 cones for VCT1024).
Each rendering shows the relative error map from the ground truth. The rendered object presents a pure diffuse BDRF.
GGX BRDF - ROUGHNESS0.5
Ground Truth X-PBGI Environment Map VCT 16 VCT 1024
Time 146ms Time 17.31s Time 12ms Time 6300ms
RMSE 0.0363 RMSE 0.0345 RMSE 0.0971 RMSE 0.0646
PSNR 38.08dB PSNR 38.53dB PSNR 29.55dB PSNR 33.09dB
Time 176ms Time 17.31s Time 9ms Time 4500ms
RMSE 0.0190 RMSE 0.0232 RMSE 0.1064 RMSE 0.0486
PSNR 40.44dB PSNR 38.68dB PSNR 25.47dB PSNR 32.28dB
Figure 22:Comparison of the X-PBGI rendering with the ground truth obtained with a path tracing, the classical environment mapping and two different versions of the Voxel Cone Tracing (VCT) algorithm (16 cones plus a specular cone for VCT16 and 1024 cones for VCT1024).
Each rendering shows the relative error map from the ground truth. The rendered object presents a GGX BDRF with roughness 0.5.
GGX BRDF - ROUGHNESS0.4
Ground Truth X-PBGI Environment Map VCT 16 VCT 1024
Time 145ms Time 17.12s Time 12ms Time 6300ms
RMSE 0.0390 RMSE 0.0399 RMSE 0.1071 RMSE 0.0720
PSNR 37.48dB PSNR 37.28dB PSNR 28.70dB PSNR 32.14dB
Time 175ms Time 17.12s Time 9ms Time 4500ms
RMSE 0.0209 RMSE 0.0261 RMSE 0.1068 RMSE 0.0545
PSNR 39.60dB PSNR 37.67dB PSNR 25.43dB PSNR 31.28dB
Figure 23:Comparison of the X-PBGI rendering with the ground truth obtained with a path tracing, the classical environment mapping and two different versions of the Voxel Cone Tracing (VCT) algorithm (16 cones plus a specular cone for VCT16 and 1024 cones for VCT1024).
Each rendering shows the relative error map from the ground truth. The rendered object presents a GGX BDRF with roughness 0.4.
GGX BRDF - ROUGHNESS0.3
Ground Truth X-PBGI Environment Map VCT 16 VCT 1024
Time 145ms Time 17.25s Time 13ms Time 6300ms
RMSE 0.0422 RMSE 0.0481 RMSE 0.1236 RMSE 0.0831
PSNR 36.79dB PSNR 35.64dB PSNR 27.45dB PSNR 30.90dB
Time 176ms Time 17.25s Time 9ms Time 4500ms
RMSE 0.0230 RMSE 0.0302 RMSE 0.1170 RMSE 0.0635
PSNR 38.76dB PSNR 36.42dB PSNR 24.64dB PSNR 29.95dB
Figure 24:Comparison of the X-PBGI rendering with the ground truth obtained with a path tracing, the classical environment mapping and two different versions of the Voxel Cone Tracing (VCT) algorithm (16 cones plus a specular cone for VCT16 and 1024 cones for VCT1024).
Each rendering shows the relative error map from the ground truth. The rendered object presents a GGX BDRF with roughness 0.3.
GGX BRDF - ROUGHNESS0.2
Ground Truth X-PBGI Environment Map VCT 16 VCT 1024
Time 144ms Time 17.29s Time 14ms Time 6300ms
RMSE 0.0478 RMSE 0.0619 RMSE 0.1426 RMSE 0.1011
PSNR 35.70dB PSNR 33.46dB PSNR 26.21dB PSNR 29.20dB
Time 174ms Time 17.29s Time 10ms Time 4500ms
RMSE 0.0271 RMSE 0.0369 RMSE 0.1381 RMSE 0.0786
PSNR 37.36dB PSNR 34.66dB PSNR 23.20dB PSNR 28.10dB
Figure 25:Comparison of the X-PBGI rendering with the ground truth obtained with a path tracing, the classical environment mapping and two different versions of the Voxel Cone Tracing (VCT) algorithm (16 cones plus a specular cone for VCT16 and 1024 cones for VCT1024).
Each rendering shows the relative error map from the ground truth. The rendered object presents a GGX BDRF with roughness 0.2.
GGX BRDF - ROUGHNESS0.1
Ground Truth X-PBGI Environment Map VCT 16 VCT 1024
Time 144ms Time 17.20s Time 17ms Time 6300ms
RMSE 0.0611 RMSE 0.0883 RMSE 0.1622 RMSE 0.1347
PSNR 33.57dB PSNR 30.37dB PSNR 25.09dB PSNR 26.71dB
Time 174ms Time 17.20s Time 12ms Time 4500ms
RMSE 0.0368 RMSE 0.0525 RMSE 0.1552 RMSE 0.1080
PSNR 34.69dB PSNR 31.61dB PSNR 22.19dB PSNR 25.34dB
Figure 26:Comparison of the X-PBGI rendering with the ground truth obtained with a path tracing, the classical environment mapping and two different versions of the Voxel Cone Tracing (VCT) algorithm (16 cones plus a specular cone for VCT16 and 1024 cones for VCT1024).
Each rendering shows the relative error map from the ground truth. The rendered object presents a GGX BDRF with roughness 0.1.