• No results found

Calibration of the modified Mohr-Coulomb fracture model by use of localization analyses for three tempers of an AA6016 aluminium alloy

N/A
N/A
Protected

Academic year: 2022

Share "Calibration of the modified Mohr-Coulomb fracture model by use of localization analyses for three tempers of an AA6016 aluminium alloy"

Copied!
20
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

ContentslistsavailableatScienceDirect

International Journal of Mechanical Sciences

journalhomepage:www.elsevier.com/locate/ijmecsci

Calibration of the modified Mohr-Coulomb fracture model by use of localization analyses for three tempers of an AA6016 aluminium alloy

Henrik Granum

a,

, David Morin

a,b

, Tore Børvik

a,b

, Odd Sture Hopperstad

a,b

aStructural Impact Laboratory (SIMLab), Department of Structural Engineering, NTNU – Norwegian University of Science and Technology, Trondheim, Norway

bCentre for Advanced Structural Analysis (CASA), NTNU, Trondheim, Norway

a r t i c le i n f o

Keywords:

Ductile fracture AA6016 Uncoupled damage Crack propagation Numerical simulations

a b s t r a ct

ThispaperpresentsanovelcalibrationprocedureofthemodifiedMohr-Coulomb(MMC)fracturemodelbyuse oflocalizationanalysesandappliesitforthreetempersofanAA6016aluminiumalloy.Thelocalizationanalyses employtheimperfectionbandapproach,wheremetalplasticityisassignedoutsidethebandandporousplasticity isassignedinsidetheband.Ductilefailureisthusassumedtooccurwhenthedeformationlocalizesintoanarrow band.Themetalplasticitymodeliscalibratedfromnotchtensiontestsusinginversefiniteelementmodelling.The porousplasticitymodeliscalibratedbyuseoflocalizationanalyseswherethedeformationhistoriesfromfinite elementsimulationsofnotchandplane-straintensiontestsareprescribedasboundaryconditions.Subsequently, localizationanalysesareusedtoestablishthefailurelocusinstressspaceforproportionalloadingconditionsand thustodeterminetheparametersoftheMMCfracturemodel.Finiteelementsimulationsofnotchtensionand in-planesimplesheartestsaswellastwoloadcasesofthemodifiedArcantestareusedtovalidatethecalibrated fracturemodel.Thepredictionsbythesimulationsareingoodagreementwiththeexperiments,eventhough somedeviationsareseenforeachtemper.Theresultsdemonstratethatlocalizationanalysesareacost-effective andreliabletoolforpredictingductilefailure,reducingthenumberofmechanicaltestsrequiredtocalibratethe MMCfracturemodelcomparedtothehybridexperimental-numericalapproachusuallyapplied.

1. Introduction

Modellingandsimulationofductilefractureinmetallicmaterialsis anactiveresearchfieldwheresignificantprogresshasbeenmadeover thelastdecades.Thisresearchisimportantsinceindustriesliketheau- tomotiveindustrywanttoutilizethematerialstothebrinkoffailure.

Thus,thedemandforaccuratepredictionsoffracturebynumericalsim- ulationsisincreasing.Reliabledesignofstructuralcomponentsagainst ductilefracturerequiresarobustnumericalframeworkabletoaccu- ratelydescribethedamageandfracturepropertiesofthematerial.In manylightweightmetals,whichhavereceivedspecialattentionbythe automotiveindustryinrecentyears,strengthandductilityareinversely proportionalproperties.Asstrengthisoftenfavouredinthiscase,the ductilityimposesagreatchallengein designofsafetycomponentsof suchmaterials.

Nucleation,growthandcoalescenceofmicroscopicvoidsatvarious lengthscalesisknowntobethephysicalmechanismgoverningductile failure.Studieshaveagreedthatthestressstateaffectstheductilityofa metallicmaterial[1–3].Theinfluenceofthehydrostaticstressstatewas discoveredearlyandhassincebeenincludedinseveralfracturemodels.

Correspondingauthor.URL:https://www.ntnu.edu/kt/fractal. E-mailaddress:henrik.granum@ntnu.no(H.Granum).

URL:http://www.ntnu.edu/kt/fractal(H.Granum)

Morerecently,theinfluenceofthedeviatoricstressstateonductilityhas beenproventhroughexperiments,see[4],forexample.Thisledtopro- posalsofbothnewandmodifiedversionsofexistingfracturemodelsto incorporatethisdependence.Avarietyofapproachestomodelductile fracturearecurrentlyavailable.Notablementionsareporousplasticity, continuumdamagemodels,forminglimitcurvesanduncoupleddam- agemodels.Thelatterapproachispopularduetoitssimplicity,where thedamageevolutionis uncoupledfromtheconstitutiveequationin contrasttoporousplasticityandcontinuumdamagemodels.Material degradation isthusnotaccountedforandthedamageismerelyrep- resentedbyascalarvariable.Thiscomeswiththeadvantagethatthe fracturemodelmaybecalibratedindependentlyoftheplasticitymodel, simplifyingtheidentificationofmodelparameterssignificantly.Theun- coupledfracturemodelsareusuallypresentedonlocusformwherethe failurestrainisdefinedbythestressstate.Bythisapproach,thevalid- ityofthefailurestrainisconfinedtoproportionalloadingpaths.Dam- ageisoftenaccumulatedbyanintegral-basedapproachwheredamage evolveswithincrementsoftheequivalentplasticstrainovertheplastic strainpath.Byemployingsuchadamageaccumulationapproach,the modelisjustifiedintheliteraturetobevalidinsimulationsinvolving

https://doi.org/10.1016/j.ijmecsci.2020.106122

Received29June2020;Receivedinrevisedform15September2020;Accepted27September2020 Availableonline2October2020

0020-7403/© 2020TheAuthor(s).PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/)

(2)

curvesfromthesimulationstothoseoftheexperiments.Theaccuracy ofthisapproachreliesonexperimentsthatcoverarangeofstressstates andexhibitclosetoproportionalloadingpathsallthewaytofracture.

Thelatterrequirementisdifficulttofulfilformoststressstates.Asanal- ternativetothisapproach,localizationanalysesmaybeusedtopredict ductilefailure.Anunderlyingassumption hereisthatstrainlocaliza- tionisaprecursortofailure,andthusmayberegardedastheonsetof fracture.Mechanicaltestsarethenonlyneededtocalibratetheconstitu- tiveequationsusedinthelocalizationanalysesandthereisnorequire- mentforproportionalloadingpaths.Morinetal.[7]combinedunitcell simulationsandlocalizationanalysestopredictfailureofasteelunder non-proportionalloading.Thenumericalresultswerevalidatedagainst experimentalresultsreportedbyBasuandBenzerga[8]andfoundtobe ingoodagreement.Theversatilityandeffectivenessofthelocalization analysesweredemonstratedbyMorinetal.[9]wherefailureloci of metalsweregeneratedfromlocalizationanalysesandappliedtoanad- vancedhigh-strengthsteelsubjectedtoproportionalloadingpaths.The resultswereevaluatedagainst3DunitcellanalysesbyDunandandMohr [10]andproventogivecomparableresultsinafractionofthecompu- tationaltime.Grubenetal.[11]appliedanexperimental-numericalap- proachtodeterminethestrainlocalizationandductilefractureoftwo dual-phasesteels.Fourteststhatcoveredstressstatesfromsimpleshear toequi-biaxial tensionwereconducted.Numericalsimulationsofthe testswereperformed,andthefailurestrainswereestimatedbycom- parisontotheexperimentaldata.Localization analysesbyuse ofthe imperfectionbandapproachwereconductedtopredicttheonsetoflo- calization.Theresultsindicatedthatthelocalizationanalysesprovided conservativevalues ofthefailurestrainsandthatthestressstatein- sidethebandtendstomovetowardsageneralizedshearstatepriorto localization.Bergoetal.[12]usedunitcellsimulationsandlocaliza- tionanalysestocalibratefailurelociforthreedifferentsteels.Thestudy wasconfinedtogeneralizedtensionstressstatesandthusonlythede- pendenceonstresstriaxialitywasincluded.Theuncoupledplasticity andfracturemodelswerecalibratedbasedonasingleuniaxialtension testandmicromechanicalsimulationsusingunitcells,metalandporous plasticityandlocalizationtheory.Thepredictedductilitywassomewhat conservativeforWeldox460Eandnon-conservativeforWeldox900E, butaccurateforWeldox700E.Itwasemphasizedthattheaccuracyof thelocalizationanalysesreliesheavilyonanaccuratecalibrationofthe porousplasticitymodel.However,itwasnotedthatthisapproachis wellsuitedtoreducetheexperimentalprogrammerequiredtocalibrate fracturemodels.

Wierzbickietal.[13],Lietal.[14],Grubenetal.[15]andBaietal.

[16]haveallpresentedstudiescomparingthepredictivecapabilitiesof differentuncoupledfracturecriteriaforvarioussteelsandaluminium alloys.Severalofthecriteriaevaluatedareheuristicextensionsofwell- knowncriterialike theMohr-Coulomb(MC),Cockcroft-Latham (CL), Rice-Tracey(RT)andWilkinscriteriatonameafew.AsWierzbickietal.

[13]pointedout,thequalityofafracturecriterionintendedforindus- trialapplicationmayberoughlymeasuredbytheperformanceandthe cost.Here,performanceisdefinedbytheaccuracyofsimulationscom- paredtoexperimentaltests,whilethecostisrelatedtothenumberof mechanicaltestsneededtocalibratethemodelandthecomplexityre- latedtothis.Amongthecriteriawithonlyonemechanicaltestrequired forcalibrationistheCLcriterion.Ithasbeenusedwithsuccessinmany

T351aluminiumalloyandaTRIP690steel,andvalidateditagainstvar- iousmechanicaltests.Accuratepredictionsoffractureinitiationwere obtained,butitwasnotedthatthepredictionswerelessaccurateingen- eralizedtension.DunandandMohr[20]investigatedthepredictiveca- pabilityoftheMMCfracturemodelbycomparingpredictionstofracture experimentsonTRIP780steel.Ninedifferentexperimentswereusedin thecomparisoncoveringwiderangesofstresstriaxialityandLodepa- rameter.Fractureinitiationwascorrectlypredictedinallsimulationsof thetests.Itwassuggestedthattheunderlyingphysicsofthefracture modelisoflessimportancethanitsmathematicalflexibility,implying thateventhoughphenomenologicalfracturemodelsaremotivatedby micromechanicalobservations,theirabilitytofitexperimentaldatais asuperiorcharacteristic.However,afracturemodelwithhighflexibil- ityallowserroneouscalibrationandrequiresdetailedknowledgebythe user.

A modificationof theMMC fracturemodeldenotedthe Hosford- Coulomb (HC) fracturemodelwas proposed byMohr andMarcadet [5], wherethevonMisesequivalentstresswas replacedbytheHos- fordequivalentstressincombinationwiththenormalstressactingon theplaneofmaximumshear.TheHCfracturemodelisbasedonthe extensivestudyon3DunitcellsbyDunandandMohr[10],thusithas amicromechanicalfoundationincontrasttotheMMCfracturemodel.

TheHCfracturemodelwaspresentedonlocusform,anddamageac- cumulationwastakencareofbyanintegral-basedapproach.Fracture experimentsonthreedifferentsteelswereconductedandthreeexper- iments wereused tocalibratethefracturecriterion.Whencompared againsttheexperiments,thesimulationsshowedgood agreementfor thethreematerialsandfracturewasaccuratelypredictedinallcases.

GorjiandMohr[21]andZhangetal.[22]investigatedductilefracture inthealuminiumalloyAA6016.InGorjiandMohr[21],theHCfrac- turemodelwasemployedincombinationwithananisotropicplasticity modeltopredictshearfractureindeepdrawingtests.Eightcupdraw- ingexperimentswereusedinthecalibrationprocesstoincreasethero- bustnessofthefracturemodel.Theresultsshowthattheplasticityand fracturemodelscanpredictthelocationandtheonsetoffracturewith goodaccuracy.InZhangetal.[22],ananisotropicDruckeryieldfunc- tionandafracturecriterionproposedbyLouetal.[23]wereemployed, whereasimplesheartestandtwonotchtensiontestswithdifferentradii wereusedinthecalibrationofthefracturecriterion.Bycomparingthe experimentstothesimulationsitwasfoundthattheonsetoffracture wasaccuratelypredictedintestsrangingfromsimplesheartouniaxial tension.

Inthepresentstudy,weapplyanisotropicplasticityandfracture modeltopredictductilefractureinvariousexperiments,wherespeci- mensaretakenfromAA6016aluminiumalloysheetsinthreedifferent tempers.TheMMCfracturemodelwasselectedandcalibratedbyuseof localizationanalysesbasedontwomechanicaltests.Thestudyisanat- uralextensiontotheworkbyBergoetal.[12]whereastresstriaxiality dependantfracturemodelwasinvestigatedtogetherwithanisotropic plasticitymodel.Theaimofthestudyistoassesstheaccuracyofthe calibratedMMCfracturemodelbycomparisonagainstmechanicaltests, wherethemodel’sabilitytopredictfractureinitiationandcrackpropa- gationisevaluatedforarangeofstressstates.Theresultsdemonstrate thattheuseoflocalizationanalysestocalibrateafracturemodelhas

(3)

Table1

ThechemicalcompositionofAA6016inwt%.

Si Mg Fe Cu Mn Cr Zn Ti Al

1.3160 0.3490 0.1617 0.0081 0.0702 0.0025 0.0084 0.0175 Balance

thepotentialtobeacost-effectiveandaccuratewayofpredictingduc- tilefractureandcrackpropagation.

2. Materialsandmechanicaltests 2.1. Materials

Experimentswereconductedonthreedifferenttempersofthealu- miniumalloyAA6016.Thematerialsweredeliveredas1.5mmthick plateswith in-plane dimensions625mm ×625 mm in tempers T4, T6andT7byHydroAluminiumRolledProductsinBonn.Thisalloy ismainlyusedintheautomotiveindustryasouterbodypanelsdueto itsexcellentsurfacequality,goodformability,andhighstrength.Toob- tainthevarioustempers,allplateswerefirstsolutionheat-treatedat 530°CbeforebeingairquenchedtoreachtemperT4.TempersT6and T7werethenobtainedforsomeoftheplatesbyartificialageingfor5h at185°Candfor24hat205°C,respectively.Thechemicalcomposi- tionofthealloyisgiveninTable1.Theyieldstrengthofthetempers rangesfrom about135MPaforT4to245MPafor T6,andtheulti- matetensilestrengthrangesfromroughly200MPaforT7tojustbelow 300MPaforT6.Allmechanicaltestswerecarriedoutwiththelongi- tudinalaxisalongtherollingdirection,unlessspecifiedotherwise.The initialthicknessofallspecimenswasmeasuredandfoundtobesimilar tothenominalplatethicknessof1.5mm.AnInstron5985seriesuniver- saltestingmachinewasusedinalltests,wheretheforcewasmeasured bya30kNloadcellattachedtotheactuator.AProsilicaGC2450camera orientatedperpendiculartothein-planeaxesofthespecimencaptured imagesfromalltests.Allspecimenswerespray-paintedwithaspeckle patterntoenable2Ddigitalimagecorrelation(2D-DIC)byuseofthe in-housesoftwareeCorr[24].

2.2. Uniaxialtensiontests

InGranumetal.[25],uniaxialtensiontestsinthreedifferentdirec- tionswithrespecttotherollingdirection(0°,45° and90°)oftheplates wereconducted.Additionaluniaxialtensiontestsintherollingdirec- tionoftheplatewereconductedonlyfortemperT4inconjunctionwith thematerialtestprogrammepresentedinthisstudy.Thiswasdoneto monitorthenaturalageingthatoccursintemperT4underprolonged roomtemperaturestorage,resultinginsoluteclustering.Thiseffectis knowntoslightlystrengthenthealloy.Thespecimenhadagaugelength of70mmandawidthof12.5mm,andisdepictedinFig.1a).Thetests wereconductedwithacrossheadvelocityof2.1mm/min,resultingin aninitialstrainrateof5 ×104s1inthegaugeregion.Avirtualex- tensometerwithaninitiallengthof60mmwasusedtoextractdisplace- mentsbyuseof2D-DIC.

2.3. Notchtensiontests

Notchtensiontestsintherollingdirectionwithtwodifferentnotch radiiwereconducted,withgeometryinspiredbythespecimensusedin Ericeetal.[26].ThetwospecimensaredenotedNT10andNT3,and thegeometriesaredepictedinFig.1b)andFig.1c),respectively.The NT10specimenhadanotchradiusof10mm,whiletheNT3specimen hadanotchradiusof3.35mm.Theminimumwidthofthenotchwas 5mmforbothgeometries.Thespecimensweretestedwithacrosshead velocityof0.6mm/min.Forcemeasurementfromtheloadcellandim- agesfromthecamera wererecordedat2Hz.Twosetsofvirtualex- tensometersavailableineCorrwereusedinthepost-processingofthe

experiments,oneglobalandonelocal.Theinitiallengthoftheglobal andlocalvirtualextensometerswas15mmand2mm,respectively,for bothtestgeometriesandthevirtualextensometerswereplacedcentric tothenotchradius.

2.4. Plane-straintensiontests

Thegeometryoftheplane-straintension(PST)specimenisdepicted inFig.1d).Ithadalengthof100mmandawidthof40mm.Theopening ofthenotchwas10mmandthewidthatthenarrowestpointinsidethe notchwasmeasuredto17.33mm.Theforcewasmeasuredbytheload cellandimagesweretakenbythecameraat2Hz.Thetestswerecon- ductedwithmechanicalclamps,wheretheclampedregiononeachside ofthegaugewasapproximately40mm×35mm.Priortotesting,the clampedregionsofthespecimenweresandeddowntoensuregoodgrip betweentheclampsandthespecimen.Thetestswereconductedwith acrossheadvelocityof0.4mm/min.Twoglobalvirtualextensometers withaninitiallengthof10mmpositionedapproximately16mmfrom thecentreofthenotchwereusedtoextractthedisplacementsintheDIC calculations.ThedisplacementsfromtwovirtualextensometersineCorr wereusedtoensurethatnorotationswereenforcedduringloading.A localvirtualextensometerwithagaugelengthof2mmplacedcentric acrossthenotchwasusedtoobtainlocalmeasurementsfromthetests.

2.5. In-planesimplesheartests

Thein-planesimpleshear(ISS)specimenhadagaugelengthof5mm andthegeometryisdepictedinFig.1e).Thetestswereconductedwith acrossheadvelocityof0.15mm/mininanattempttoobtainaninitial strainrateinthegaugeregionof 5 ×104s-1.Avirtualextensome- terineCorrspanningacrossthegaugeregionwithaninitiallengthof 10.05mmwasusedtoextractdisplacements.Acameraaimedperpen- diculartothein-planesurfacecapturedimagesandforcemeasurements wererecordedbytheloadcell,bothat1Hz.

2.6. ModifiedArcantests

SixmodifiedArcanspecimenswerecutfromaplateofeachtem- per.ThegeometryofthespecimenisgiveninFig.1f).Thespecimen wasclampedbyfourloadingbracketsusing12M6-boltsasshownin Fig.2.Twodifferentloadcaseswereapplied byalteringtheloading direction𝛽;three with𝛽 = 90° andthree with𝛽 = 45° asshown in Fig. 2a)andFig. 2b), respectively. All tests wereconducted witha crossheadvelocityof1mm/min,similartothosecarriedoutin[27]. Thetestsareabbreviated“Arcan𝛽” todistinguishbetweenthetwoload cases.IntheArcan90tests,thespecimenisloadedinatensionmode wheretheloadaxiscoincideswiththespecimen’slongitudinalaxis.The pinconnectingthemountingbracketstothetestmachineallowsthe mountingbracketsandspecimentorotatewhenloaded,enablingthe specimentotearopen.IntheArcan45tests,thespecimenissubjected toamixed-modeloading.Thewidthatthenarrowestpointinthegauge sectionwasmeasuredto32mmwithnegligiblevariationsbetweenthe specimens.Avirtualextensometerofinitiallength10.5mmspanning acrossthenotchalongthelongitudinalaxisofthespecimenineCorr wasusedtoextractdisplacementsbyuseof2D-DIC.

(4)

Fig.1. Geometryoftestspecimenswithmeasuresinmm:a)uniaxialtension,b)andc)notchtension,d)plane-straintension,e)in-planesimpleshearandf)modified Arcan.

Fig.2. TestsetupofamodifiedArcanspecimenwitha)𝛽=90° andb)𝛽=45°

3. Experimentalresults 3.1. Uniaxialtensiontests

Engineeringstress-straincurvesofrepresentativetestsfromGranum etal.[25]areplottedinFig.3a).Aslightvariationinelongationat fracturebetweenthedifferenttensiledirectionsisseenforeachofthe tempers,whiletheflowstressshowedamaximumdeviationof3%.The LankfordcoefficientsR𝛼 werecalculatedfor alltensiontests andare listedinTable2,where𝛼denotestheanglewithrespecttotherolling direction.Allcoefficientsarebelowunityandsomewhathigherinthe rollingdirection.Thesimilarityinflowstressbetweenthethreedirec- tionssuggeststhatthealloyexhibitsisotropicpropertieswithrespect tostrengthandstrainhardening.However,theLankford coefficients suggestthatthematerialisprone tothinningandexhibitsmoderate

Table2

LankfordcoefficientsR𝜶forrepre- sentativetensiontests.

Temper R 0 R 45 R 90

T4 0.58 0.45 0.44 T6 0.69 0.48 0.55 T7 0.77 0.57 0.62

anisotropyinplasticflow.Theequivalentstrainattheonsetoffracture wasfoundbyuseofDICwhereacharacteristicelementsizeof0.57mm wasused.MultipleDICsimulationswithaslightlyshiftedpositionof themeshwereconductedtoavoidresultsbiasedbytheDICmesh.For thetestsintherollingdirection,theaveragelogarithmicfracturestrain cameoutas0.70,0.33and0.73fortempersT4,T6andT7,respectively.

(5)

Fig.3. Engineeringstress-straincurvesfrom:a)representativetestspresentedinGranumetal.[25]andb)representativetestsintemperT4conductedinconjunction withthemechanicalteststomonitortheeffectofnaturalageing.

Thesevaluesrepresentthestrainwherefractureinitiatesatthesurface ofthespecimen.

Theengineeringstress-straincurvesforthreesetsoftemperT4tests arepresentedinFig.3b).TheT4–1curveisarepresentativetestinthe rollingdirectionfromFig.3a).T4–2isatestconductedinconjunction withthemodifiedArcantestsandT4–3isatestconductedinconjunc- tionwiththeplane-straintensionandin-planesimplesheartests.The numberingofthetestsindicatestheordertheywereperformedin,i.e., theT4–1testwasconductedatanearlierpointintimethantheT4–2 test,whichwasperformedpriortotheT4–3test.Itisseenthatnatural ageingincreasesthestrengthastheT4–2andT4–3curvesareshiftedup- wardscomparedtotheT4–1curve.However,thenaturalageingseems tohavereachedsaturationwhentheArcantestsweredone,asthedif- ferencebetweentheT4–2andT4–3curvesisnegligible.Thiseffectwas alsoinvestigatedbyEngleretal.[28]forthesamematerialandthe readerisreferredtothisworkforathoroughdiscussionofthis phe- nomenon.DuetothenegligibledifferencesbetweentheT4–2andT4–3

curves,theneedformultiplecalibrationsoftheplasticitymodelforthis temperwasdeemedunnecessary.

3.2. Notchtensiontests

TheexperimentalresultsfromtheNT10andNT3testsareshownin Fig.4.Therepeatabilityofthenotchtensiontestswasexcellent,and thusonlyonetestperconfigurationisplotted.Thedisplacementwas extractedfrom theglobalvirtualextensometerwhilethelogarithmic strainiscalculatedfromthedisplacementmeasuredbythelocalvir- tualextensometer.Theforcelevelsbetweenthetwotestgeometriesare similarwhilethedisplacementsareslightlylargerforthelargestnotch radius.Thelocalstrainisalsoseentobehigherinthetestswiththe largestnotchradius.Thisisexpectedasthesharpernotchradiuscon- finesthegaugesectionmorethanthelargernotchradius,resultingin higherstresstriaxialitieswithinthisregion.

Fig.4. Experimentalresultsfromthea)NT10andb)NT3testsintermsofforce-displacementandlogarithmicstrain-displacementcurves.

(6)

Fig.5. Fracturesurfacesofa)NT10andb)NT3testsforthethreetempers.

Fig.6. Force-displacementandlogarithmicstrain-displacementcurvesfrom plane-straintension(PST)tests.

Fracturedspecimensfromthesixdifferentnotchtensiontestswere examinedbyvisualinspectionandareshowninFig.5.Onlyonetest perconfigurationisshownasnegligibledifferenceswereseenbetween fracturesurfacesofrepeatedtests.Aslantfracturesurfacewasfound foralltests,eventhoughsomeNT3testsdisplayed roughshearlips.

Ingeneral,thefracturesurfaceswererougherfortemperT7thanfor tempersT4andT6, andshear lipsweremoreprominentin theNT3 teststhanintheNT10tests.

3.3. Plane-straintensiontests

Theforce-displacementandlogarithmicstrain-displacementcurves fromrepresentativeplane-straintensiontestsareshowninFig.6.Du- plicatetestsarenotshownduetotheexcellentrepeatability.Theresults areinaccordancewiththetrendsseenforthenotchtensiontests,where themostprominentdifferencebeingthesimilarityinelongationatfrac- turebetweentempersT6andT7.Thefractureinitiatedin thecentre ofthespecimenforalltestsandpropagatedinastraightlinetowards thefreeedges,perpendiculartotheloadingdirectionasseeninFig.7. ForthetestsintemperT6,thecrackpropagatedinstantlyresultingin asuddenlossofload-carryingcapacity,whilethetestsin temperT4 exhibitedslightlyslowercrackpropagation.OnlytheT6–3testexperi- encedcompletefracture,wherethespecimenwaspulledapart.Inthe restofthetests,theforceleveldroppedbelowathresholdlimitatwhich thetestwasstoppedautomatically.ForthetestsintemperT7,thecrack propagatedslowlyandittookapproximately40sfrominitiationtocom- pletion.ByinspectionofthefracturedT6–3specimenshowninFig.7,

aslantfracturesurfacewasobserved,wherethecrackwasseentoflip totheotheradmissibleshearband.

3.4. In-planesimplesheartests

Theforce-displacementcurvesfromthesheartestsareshowntothe leftinFig.8wherethenumberedmarkerscoincidewiththenumbered imagesontheright-handside.Owingtoslightscatter,resultsfromall repeattestsarepresented.Thestrainfieldsobtainedby2D-DICreveal thatstrainslocalizedinathinbandacrossthegaugesectioninalltests (notshownforbrevity).Byinspectionoftheimages,fractureseemingly occurredsimultaneouslywithinthisband,astheoriginoffractureiniti- ationwasdifficulttopinpointexactly.In-planerotationswereobserved inalltests,resultinginanangleofthelocalizeddeformationbandcom- paredtotheloadingdirection,asevidentfrom theimagesin Fig.8. Theangleofthebandwithrespecttotheloadingdirectionwassimilar between repetitionsandtempers.Thedropin theforce-displacement curves,particularlyfortemperT7,ispresumedtooccurduetothecom- binedeffectofmaterialsofteningandareareductioninthelocalized deformationband.ThesheartestsindicatedthattemperT7hassupe- rior ductilitycomparedtotempersT4andT6, andthehighductility makes itdifficulttopinpointtheonsetof fracturein thetemper T7 tests.Byinspectionoftheimages,theonsetoffractureisanticipated tooccursomewherebetweenpoint2and3intherepresentativeforce- displacementcurvefortemperT7inFig.8.Allspecimensdisplayeda smoothandflatfracturesurfacethroughthethickness,andtherewere negligibledifferencesamongrepetitionsandtempers.

3.5. ModifiedArcantests

Theforce-displacementcurvesfromthemodifiedArcan45andAr- can90tests areshownin Fig.9a)andFig.9b),respectively.Overall, thetrendsareinaccordancewiththeothermechanicaltestspresented showingthattemperT6givesthehighestpeakforcefollowedinturn bytempersT4andT7.Thepeakforcesareconsistentlyhigherinthe Arcan90teststhanintheArcan45tests,andtheratiobetweenthepeak forcesinthetwoloadcasesisalmostidenticalamongstthetempers.The displacementatpeakforceissmallerintheArcan45teststhaninthe Arcan90tests,butthefinaldisplacementislargerintheformer.This islinkedtothecrackpathsbeinglongerintheArcan45teststhanin theArcan90tests,especiallyfortempersT4andT6.AsFig.9b)indi- cates,theArcan90-T6testexperiencedasuddenlossofload-carrying capacityasthecrackpropagatedinstantlyacrossthespecimenbetween twoimagesofthetest.EventhoughtemperT7isthemostductileal- loycondition,thetestsintemperT4exhibitsthelargestdisplacements.

Thisislinkedtothecombinationofadequatestrength,work-hardening andductilityintemper T4,whichseemstobemorefavourable than thehighductilityandlowwork-hardeningseenfortemperT7inthese tests.

(7)

Fig.7.Fracturedplane-straintensionspecimensandfracturesurfaceoftestspecimenT6–3.Theredlinesonthepicturesindicatethecrackpath.(Forinterpretation ofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

Fig.8.Force-displacementcurvesfromthein-planesimpleshear(ISS)testswherethenumberedmarkerscoincidewiththeimagesontheright-handside.

Fig.9. Force-displacementcurvesfroma)theArcan45testsandb)theArcan90tests.

(8)

Fig.10. FracturedspecimensshowingthedifferentfracturemodesofthemodifiedArcantestswithcorrespondingfracturesurfaces.

Fracturedspecimens fromthe modifiedArcan tests areshownin Fig.10.Intheupperpartofthefigure,thethreedifferentfracturemodes observedinthetestsaredisplayed.Acurvedcrackpathwasobservedin boththeArcan45-T4andtheArcan45-T6tests.IntheArcan45-T6tests, thecrackwasarrestedapproximately10mmfromtheedgeandthetests werestoppedastheforceleveldroppedbelowalowerthreshold.Inthe Arcan45-T4tests,thecrackwasarrestedapproximately5mmfromthe edgewhenstopped,butduringthedismantlingofthespecimensfrom theloadingbrackets,thespecimenswerepulledapart.Byinspectionof thefracturesurfacesfromtheArcan45-T4tests,allthreetestsexhib- itedthealternatingslantfracturephenomenon.Thecrackinitiatedand propagatedinaslantfracturemodeuntilarrested.Byinspectionofthe Arcan45-T6specimen,thefractureinitiatedinaV-modeandpropagated inthismodeforapproximately3mmbeforeittransitionedtoaslant fracturemode.Thealternatingslantfracturephenomenonwasnotob- servedinanyofthesetests.TheV-modewasalsoseeninGrubenetal.

[29]forArcan45specimensmadeofDocol600DLsteel.IntheArcan45- T7tests,fractureinitiatedinaV-modewithinthesameareaasforthe Arcan45-T4andArcan45-T6tests,andthecrackinitiallyfollowedasim- ilarcurvedpath.However,thecrackpathdeflectedabruptlyafterafew millimetresandpropagatedperpendicularlytothelongitudinalaxisof thespecimenasshowninFig.10.Thefracturesurfaceswereroughwith evidentshearlips.AlltheArcan90testsexhibitedasimilarcrackpath forallthreetempers,butdifferencesinthefracturesurfaceswereseen.

IntheArcan90-T4tests,thefractureinitiatedandpropagatedinaslant fracturemodewherethecrackwasseentoflipabruptlythroughoutthe deformationinalltests.OneoftheArcan90-T6testsinitiatedinaV- modebeforeatransitiontoslantfracturewasseen,whilethetwoothers initiatedinaslantfracturemode.BoththeArcan90-T4andArcan90-T6 testsshowedasmoothfracturesurface,whiletheArcan90-T7testshad arougherfracturesurface,similartowhatwasseenintheArcan45-T7 tests.

4. Modellingandsimulation 4.1. Stressstateparameters

Anyadmissiblestressstatecanbe expressedbythethreeordered principalstresses𝜎1𝜎2𝜎3givenby

𝜎1= 2

3𝜎vMcos(𝜃)+𝜎h (1a)

𝜎2= 2 3𝜎vMcos

(𝜃−2𝜋 3

)

+𝜎h (1b)

𝜎3= 2 3𝜎vMcos

(𝜃+2𝜋 3

)

+𝜎h (1c)

where0≤𝜃π6 isthedeviatoricangle,𝜎vM=√

3𝐽2 isthevonMises equivalentstress,and𝜎h=I1/3isthehydrostaticstress.Here,J2andI1 arethesecondprincipaldeviatoricstressinvariantandthefirstprinci- palstressinvariant,respectively.Thestressstatemaybeconveniently describedbythestresstriaxialityTandtheLodeparameterL.Thestress triaxialityisdefinedastheratiobetweenthehydrostaticstress𝜎hand thevonMisesequivalentstress𝜎vM,viz.

𝑇= 𝜎h

𝜎vM

(2)

TheLodeparameterdescribesthedeviatoricstressstate,andisde- finedeitherintermsofthedeviatoricangle𝜃ortheorderedprincipal stresses(𝜎1,𝜎2,𝜎3)as

𝐿=√ 3tan

(𝜃𝜋 6 )

= 2𝜎2𝜎1𝜎3

𝜎1𝜎3

(3)

TherangeoftheLodeparameterisL∈[−1,+1],whereL=−1,0 and+1representstatesofgeneralizedtension,generalizedshearand generalizedcompression,respectively.

(9)

4.2. Plasticitymodel

Theconstitutiverelationisgivenbythehigh-exponentyieldsurface proposedbyHershey[30]andHosford[31],theassociatedflowrule andanextendedVocehardeningrule.Eventhoughthematerialexhibits moderateplasticanisotropyaccordingtotheLankford coefficient,an isotropicplasticitymodelisapplied.Theequivalentstressisgivenby theprincipalstressesas

𝜎eq=(1

2(||𝜎1𝜎2||𝑎+||𝜎2𝜎3||𝑎+||𝜎3𝜎1||𝑎))1𝑎

(4) whereaisaparametercontrollingthecurvatureoftheyieldsurface.

Thisparameteris settoa= 8in thisstudyassuggestedbyHosford [32]basedonpolycrystalplasticitycalculations.Theyieldfunctionis expressedas

𝜙= 𝜎eq𝜎M= 𝜎eq−(

𝜎0+𝑅(𝑝))

≤0 (5)

where𝜎Misthematrixmaterialflowstress,𝜎0istheyieldstress,Risthe hardeningvariableandpistheequivalentplasticstrain.Thehardening variableisdefinedbyanextendedVocehardeningruleontheform 𝑅(𝑝)=

3 𝑖=1

𝑅𝑖(𝑝)=

3 𝑖=1

𝑄𝑖( 1−exp(

𝐶𝑖𝑝))

(6)

whereRiarehardeningtermsthatsaturateatdifferentlevelsofplastic strain.ThehardeningparametersQiandCiworkinpaircontrollingthe strainhardeningofthematerial.

4.3. MMCfracturemodel

FractureinthesimulationsisgovernedbyamodifiedMohr-Coulomb fracturemodel.TheversionoftheMohr-Coulombmodelusedin this studywasinspiredbytheoneproposed byBaiandWierzbicki[19]. Theytransformedtheoriginalmodelintolocusformwherethefailure strain̄𝜀f,i.e.,theequivalentplasticstrainatfailure,wasdefinedinterms ofthestresstriaxialityTandtheLodeangleparameter ̄𝜃 .Thelatter isanormalizedparameteroftheLodeangleandiswithin therange

̄𝜃∈ [−1,+1].Inthisstudy,theLodeparameterLisusedinsteadofthe Lodeangleparameter ̄𝜃,andtheexpressionforthefailurestrain ̄𝜀f is thengivenas[19]

𝜀f(𝐿,𝑇)=

⎧⎪

⎨⎪

𝐾̂𝐶2

[

̂𝐶3+

√3 2−√

3 (̂𝐶4̂𝐶3

)(sec(−Lπ 6

)

−1)]

×

⎡⎢

⎢⎣

√ 1+ ̂𝐶12

3 cos(−𝐿𝜋 6

) + ̂𝐶1

(𝑇+1 3sin(−𝐿𝜋

6 ))⎤⎥

⎥⎦

⎫⎪

⎬⎪

1 𝑛

(7)

where

̂𝐶4=

{1 for −1≤𝐿≤0

̂𝐶4 for 0<𝐿≤1 (8)

Themodelhassixparametersthatmustbecalibrated: ̂𝐶1 governs thepressuredependence; ̂𝐶2andKcontroltheoverallductility; ̂𝐶3de- terminestheLodeparameterdependence; ̂𝐶4governstheasymmetryof thefailurelocusbetweenstatesofgeneralizedtensionandcompression;

andincreasingvaluesofnshifttheductilityupwardsanddecreasethe stresstriaxialityandLodeparameterdependence[19].

Damageis introduced by the damage variableD which is setto evolvewithincrementsoftheequivalentplasticstrainp,givenas 𝐷(𝑝)=

𝑝 0

d𝑝

𝜀f(𝐿,𝑇) (9)

Thematerialisundamagedinitsinitialconfiguration,i.e.,D=0, andfractureinitiateswhenD=1.Whereasthefailurelocusisvalidfor proportionalloadingonly,thedamageaccumulationruleisassumedto accountfornon-proportionalloadpathsinanapproximateway.

4.4. Finiteelementmodelling

The finiteelement (FE) simulations of themechanical tests used in the calibration process were conducted with the implicit solver of Abaqus[33]withdisplacement-controlledloading.Allsimulations withtheMMCfracturemodelwereconductedusingtheexplicitsolver of Abaquswith velocity-controlledloading. Thespecimensweredis- cretizedbyuseof8-nodelinearbrickelementswithselectivereduced integration,denotedC3D8inAbaqus.Fractureismodelledbyelement erosion,whereelementsareremovedwhenDinEq.(9)reachesunity.In thesimulationsoftheNT3,NT10andPSTtests,threesymmetryplanes wereutilized,andthereducedmodelswereoptimizedwithrespectto thenumberofelements.Thevalidityofthereducedmodelswithop- timizedmeshdesignwas verifiedagainstselected simulationsof the fullspecimenwithadense,uniformmesh.Thedifferencesinthepre- dictedcrackinitiationandpropagationbetweensimulationswiththe optimizedanduniform meshdesignswerenegligible.Themaximum timestepintheimplicitsimulationswasselectedsothateachsimula- tionhadaround200increments.Allsimulationswereconductedwith 5elementsoverthehalf-thicknessandanin-planediscretizationinthe gaugeregionwithacharacteristicelementsizeof0.15mm.Thisresulted ininitiallycubic-shapedelementsinthegaugeregion.

Anin-planeviewoftheFEmodelswiththemeshdepictedonthe initialgeometryofthespecimensisshowninFig.11.Inallsimulations, exceptforthesimulationsofthePSTtests,theloadwasassignedtoa referencenodepositionedinthecentreofthepinhole.AnMPCbeam constraintwasusedtoconnectthereferencenodetotheelementset ontheboundaryofthespecimen,tomimictheeffectofapinpulling thespecimen.Thisisvisualizedbytheredlinesandthebluereference nodesinFig.11.Thisapproachlimitsthenumberofelementsinthe FEmodelssignificantlyandpresumesthattheomittedpartmovesasa rigidbody.Also,therotationsinducedbythepinnedlinkisrecognized inthismodellingapproachbyallowingthereferencenodetorotatein- plane.InthesimulationofthePSTtest,theclampedareawasassumed tobehaveasarigidbodyandthusomittedinthemodel.Theboundary conditionswerethusassignedtotheedgesborderingtotheclamped regionsofthemodel.TheISSandmodifiedArcantestspecimenswere modelledaccordingtoFig.11d)-e),whereonlythrough-thicknesssym- metrywasutilized.IntheISSmodel,tworeferencenodesconnectedto theedgesofthespecimenwereappliedtoallowforin-planerotations.

InthemodifiedArcanmodel,thepartofthespecimengrippedbythe clampingframewaspresumedtomoveasarigidbodyandwasthus omittedfromthemodel.In-planerotationswereaccountedforbyin- sertingreferencenodescoincidingwiththecentreofthetwoloading pinsshowninFig.2.Thereferencenodeswereconnectedtotheedges ofthespecimenbyanMPCbeamconstraint.Thisapproachsimplifies themodelsubstantiallyandenablesfeasiblecomputationaltimeswith thedesireddiscretization.Inallexplicitsimulations,thevelocitywas rampedupoverthefirst10%ofthesimulationtime,andtheenergy balancewascarefullycheckedtoensurequasi-staticloadingconditions.

4.5. Localizationanalyses

The localizationanalyses were conductedusing the imperfection bandapproach,followingtheworkbyRice[34].Adetaileddescription oftheapproachusedinthisstudycanbefoundinMorinetal.[9],and onlyabriefoverviewisgivenherein.Asolid,homogenousbodythatis homogeneouslydeformedisconsidered.Withinthisbody,athinplanar bandisassumedtoexistwherestressandstrainratesareallowedtobe differentfromtheirvaluesoutsidetheband.However,continuingequi- libriumandcompatibilityacrosstheimperfectionband areenforced.

Thenormaltothebandisdenotednandasketchofasolidbodywith aplanarbandisdepictedinFig.13.Localizationissettooccurwhen thestrainrateinsidethebandbecomesinfinite.Thecriticalorientation ofthebandisnotknownonbeforehandandlocalizationanalysescov- eringarangeofbandorientationsmustbeconductedtofindtheone

(10)

Fig.11. Finiteelementmeshesoftestspecimen:a)NT3,b)NT10,c)PST,d)ISSande)modifiedArcan.

Fig.12. Experimental(crosses)andnumericalforce-displacementandlogarithmicstrain-displacementcurvesofthethreetempersfora):NT10andb):NT3.

exhibitingthelowestductility.Thefailurestrainistakenastheequiva- lentplasticstrainoutsideoftheimperfectionbandatlocalizationinside theband.

The solid body is governed by theplasticity model described in Section4.2.Insidetheband,aporousplasticitymodelisusedtorepre- sentthematerialbehaviour,whichenablesasimpleapproachtointro- duceanimperfectionbynucleationandgrowthofvoids.Theheuristic extensionoftheGurson-Tvergaardmodel[35,36]proposedbyDæhli etal.[37]isadopted,wheretheyieldconditionisgivenby

Φ = (𝜎eq

𝜎M

)2

+2𝑞1𝑓cosh (3𝑞2

2 𝜎h

𝜎M

)

−( 1+𝑞3𝑓2)

=0 (10)

where𝜎eqistheHershey-HosfordequivalentstressdefinedinEq.(4), 𝜎MistheflowstressofthematrixmaterialaccordingtoEq.(5),q1,q2,q3 aretheTvergaardparameters,𝜎histhehydrostaticstress,andfisthe voidvolumefraction.Theevolutionofvoidvolumefractionisdefined as

̇𝑓= ̇𝑓g+ ̇𝑓n+ ̇𝑓s=(1−𝑓)tr𝐃p+𝐴ṅ𝑝+𝑘s𝑓𝜅(

𝝈)𝝈𝐃p 𝜎eq

(11)

where ̇𝑓gisthevoidgrowthrate, ̇𝑓nisthevoidnucleationrateand ̇𝑓s

representsthecontributionfromvoidsofteninginsheartotheporosity evolution[38].TheparametersAnandksgovernvoidnucleationand

voidssofteninginshear,respectively.Furthermore,𝝈isthedeviatoric stresstensor,Dpistheplasticrate-of-deformationtensordefinedbythe associatedflowruleand𝜅(𝝈)isafunctionofthesecondandthirdin- variantofthedeviatoricstresstensor,J2andJ3,respectively,viz.

𝜅( 𝝈)

=1−27 4

𝐽32

𝐽23 (12)

Byincludingthetermforvoidsofteninginshearintheevolution equation,thephysicalmeaningofthevoidvolumefractionfislostandit shouldbeinterpretedasadamageparameter,assuggestedbyNahshon andHutchinson[38].ThereaderisreferredtoDæhlietal.[37]fora detailedaccountoftheporousplasticitymodelusedinthelocalization analyses.

5. Calibration

5.1. Calibrationofhardeningparameters

Thecalibrationprocedurefollowsasimilarapproachasemployed ine.g.MohrandMarcadet[5].Theuniaxialtensiontestswereusedto obtainaninitialestimateofthehardeningparameters.Aspreadsheet wasusedtofittwoofthethreehardeningtermstothetruestress-strain curveuptonecking.InversemodellingoftheNT10testsbyuseofthe

(11)

Fig.13. CalibrationapproachfortheporousplasticitymodelparametersAnandks.TheplotshowsdataforthetemperT6calibration.

Fig.14. Comparisonbetweenresultsfromthelocalizationanalyses(SLM)andthecalibratedMMCfracturemodel.

Table3

MaterialparametersoftheextendedVocehardeningrule.

Temper 𝜎0(MPa) Q 1(MPa) C 1 Q 2(MPa) C 2 Q 3(MPa) C 3 T4 135.0 19.04 87.05 142.22 10.06 75.00 3.08

T6 245.1 6.45 438.98 109.39 11.13 2.58 9.05

T7 152.8 3.76 2316.10 57.11 38.34 25.81 4.59

optimizationtoolLS-OPT[39]wasthenemployedtocalibratethehard- eningparameters.Theinitialestimatewasusedasastartingpointin theoptimization,wherethefirsthardeningtermwaskeptfixedandthe secondandthirdhardeningtermscouldchange.SequentialFEsimula- tionswerethenconductedwithdifferenthardeningparameterswhere LS-OPTemployedageneticoptimizationalgorithmtofindtheoptimal setofparameters.Theforce-displacementcurvesfromtheNT10tests wereusedastargetsintheoptimizations.Thefiniteelementmodelem- ployedispresentedinSection4.4andthecalibratedhardeningparam- etersaredisplayedinTable3.Theforce-displacementandlogarithmic strain-displacementcurvesfromthesimulationsareplottedassolidlines togetherwiththeexperimentsascrossesforthetwonotchtensiontests inFig.12.Thegoodagreementbetweenthesimulationsandexperi- mentsforbothtestsillustratesthevalidityofthecalibratedplasticity model.

5.2. CalibrationoftheMMCfracturemodel

Thepredictivecapabilityof thelocalizationanalysesrelies onan accuratedescriptionofthematerialbehaviour insideandoutsidethe imperfectionband.Theplasticitymodelusedoutsidethebandwascal- ibratedasdescribedintheprevioussection.Fortheporousplasticity

modelusedinsidetheband,theparametersintroducedbyTvergaard [36]weregivenstandardvalues,i.e.,q1=1.5,q2=1.0,𝑞3=𝑞21=2.25. ThenucleationrateAnandthevoidshearingparameterkswerecal- ibratedbasedonlocalizationanalysesfollowingtheprocessdepictedin Fig.13,whereastheinitialvoidvolumefractionf0wassettozero.The deformationgradientF(t)wasextractedfromthecriticalelementinthe through-thicknesscentreofanNT10andaPSTsimulationandassigned asboundaryconditionsinlocalizationanalyses.Aseriesoflocalization analyses withvaryingnucleationrateAn andvoid shearingparame- terkswasconducted.AccordingtoNahshonandHutchinson[38],the voidshearingparameterissuggestedtobeintherange1≤ ks≤3for structuralalloys,thusthreevalueswithinthisrangewereinvestigated:

ks={1.0, 2.0, 3.0}.TheoptimalvalueofAnwasfoundwhenlocaliza- tionoccurredforastrainoutsidethebandsimilartotheexperimental failurestrainforagivenks,asdepictedintheplotinFig.13.Theoptimal valueofkswasnotsearchedforandthecalibratedvalueofkswascho- senfromthethreevaluesinvestigated.Theexperimentalfailurestrain wastakenfromthecriticalelementinasimulationbasedonbothglobal andlocalmeasurementsfromDICresults.Ingeneral,failurewasfound toinitiatejustbeforethefinaldipintheforcelevels,asitwasassumed thatstrainlocalizationinitiatedatthispoint.TheplotinFig.13shows theresultsfromthelocalizationanalysesfortemperT6wheretheopti-

(12)

Fig.15. FailurelocioftheMMCfracturemodelforthethreedifferenttempersofAA6016.

Table4

Calibratedvaluesofthepa- rametersintheporousplas- ticitymodel.

Temper A n k s

T4 0.006 2.0 T6 0.0125 2.0 T7 0.005 2.0

malvalueofthenucleationrateAnisdepicted.Thecalibratedvaluesof theparametersintheporousplasticitymodelaregiveninTable4.

Withthemetalandporousplasticitymodelscalibrated,localization analyseswithproportionalloadingconditionswereconducted,i.e.,as- signingadeformationwherethestresstriaxialityTandtheLodepa- rameterLareconstantduringtheentiresimulation.Fromtheseanal- yses,failurestrainscoveringaconsiderableregionofthestressspace wereobtained,eveniflocalizationwasnotachievedforalltheapplied

stressstates.TheparametersoftheMMCfracturemodelwerefinally optimizedagainstthiscloudofpointsinaPythonscript.Approximately 100pointswereusedineachoptimizationtoensureasolidbasisfor theidentification.Thebasin-hopping algorithm[40]availableinthe SciPypackage[41]wasemployedtodeterminetheoptimalsetofmodel parameters.Thealgorithmaimstofindtheglobalminimumofacost function,heredefinedasthedifferencebetweenthefailurestrainscal- culatedwithMMCfracturemodelandlocalizationanalysesforawide rangeofstressstates.Withintheglobalsteppingalgorithm,alocalmin- imizationiscarriedoutusingasequentialleastsquaresprogramming (SLSQP)method[42].Approximately60basin-hoppingiterationswere performedtofindtheoptimalsetofparametersusingthedefaultpa- rametersofthealgorithm(thereaderisreferredto[41]formoredetails uponthesenumericalaspects).Thecalibratedparametersaregivenin Table5.

ThecalibratedMMCfracturemodelandthetargetpointscalculated bythelocalizationanalyses(giventheabbreviationSLM)areshownin Fig.14forselectedvaluesofthestresstriaxiality.Fromthefigureitisev- identthatthemaintrendsarecapturedinthecalibrationofthefracture

(13)

Fig.16. Comparisonbetweenexperimental(crosses)andnumerical(solidlines)force-displacementandlocalstrain-displacementcurvesoftemperT4:a)NT10,b) NT3,c)PSTandd)ISS.Allcurvesareplottedtofracture.

Table5

CalibratedparametersofthemodifiedMohr-Coulombfracturemodelbased onlocalizationanalyses.

Temper K ̂𝐶 1 ̂𝐶 2 ̂𝐶 3 ̂𝐶 4 n

T4 0.9969 0.01000 0.5075 0.8820 1.0056 0.01122 T6 0.9988 0.01135 0.5081 0.8847 1.0066 0.01000 T7 0.9611 0.00100 0.4815 0.8672 1.0005 0.00138

model,eventhoughthefitaroundgeneralizedshear(L=0)isnotalways good.ThedependenceonthestresstriaxialityaroundL=0issmallac- cordingtothelocalizationanalyses,resultinginthepointsforL=±0.2 insomecasesoverlappingeachother.Thisbehaviourisnotaccurately capturedbythecalibratedfracturemodel,whereanevidentdependence onthestresstriaxialityisseenaroundL=0.Thefitisaccurateforgen- eralizedtensionandcompressionforallthreetempers.Thesomewhat flatfailurelocuspredictedbythelocalizationanalysesisamongstother linkedtotheuseofaHersheyyieldsurfacewithexponenta=8.Thein- fluenceoftheyieldsurfacecurvatureonductilefailurewasinvestigated byDæhlietal.[37],whereHersheyyieldsurfaceswithexponenta=2 (i.e.,equaltothevonMisesyieldsurface)anda=8wereinvestigated byuseoflocalizationanalyses.Theresultssuggestthatayieldsurface

witha=8displaysaflatterfailurelocuscomparedtotheyieldsurface witha=2.ThereaderisreferredtoDæhlietal.[37]forfurtherdetails ontheinfluenceoftheyieldsurfacecurvatureonductilefailure.

The resultsfrom thecalibration of theMMC fracturemodelsare showninFig.15.Theoverallshapeofthethreefracturesurfacesinthe leftcolumnofthefigureissimilar,wherebothanevidentstresstriaxial- ityandLodeparameterdependenceisseen.Themonotonicdecreasein ductilityforincreasingstresstriaxialityisshowninthemiddlecolumn ofthefigureforgeneralizedcompression(L=1),generalizedtension (L=−1)andgeneralizedshear(L=0).Therateofdecreaseinductil- ityforincreasingstresstriaxialityissimilarforgeneralizedcompression andgeneralizedtensionforalltempers.However,therateofdecrease inductilityforincreasingstresstriaxialityismuchlowerforgeneralized shear,especiallyfortempersT4andT6.Generalizedshearexhibitsthe lowestductilityfollowedbygeneralizedtensionandgeneralizedcom- pression,wherethedifferencebetweenthetwolatterissmall.Temper T7exhibitsamuchstrongerdependenceonthestresstriaxialityforgen- eralizedshearcomparedtotempersT4andT6.Thisisclearlyvisualized intherightcolumnwherethefailurelociareplottedasafunctionof theLodeparameterforselectedvaluesofthestresstriaxiality.Itshould benotedthatthisstrongstresstriaxialitydependencewasnotpredicted bythelocalizationanalysesandisaresultofthecalibrationoftheMMC

(14)

Fig.17. Comparisonbetweenexperimental(crosses)andnumerical(solidlines)force-displacementandlocalstrain-displacementcurvesoftemperT6:a)NT10,b) NT3,c)PSTandd)ISS.Allcurvesareplottedtofracture.

fracturemodel.Theductilityinsimpleshearisconsiderablyhigherfor temperT7thanfortemperT6,whiletemperT4issomewherein be- tween.Theasymmetryofthefailurelociisevidentforalltemperswhere thelowestductilityforselectedvaluesofthestresstriaxialityisfound forslightlynegativevaluesoftheLodeparameter.Thehighductilityfor T=0andL=±1fortemperT6,higherthanforbothtempersT4andT7, issomewhatpeculiar.Thelocalizationanalysesdidnotprovideresults forthesestressstatesandthispartofthefailurelocusisobtainedby extrapolation.However,forthestressstatesachievablebyexperiments, thefailurelocusfortemperT6exhibitslowerductilitythanthefailure locifortempersT4andT7.

Thehighest andlowestductility ontheplane stressfailurelocus is found forthe stress statesrepresenting uniaxialtension (L = −1, T=0.33)andplane-straintension(𝐿=0,𝑇=1∕√

3),respectively.Itis worthnotingthattheductilityishigherinuniaxialtensionthaninequi- biaxialtension(L=1, T=0.67)foralltempers.Thisdifferencewould notbepossible toexpresswiththeHosford-Coulombfracturemodel, wheretheductility isforcedtobeequalinuniaxialandequi-biaxial tension.Thecuspontheplane-stressfailurelocusforuniaxialtension andthevalleytowardssimpleshear(L=0,T=0)foralltemperscatego- rizesthesematerial’sfracturebehaviourasLodeparameterdominated.

Astresstriaxialitydominatedfracturebehaviourwouldexhibithigher

ductilityinsimpleshearcomparedtouniaxialtension,andthusnocusp wouldappearintheplane-strainfailurelocusforuniaxialtension.

6. Numericalresultsanddiscussion 6.1. Materialtests

Theresultsfromthesimulationsofthematerialtestsonthenotch tension(NT),plane-straintension(PST)andin-planeshear(ISS)speci- menswiththeMMCfracturemodelareshowninFigs.16–19.Theex- perimentalresultsarepresentedasdiscretecrosses,whilethesolidlines representthesimulations.Bycomparisonoftheresponsecurvesfortem- perT4showninFig.16,thepredictionsbytheMMCfracturemodelare ingeneralfoundtobegood.Whencomparingtheforce-displacement curvesforthefourtests,theagreementforthenotchtensiontestsisex- cellent,whiletherearesomedeviationsforthePSTandISStests.These deviationsareexpectedwhenmodellingamoderatelyanisotropicma- terialwithanisotropicyieldsurface.Theonsetoffractureisaccurately predictedfortheNT10test,whileitisslightlyconservativefortheNT3 andPSTtests.FortheISStest,theresponsecurvesdeviatealreadyat yieldingandtheonsetoffractureispredictedforalargerdisplacement thanintheexperiment.Thereasonforthisdeviationislinkedtothe

(15)

Fig.18. Comparisonbetweenexperimental(crosses)andnumerical(solidlines)force-displacementandlocalstrain-displacementcurvesoftemperT7:a)NT10,b) NT3,c)PSTandd)ISS.Allcurvesareplottedtofracture.

textureofthealloy,requiringananisotropicyieldcriteriontocapture thebehaviourasdiscussedinAchanietal.[43].Engleretal.[28]in- vestigatedthemicrostructureandtextureofanAA6016sheetintemper T4whereacharacteristiccuberecrystallizationtexturewasfound.This textureleadstoarelativelyhighyieldstressinshearcomparedtouni- axialtension[43].Thus,theyieldstressinasheartestisnotexpected tobeaccuratelypredictedwithanisotropicyieldsurface.Considering thatthetextureisnotalteredbytheheat-treatment,thisbehaviourisex- pectedforalltempers.TheconflictingfracturepredictionfromthePST andISStestsillustratesthedifficultiesoffindingasetofparametersthat accuratelydescribestheonsetoffractureinbothtests.

TheresultsfromsimulationswiththeMMCfracturemodelfortem- perT6areshowninFig.17.ThepredictionoffractureinthePSTtestis slightlyconservative,whilethefracturepredictionsfortheNT10,NT3 andISStestsareslightlynon-conservative.Theimpressiveaccuracyin thepredictionsofthetemperT6testsisevidentastheleastaccuratepre- dictionisobtainedfortheNT10test,whichwasusedinthecalibration.

Asexpected,thedeviationsbetweentheforce-displacementcurvesfor theISStestinitiatedalreadyatyield.Despitethis,accurateprediction ontheonsetoffractureisalsoobtainedforthistest.

TheresultsfromthesimulationswiththeMMCfracturemodelfor temperT7areshowninFig.18.Theagreementbetweentheexperimen- talandnumericalresponsecurvesandthepredictedonsetoffractureis

excellentfortheNT10,NT3andPSTtests.Theonlynotabledeviation amongstthesetestsistheshiftinthelocalstrainforthePSTtests,re- sultinginaslightlyhigherstrainattheonsetoffractureinthesimula- tioncomparedtotheexperiment.Asmentionedearlier,theexactonset offractureintheISStestisdifficulttodeterminebasedontheforce- displacementcurves.Thedisplacementatwhichtheonsetoffractureis predictedinthesimulationappearstobeareasonableestimatewhen inspectingimagesfromthetestatasimilardisplacement.

The predictive capability of the MMC fracture model has been demonstratedintermsofglobalandlocalresponseparametersforfour different materialtests.InFig.19,thestressstatehistoriesextracted fromsimulationsofthesameexperimentsarepresented.Thesolidlines aretakenfromsimulationswherethecriticaldamageparameterisset artificiallyhighandtheendofthelinesindicatetheonsetoffracturein theexperiments.Fractureintheexperimentswasdeterminedbasedon bothlocalandglobalmeasurementsforNT10,NT3andPSTtests,while globalmeasurementswereusedforISS.Thedotsindicatetheonsetof fracturepredictedbytheMMCfracturemodel.Thestressstatescovered bytheexperimentsincludemainlynegativevaluesoftheLodeparame- terandpositivevaluesofthestresstriaxiality.Thestressstatehistories aretakenfromthethrough-thicknesscentreelementfortheNT10,NT3 andPSTtests,whichcorrespondstotheelementsubjectedtothelargest equivalentplasticstrain.InthesimulationsoftheISStests,theelement

(16)

Fig.19. Evolutionofthestressstate(i.e.,Lodeparameterandstresstriaxiality)asfunctionoftheequivalentplasticstrainextractedfromthecriticalelement.The predictedfracturebytheMMCfracturemodelisindicatedbythedotswhiletheendofthesolidlinesgivestheonsetoffractureinthetests.

(17)

Fig.20. Experimentalandnumericalforce-displacementcurvesfortheArcan45testsina),c)ande)andcorrespondingcrackpathsontheundeformedconfiguration inb),d)andf).

(18)

Fig.21. Experimentalandnumericalforce-displacementcurvesforthea)Arcan90-T4,b)Arcan90-T6andc)Arcan90-T7tests.

subjectedtothelargestvalueofthedamageparameterDatthedisplace- mentoffractureintheexperimentistakenasthecriticalelement.The damageparameterwasusedtodeterminethecriticalelementsincethe largestvalueoftheequivalentplasticstrainwasfoundonthethrough- thicknesssurfacewithinthenotch.Thisregionis heavilyaffectedby thein-planerotationsthatoccurinthetests,whichmakestheelement subjectedtothelargestvalueofequivalentplasticstrainanunsuitable choicefortheISStests.ThechosencriticalelementinallISStests is locatedonthein-planesurfacewithinthegaugeregionwherestrains localize.Amongtheeightintegrationpointswithinthecriticalelement, theonesubjectedtothelargestvalueofequivalentplasticstrainischo- seninalltests.WhencomparingthepredictionsbytheMMCfracture modelwiththeexperimentalvaluesinFig.19,i.e.,comparingthedots totheendpointofthesolidlines,thetrendsaresimilartotheonesin Figs.16–18.ByinspectionofFig.19,itisevidentthatthestressstate historiesarequitesimilaramongthedifferenttempersapartfrominthe ISStest.Thereasonforthisisthevaryingpositionofthecriticalelement amongthesimulationsoftheISStest.Thedifferenceinstrength,work-

hardeningandductilitybetweenthethreetempersresultsindifferent deformationprocesseswhichaffectthepositionofthecriticalelement, emphasizing thedifficultiesfacedwithanin-planesimplesheartest.

RothandMohr[44]investigatedthechallengesrelatedtodetermining thestraintofailureforsimpleshearforawiderangeofsheetmetals.

Amongstthestudy’sconclusions,itwasstatedthattheshapeofthespec- imenplaysasignificantroleandthatdifferentmaterialpropertiessuch asstrength,work-hardening andductility requiredifferent shapesof thespecimen.ByinspectionofthestressstatehistoriesfortheISStests, temperT6isclosesttoexhibitaproportionalloadingpath,suggesting thatthegeometryoftheISStestspecimenissuitableforthematerial propertiesofthistemper.Ideally,boththestresstriaxialityandtheLode parametershouldbeequaltozeroallthewaytofractureinasheartest.

EspeciallytheISStestfortemperT7exhibitsaloadingpathwhereTand Lvarymarkedlythroughoutthedeformation,makingitlesssuitableto useastargetinacalibrationprocess.Thisisoneofthereasonswhythe PSTtestwaschoseninordertocalibratethevoidshearingparameter ks intheporousplasticitymodelandnottheISStest.Consideringthe

(19)

Fig.22. ThestrainfieldsofArcan45-T6andArcan90-T7fromDICandFEsimulationstakenwhenthecrackhadpropagatedapproximatelyhalfwaythroughthe specimen.

rathersimpleplasticitymodelchosenandthatonlytwomaterialtests wereusedinthecalibration,thepredictionsbytheMMCfracturemodel aredeemedsatisfactory.

6.2. ModifiedArcantests

Tofurtherassess thepredictive capabilities of theMMC fracture model,themodifiedArcantestswith𝛽=45° and𝛽=90° weresimulated.

Here,themodel’sabilitytopredictbothcrackinitiationandpropagation istested.InFig.20theforce-displacementcurvesfromexperimentsand simulationsoftheArcan45testsareshowntotheleft,withcorrespond- ingcrackpathsontheundeformedconfigurationtotheright.Despite thesmallinaccuraciesseeninthepredictionsforthematerialtests,ex- cellentagreementbetweentheexperimentalandnumericalresultsis seenfortheArcan45tests,bothintermsofforce-displacementcurves andcrackpaths.Theonsetoffractureisinitiatedatthecorrectdisplace- mentandpositiononthespecimenforallthreetempers.Additionally, thesimulatedcrackpropagationoccursmostlyalongthecorrectpaths atsimilarvelocitiesastheexperimentalones.Eventhesomewhatsur- prisingstraightcrackpathseenintheArcan45-T7testwaspredicted accurately.Theslanted fracturesurfaceobservedin theexperiments wasnotpredictedinanyofthesimulations.Topredictslantedfracture, thethrough-thicknesssymmetrymustbeabandonedandamuchdenser meshaccompaniedbyacoupleddamagemodelismostlikelyrequired [45].However,thecrack inthetemperT7simulationpropagatedin atunnellingmodefrominitiationtocompletefracture.Thestresstri- axialityinsidethenotchwherefractureinitiatedwasbetween0.3and 0.4,whiletheLodeparameterwasapproximatelyequalto−1forall tempers.Justinfrontofthepropagatingcrack,aregionwithstresstri- axialitybetween0.6and0.7andaLodeparameterclosetozerowas presentforalltempers.

Fig.21 showstheexperimentalandnumericalforce-displacement curvesfortheArcan90tests.Theonsetoffracturewasaccuratelypre- dictedfortempersT4andT7,whilefortemperT6fractureoccurred slightlylater inthesimulation thaninthe experiment.Additionally,

therewasaslightdeviationintheforcelevelinpartsoftheresponse curvebeforetheonsetoffracturefortemperT6ofunknownreasons.

ThecrackpropagationwasaccuratelypredictedfortempersT4andT7, wheretheagreementbetweentheexperimentalandnumericalresponse curveswasgoodthroughoutthewholedeformationprocess.Theveloc- ityofthepropagatingcrackfortemperT6wasnotaccuratelycaptured in thesimulations, wherealowervelocitythaninthetestswaspre- dicted.

Theonsetof fracturein thesimulationwas foundtooccurafew millimetreswithinthenotchandnotatthefreesurface.Thisoccurred eventhoughthelargestvalueoftheequivalentplasticstrainwasfound on thefree surface.However,byinspection ofthestressstateatthe onsetoffracture,theregioninsidethenotchwasfoundtobesubjected toahigherstresstriaxialityandaLodeparameterclosertozerothan onthefreesurface.Fractureinitiatedinthisregionbeforepropagating perpendicularly totheloadingdirection.Theagreementbetweenthe crack patternin theexperimentandsimulationwasexcellent forall tempersandisnotshownforbrevity.

ThestrainfieldsofanArcan45-T6andArcan90-T7testareshown in Fig.22 fromboth DICandFEsimulations. Thestrainfields were takenwhenthecrackhadpropagatedapproximatelyhalfwaythrough thespecimeninbothtests.Themagnitudeofthestrainsisconsistently higherintheFEsimulationsthanintheDICsimulationsowingtothe densermeshusedintheformer.However,thequalitativetrendsare similar between thetwosetsof simulationsforbothtests.Anarrow zonewithlocalizedstrainsinfrontofthepropagatingcrackiscorrectly predictedinbothcases. IntheArcan45-T6test,thereisaband with slightlyhigherstrainsacrossthespecimenwhichisnotfullydeveloped intheFEsimulationsandthusonlypartiallypredicted.

7. Conclusions

Thispaperhaspresentedanovelcalibrationprocedureofthemod- ifiedMohr-Coulomb(MMC)fracturemodelbyuseoflocalizationanal- ysesoftheimperfectionbandtypeandapplieditforthreetempersof

Referanser

RELATERTE DOKUMENTER

There had been an innovative report prepared by Lord Dawson in 1920 for the Minister of Health’s Consultative Council on Medical and Allied Services, in which he used his

The ideas launched by the Beveridge Commission in 1942 set the pace for major reforms in post-war Britain, and inspired Norwegian welfare programmes as well, with gradual

As part of enhancing the EU’s role in both civilian and military crisis management operations, the EU therefore elaborated on the CMCO concept as an internal measure for

Based on the above-mentioned tensions, a recommendation for further research is to examine whether young people who have participated in the TP influence their parents and peers in

Azzam’s own involvement in the Afghan cause illustrates the role of the in- ternational Muslim Brotherhood and the Muslim World League in the early mobilization. Azzam was a West

Comparison of the two porous plasticity models to the FE limit analyses show that the rigorous upper-bound porous plasticity model gives accurate predictions for all stress

It includes relevant theory in the field of material mechanics, ductile failure processes, porous plasticity models, the unit cell analysis and the strain localization

Furthermore, the imperfection band analyses exhibit a greater difference between the failure strain values in generalized tension and generalized compression using this