• No results found

Combined solar and membrane drying technologies for sustainable fruit preservation in low-income countries – prototype development, modelling, and testing

N/A
N/A
Protected

Academic year: 2022

Share "Combined solar and membrane drying technologies for sustainable fruit preservation in low-income countries – prototype development, modelling, and testing"

Copied!
17
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

ContentslistsavailableatScienceDirect

Solar Energy Advances

journalhomepage:www.elsevier.com/locate/seja

Combined solar and membrane drying technologies for sustainable fruit preservation in low-income countries – prototype development, modelling, and testing

Ricardo Bernardo

, Henrik Davidsson , Peter Samuelsson , Gustaf Bengtsson , Viktor Döhlen , Joakim Olsson, Randi Phinney, Pia Otte, Lucas Tivana, Martin Andersson, Marilyn Rayner

Energy and Building Design, Architecture and Built Environment, Sövegatan 24, P.O. Box 118, 221 00 Lund, Skåne, Sweden

a r t i c le i n f o

Keywords:

Solar drying Fruit preservation Membrane drying Low-income countries

a b s t r a ct

Thisinvestigationconsistedofdevelopingandevaluatingsolardryerstogetherwithsemi-permeablemembrane pouchesfordryingjuicyfruitsinlow-incometropicalcountries.

Twodesigniterationswerecarriedoutincludingprototypemodellingandtesting.Thelatestdevelopedsolar dryerswereapassiveandanactivesolardryer.Modellingwasinitiallycarriedoutmathematicallyusingan equationsolversoftwarefollowedbycomputationalfluiddynamics.Preliminarymeasurementswerecarriedout onasmall-scalesolardryer.Thereafter,full-scalemodelsweredevelopedandtested,bothinlaboratoryandin realconditionsinMozambique.

ResultsfrommodellingwerevalidatedagainstmeasurementsinlaboratoryinSwedenandfieldtrialsin Mozambique.PrototypebuildingandtestinginMozambiquewasundertakenincollaborationwithlocalfarmers andauniversity.Measurementresultsshowthatthedryershelptopreventmicrobialgrowththroughincreased temperatures.Thedryingfluxwasincreasedby50%forthepassive,andby100%fortheactivesolardryers comparedtotheambientcontrolsthatdidnotuseasolardryer.Thetotaldryingtimewasbelowfourdaysforall pouchesinthedryers.Theactivesolardryerwasshowntohavetheshortestdryingtimeandthehighestcapacity (morepouches)butalsothehighestcosts.

Mouldgrowthandjuicefermentationwereobservedoncontrolpouchesdryinginopenair.Theseproblems weresolvedwiththeuseofsolardryertechnology.However,somechallengeswiththemembranepouches requirefurtherdevelopmentincludingdegradationofthemembranewhenexposedtodirectsunlight.

Introduction Relevance

Enoughfoodisgrowninmanylow-incomecountriestosatisfythe needs of the population. One such country is Mozambique. Despite this,manypeoplestillgohungry.Onereasonforthisisbecauselarge amountsoffruit ripenduringaveryshortperiod, whichmeansthat muchof theuneatenfruitspoilsbefore reachingtheend consumers.

InMozambique,post-harvestlossesareestimatedtobe25-40%,with thisestimateonlyaccountingforharvestedfruits[1].Sincesomefruits arenever harvested,thetotalamountofspoiledfruitwouldbeeven greater.Canningandasepticprocessingaretwooptionsforpreserva- tion,buttheyareoftennotfeasibleunlesscarriedoutonalargescale.

Theyalsorequirelargeenergyinputs,largecapitalinvestmentsanda transportinfrastructure,whichareoftennotavailableinlow-income

Correspondingauthor.

E-mailaddress:Ricardo.Bernardo@ebd.lth.se(R.Bernardo).

countries.Severalstudieshaveidentifiedtheneedforasimpleandaf- fordablefruitprocessingtechnologythatcansafelypreservefruitsclose totheharvestpointwhenthefruitisripe[2–7].Solardryersthatcan beusedatlargescaleforalargevarietyofagriculturalproductswould greatlybenefitsmallandmarginalfarmers[2].

Traditionalfruitdehydrationmethodsandsolarassisteddrying

Foodhasbeenpreservedwithdryinganddehydrationmethodsfor thousands of years. Reducingthe amountof available moisturein a producthastwoeffects:pathogenicandspoilagemicroorganismsareno longerabletogrow,andthenutritionalvalueofthefoodisconserved.

Existing small-scale dehydration methods include oven drying;

wood,charcoalordieselburningevaporators;osmoticdehydration;and open-airsundrying.Ovendryersrequireanexpensiveenergysource (i.e.electricityorgas)andcontributetoCO2emissions.Wood,char- coal,ordieselburningevaporatorsalsocontributetothereleaseofCO2

https://doi.org/10.1016/j.seja.2021.100006

Received19February2021;Receivedinrevisedform5October2021;Accepted6October2021 Availableonline14October2021

2667-1131/© 2021TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/)

(2)

Nomenclature

Aabs Collectorabsorberarea(=glassarea)m2

Abag TheeffectiveareaforevaporationofaSAP-pouch m2

Abags TotaleffectiveevaporationareaofSAP-pouchesper shelfm2

Aeff Effectivecrosssectionareaforthedryerairflowm2 Ainlet Collectorinletaream2

Asides Collectorsideaream2 aw Wateractivitynounits

CP,air SpecificheatcapacityforairJ/(kgK) CP,H2O SpecificheatcapacityforsteamJ/(kgK) DH Hydraulicdiameterofthecollectorm

Evap Total powerrequired forevaporation forall SAP- pouchesplacedonashelfinthedryerW

G TotalsolarirradiationW/m2

Ge Effectivesolarirradiation(heatabsorbedbytheab- sorber)W/m2

hcon,in Heat transfer coefficient for internal convection W/(m2K)

hcon,out Heat transfer coefficient for external convection W/(m2K)

hrad,in Heat transfer coefficient for internal radiation W/(m2K)

hrad,out Heat transfer coefficient for external radiation W/(m2K)

mh Watermassflowkg/s

mvap WatermassflowfromSAP-pouchkg/s n Numberofbagspershelfinthedryernounits Nu Nusselt number for uniform surface heat flux no

units

Prair Prandtlnumberforairnounits Pw VapourpressureforwaterPa Pws WatersaturationpressurePa Rabs Absorberreflectancenounits Reair Reynoldsnumberforairnounits Rglass Glassreflectancenounits RH Relativehumiditynounits

RV SpecificgasconstantforwatervapourJ/(kgK) S Numberofshelvesinthedryernounits Tabs AbsorbertemperatureinthecollectorK Tair MeantemperatureofTinandToutK Tamb AmbienttemperatureK

tbottom Bottominsulationthicknessm Tglass GlasstemperatureincollectorK Tin InlettemperatureforasectionK Tout OutlettemperatureforasectionK tside Sideinsulationthicknessm Tsky SkytemperatureK

Twall WalltemperatureofdryerK

Twall OuterwalltemperatureinthecollectorK Twall,in InnerwalltemperatureinthedryerK Twall,out OuterwalltemperatureinthedryerK uair Collectorinletairvelocitym/s

ubags TheairvelocitysurroundingtheSAP-pouchesm/s X Airconstant(𝜌airCP,airuairAinlet)W/K X Airconstant(𝜌airCP,airuairAinlet)W/K z Additionalheatgainsfortheouterwallsofthedryer

W/m2

𝛼abs Absorberabsorbancenounits

Δhvap,H2O EnthalpyofvaporizationforwaterJ/kg 𝜀abs Absorberemissivitynounits

𝜀glass Glassemissivitynounits

𝜀wall Collectorouterwallemissivitynounits 𝜀wall,dryer Dryerouterwallemissivitynounits 𝜆air AirthermalconductivityW/(mK)

𝜆bottom Collector bottom insulation thermal conductivity W/(mK)

𝜆side Collector side insulation thermal conductivity W/(mK)

𝜆wall DryerwallthermalconductivityW/(mK) 𝜇air Airdynamicviscositykg/(ms)

𝜌air Airdensitykg/m3

𝜎 Stefan-BoltzmannconstantW/(m2K4) 𝜏glass Glasstransmissivitynounits

andhaveatimeand/oreconomicburden.Open-airsundryingoffood isapreservationmethodwidelyusedindevelopingcountriesaspartof localancienttraditionsbutalsohasasignificantlimitation.Itisnotsuit- ableforpreservingjuicyfruitsbecause1)itisdifficulttohandlelarge opentraysofliquidand2)juices/puréesdriedinopentraysattractdust, insectsandpestsandarethereforeeasilycontaminatedbymicroorgan- ismsandtoxinsasaresultoftheproductbeingdirectlyexposedtothe environment[4].

Inadditiontoopen-airsundrying,twosolarassistedfoodprocess- ingapplicationsaresolardryingandsolarcooking.Therearenumerous typesof solardryersrangingfromsimpler greenhousetypestocom- plexsolardryersthatuseheatexchangersandlargesolarstorages[2, 4,5,8].Itsapplicabilitygoes beyondfoodprocessingsuchasdrying cementmortarforbuildingapplications[9].Solardryersarenormally dividedintotwomaincategories:passiveornatural-circulationandac- tive or forcedconvection[8]. Since they aresusceptibleto weather changes,hybridizationisoftenneeded,i.e.,combinationwithbackup energysourcesthatusessolarenergytodecreaseitsconsumption.Are- centreviewarticleidentifiedfivecategoriesofhybridsolardryers:hy- bridthermalstorage-solardryer,hybridheatpump–solardryer,hybrid biomass–solardryer,hybridsolarwithnoveldryingtechniques,andhy- bridphotovoltaicsolardryers[7].Thesetypeofdryersprovidebetter controloverdryingconditionsandcanbeusedonawiderrangeofagri- culturalproducts[7].Efficiencyandcostvarysignificantlydepending onthetechnology[10].

Solarcookingisusedtopreparefoodinrealtime.Oneofthemost well-known solarcookingtechnologiesis theScheffler collectorthat consistsofaparabolicreflectorconcentratingsolarradiationtowards acookingpot[11].Thereflectorneedstobeconstantlyadjustedtofol- lowthesunduringthedayandwhenthesunisnotavailable,fuelis normallyusedinstead[12].

Eventhoughthesetechniqueshavebeendevelopedandtestedfor decades, thedevelopmentin solarfoodprocessing hasbeenlimited.

Twoofthemainreasonsarethenecessityofhybridization(combination withbackupfuel)andacceptancebytheend-users[13].Hybridization impliestechnicalcomplexityandhighinvestmentcosts,whicharema- jorhindrancesindevelopingcountries[4,12].Also,backupfuelsand infrastructurearenotavailableinmanycases.

Solardryingtechnologyismostcommonlyusedtofurtherimprove traditional drying techniqueswith fruits, such asopen-air drying of raisins,dates,figs,mangoes,etc[2–6].However,solardryingofalarge rangeofjuicyfruitssuchasoranges,tangerines,lemons,andgrapefruits, arenotcommonlydescribedinliterature.Furthermore,investigations ofsolardryersarefrequentlyeitherexperimental[2,6,14,15]orthe- oretical[16,17]lackinganintegratedapproachtothedesignprocess.

Additionally,literatureidentifiestheneedforfurtherresearchoneffi- cientdesignsatlowcosts[4,8,10].

Earlierstudiesontheimplementationofsolarenergytechnologies, suchassolarcookers,indevelopingcountries,haveshownthatthereare alsomultiplenon-technicalfactorsthatstronglyinfluencetheadoption ofthesetechnologies[18–20].Thesecanbe,forexample,aninappro-

(3)

Fig.1.Left:schematicsofthesolarassistedpervaporationprocess.Middle:membranepouchesbeforedrying.Right:finalproduct(jam)afterdryingonthefarright.

priatetime-scheduleforcookingorchangesinthesocialorganization [21].Thequalityofthefinalproductintermsofsensoryquality(taste, aroma,colourandacceptabilityofthedriedfruitproducts)andnutri- tionalcompositionofthedriedfruitproductsarealsoimportantfactors forlargeracceptanceinthemarket[6].

Solarassistedpervaporation(SAP)

SolarAssistedPervaporation(SAP)involvestheuseofapouchor sealedbagmadeofafood-gradebreathablemembrane(i.e.permeable towatervapourbutnotliquidwater)toconcentratefruitjuices/purées withthehelpofsolarradiationandambientair[22].TheSAPtech- niqueisrelatedtotheseparationprocesspervaporation,withthemass transportdrivenbythedifferenceinpartialpressureofwatervapourin thefruitjuice/puréetothepartialpressureofwatervapourinambient air[23,24].Thephenomenonof pervaporationwasfirstdocumented byKoberin1917[25].Iftherelativehumidity(RH)inthesurround- ingairisunsaturated,therewillbeachemicalpotentialgradientacross themembrane,allowingforthediffusionofwatervapourtooccur.The drivingforcecanbeincreasedevenfurtherbyheatingtheairaround thebag(e.g.withasolarcollector).Themembranepouchallowswater toevaporatebutprotectsthejuicefromcontamination.Fig.1illustrates theSAPprocessandtheproductbeforeandafterdrying.Iftheamountof waterinthejuicedecreasesbelowacertainlevel,thejuiceconcentrate becomesstoragestableforuptoayear,i.e.duetoalowwateractivity thatpreventsmicrobialgrowth[26,p.2].Thefinalproductcanthenbe consumedasjamorre-hydratedagainintonutritiousfruitjuices.

Althoughpromising,theSAPmethodusedinopenairdryingdoes notreachhighenoughtemperaturestodecreasetheriskofmicrobial growthintheproduct.Furthermore,thedryingtimeisrelativelylong.

Thesearecrucialfactorsforthesuccessfulpracticalimplementationof theprocess.Inshort,controllingthedryingparametersaroundandin- sidethepouches-airtemperature,relativehumidity,fruittemperature andairflow-iscriticaltomakethemethodsafeandpracticallyfeasible [26,27].

Purposeandscope

Themainpurposeoftheprojectbehindthisarticlewastoinvestigate thecombinationofsolarcollectortechnologywiththeSAPpouchesde- scribedabove,usingMozambiqueasacase-study.Theinvestigatedsolu- tionconsistedofadaptingandcombiningsolarcollectortechnologythat producessolarheatwithsemi-permeablemembranepouchesfordrying andthuspreservingandutilizingjuicyfruitsindevelopingcountriesto ahigherextentthantoday.Thefinalproductofthedryingisashelf- stablefruitmarmaladeorjuiceconcentratethatcanbelaterconsumed orsoldforuptooneyear.TheSAPpouchtechnologyisinnovativeand thereforenotasdevelopedassolardryers.Thisarticlecontributesto thetestingofSAPpouchesincombinationwithnewlydevelopedsolar dryers.

Theinvestigationfollowedanintegratedtransdisciplinaryresearch approachthatisabletoincludediversesetsofknowledgerelevantfor thedesignofuser-friendlysolardryers[28].Theprojectconsistedof aninterdisciplinaryresearchteamwithbackgroundsfromsolarenergy technology,foodtechnologyandsocialscienceswithpreviousresearch experienceinMozambique.Furthermore,theprojectworkedwithtwo farmerassociationsinaniterativeprocessthroughouttheresearchpro- cess.Theprojectincluded3phasesoffieldworkinInharrimedistrict between2016and2019.

Inthefirstphasetheprojectstartedbyassessinglocalfruitdrying traditionsandpracticesofthecommunities,existingknow-how,culture, androutines[2].Thisassessmentwascarriedoutbyengaginggroupsof farmersinparticipatoryexercisestoidentifytheirneedsandpreferences relatedtosolarfruitdrying[29].Furthermore,theimportanceofgender rolesandrelationshipswerealsoassessedinthescopeoftechnologyde- velopmentandimplementation[30].Inparallel,thefoodtechnologyin- vestigationfocusedonfactorsaffectingfoodsafetyriskandquality.This wascarriedoutbyevaluatingthedryingflux[27,p.1],[31]andmi- crobiologicalquality[26,p.2]ofthefruitjuicesinmembranepouches forseveraldryingconditions.Theseresultswerethenusedasinputfor thetechnologydevelopmentintheformofseveraldesigncriteriathat weretestedinphase2andthenmodifiedandimplementedinphase3.

This paper focuses on the solartechnology part of the research namelythedevelopment,modelling,andtestingofsolardryers,inlab- oratoryandinrealconditions.Tograspthecompletetechnologydevel- opmentandtesting,thecurrentpapercomprisesfindingsfromseveral mastertheses[32–35].

Methods

Sincethefarmersparticipatinginthisstudydidnothaveanyexpe- rienceonsolardrying,carefulselectionofthemethodologywasneeded forsuccessfuladoptionofthetechnology.Toavoida“technicalpush” theselectedworkflowwastostartwithasocialinvestigationincluding participatoryresearchexercises[29,30].Thisapproachallowsforan activeinvolvementofthefarmersinsteadoftreatingthemaspassivere- cipients[36].Togetherwithfoodtechnologyinvestigations,thedesign criteriaforthesolardryerswereestablished(Fig.2).Twodesigniter- ationsforsolardryerprototypeswerecarriedout.Foreachofthetwo designphases,modelsandmeasurementswereperformed.Modelling wascarriedoutmathematicallyandusingadvancedcomputationalfluid dynamictools.Resultsfrommodellingwerevalidatedagainstmeasure- mentsinlaboratoryinSwedenandinruralareasinMozambique.Proto- typebuildingandtestinginMozambiquewasundertakenincollabora- tionwithlocalfarmersandauniversity.Finally,theperformanceofthe solardryerswasevaluated.Resultsfromthefirstdesigninfluencedthe seconddesign.Fig.2illustratestheworkflowoftheentirestudy.The influenceofseveraldesigncriteriainthedryingwereanalysedduring thisstudy:direct/indirectsolarradiation;passiveoractivedrivensolar dryer;airflowandvelocity;temperaturelevels;dryingtimeforstorage

(4)

Fig.2. Illustrationoftheworkflowofthewholeinvestigation.Thispaperfocusesonthesolartechnologyinvestigation.

Table1

Dimensionsoftheminiatureindirectsolardryerusedforpreliminarytests.

Collector Parts Dimensions (m)

Length, l Outer width, w Width absorber plate, w a Width glass, w g

Height collector, h c

Distance absorber glass, h ag

Height heat storage, h hs

Thickness absorber, t a

Thickness glass, t g

0.700 m 0.424 m 0.376 m 0.376 m 0.082 m 0.035 m 0.035 m 0.012 m 0.003 m

Drying cabinet parts Dimensions (m)

Height, h dc

Width, w dc

Depth, d dc

0.500 m 0.400 m 0.200 m

stableproductanddryingflux;materialsusedintheprototypes;costs fortwoprototypes.

Firstdesign

Prototypedesign

Preliminarytrialsofasmall-scalesolardryerweremade.Thegoal wastogetapracticalunderstandingofthedryingprocessofthemem- branepouchesinsideaconventionalsolardryer.Morespecifically,the small-scalesolardryerwasintendedtoidentifythemostrelevantpa- rametersinfluencingthedryingprocessofthepouches.Anindirectsolar dryerwaschosensinceitwasuncertainwhetherthemembranepouch wouldresistdirectsunlightandhightemperatures.Tosimplifythetest procedureattheverybeginningoftheinvestigation,waterwasused insidethepouchesinsteadoffruitjuice.Thesmall-scaleindirectsolar dryerandthemembranepouchesfilledwithwaterareillustratedinFig.

3andFig.4,respectively.Thecorrespondingdimensionsareillustrated inTable1.

Thesolardryerconsistsoftwomainparts:thesolarcollectoranda dryingcabinet.Thesolarcollectorconsistsofaglasspaneonthetop, insulationon thesidesandthebottomandanabsorberplateon top

ofthebottominsulationlayer.Theabsorberplateconsistsofasimple plywoodpaintedblack.Thedryingcabinetisinsulatedonthesidesand containsshelveswithpouches.Theairgetsheatedinthesolarcollector andrisesbynaturalconventionintothebottomofthedryingcabinet.

Attheoutletofthedryingcabinetmoistairisreleased.

Modelling

Thepreviouslydescribedsolardryerprototypewasmathematically modelledandanalysedusinganequationsolversoftware[37].Thegoal atthisstagewastobuildadeeperunderstandingofthecriticaldesign featuresofthesolardryertoconsiderwhenimprovingthedryingpro- cess.Basedonthismodel,thedesignofthesolardryerwasimproved.

AnillustrationofthemodelledsolardryerisshowninFig.5.Themod- elledenergyflowsandtemperaturesinthesolarcollectoranddrying cabinetareillustratedinFig.6andFig.7,respectively.

Tolimitthecomplexityofthenumericalequationssomeassumptions weremade.Themostimportantwere:thecollectoranddryerwereas- sumedinsteadystateforconstantsolarirradiation;noairleakages;the temperaturesofthepoucheswereassumedequaltothesurroundingair temperatureandthatthebagsdonotdryout(constantpartofthedry rate);theinnersidesofthecollectordonotreflectanyradiation;no

(5)

Fig. 3. Miniature indirectsolar dryer used forpreliminary tests.

Fig.4. Membranepouchesfilledwithwaterforpreliminarytests.

heattransferwastakenintoconsiderationbetweenpouches;theglass doesnotabsorbanysunlight(𝛼glass=0).

The modelling procedure resulted in four energybalances tobe solvedforfourvariables.Theenergybalancescorrespondtotheglass coverinEquation1,theairflowinEquation2,theabsorberinEqua- tion3,andtheouterwallsinEquation4.Thevariablesare𝑇𝑜𝑢𝑡,𝑇𝑔𝑙𝑎𝑠𝑠, 𝑇𝑎𝑏𝑠and𝑇𝑤𝑎𝑙𝑙.Thewholeprocedureisdescribedindetailedin[38].

Equation1.Energybalanceoftheglasscover.

𝑐𝑜𝑛,𝑖𝑛𝐴𝑎𝑏𝑠⋅(𝑇

𝑖𝑛+𝑇𝑜𝑢𝑡

2𝑇𝑔𝑙𝑎𝑠𝑠)

+𝑟𝑎𝑑,𝑖𝑛𝐴𝑎𝑏𝑠⋅(

𝑇𝑎𝑏𝑠𝑇𝑔𝑙𝑎𝑠𝑠)

𝑐𝑜𝑛,𝑜𝑢𝑡𝐴𝑎𝑏𝑠⋅(

𝑇𝑔𝑙𝑎𝑠𝑠𝑇𝑎𝑚𝑏)

𝑟𝑎𝑑,𝑜𝑢𝑡𝐴𝑎𝑏𝑠⋅(

𝑇𝑔𝑙𝑎𝑠𝑠𝑇𝑠𝑘𝑦)

=0

Equation2.Energybalanceoftheairflow.

𝑐𝑜𝑛,𝑖𝑛𝐴𝑎𝑏𝑠⋅(

𝑇𝑎𝑏𝑠𝑇𝑖𝑛+𝑇𝑜𝑢𝑡

2

)

+𝑐𝑜𝑛,𝑖𝑛𝐴𝑠𝑖𝑑𝑒𝑠⋅(𝑇

𝑎𝑏𝑠+𝑇𝑔𝑙𝑎𝑠𝑠 2𝑇𝑖𝑛+𝑇𝑜𝑢𝑡

2

)

𝑐𝑜𝑛,𝑖𝑛𝐴𝑎𝑏𝑠

⋅(𝑇

𝑖𝑛+𝑇𝑜𝑢𝑡

2𝑇𝑔𝑙𝑎𝑠𝑠)

−(𝑇𝑜𝑢𝑡𝑇𝑖𝑛)⋅𝜌𝑎𝑖𝑟𝐶𝑝𝑎𝑖𝑟𝑢𝑎𝑖𝑟𝐴𝑖𝑛𝑙𝑒𝑡−(𝑇𝑜𝑢𝑡𝑇𝑖𝑛)

⋅𝐶𝑝𝐻2𝑂𝑚𝑐𝑜𝑛,𝑜𝑢𝑡𝐴𝑎𝑏𝑠⋅(

𝑇𝑔𝑙𝑎𝑠𝑠𝑇𝑎𝑚𝑏)

=0 Equation3.Energybalanceoftheabsorber.

𝐺𝑐𝑜𝑛,𝑖𝑛⋅(

𝑇𝑎𝑏𝑠𝑇𝑖𝑛+𝑇𝑜𝑢𝑡

2

)

𝑟𝑎𝑑,𝑖𝑛⋅(

𝑇𝑎𝑏𝑠𝑇𝑔𝑙𝑎𝑠𝑠)

𝜆𝑡𝑏𝑜𝑡𝑡𝑜𝑚

𝑏𝑜𝑡𝑡𝑜𝑚

⋅(

𝑇𝑎𝑏𝑠𝑇𝑤𝑎𝑙𝑙)

𝜆𝑡𝑠𝑖𝑑𝑒

𝑠𝑖𝑑𝑒𝐴𝐴𝑠𝑖𝑑𝑒𝑠

𝑎𝑏𝑠

⋅(𝑇

𝑎𝑏𝑠+𝑇𝑔𝑙𝑎𝑠𝑠 2𝑇𝑤𝑎𝑙𝑙

)

𝑐𝑜𝑛,𝑖𝑛𝐴𝐴𝑠𝑖𝑑𝑒𝑠

𝑎𝑏𝑠 ⋅(𝑇

𝑎𝑏𝑠+𝑇𝑔𝑙𝑎𝑠𝑠 2𝑇𝑖𝑛+2𝑇𝑜𝑢𝑡

)

=0

(6)

Fig.5. Schematicfigureofthemodel.Thesolardryerisconsistingoftwoparts:

thesolarcollectorandthedryer.

Equation4.Energybalanceoftheouterwalls.

𝜆𝑏𝑜𝑡𝑡𝑜𝑚 𝑡𝑏𝑜𝑡𝑡𝑜𝑚 ⋅(

𝑇𝑎𝑏𝑠𝑇𝑤𝑎𝑙𝑙) +𝜆𝑠𝑖𝑑𝑒

𝑡𝑠𝑖𝑑𝑒𝐴𝐴𝑠𝑖𝑑𝑒𝑠

𝑎𝑏𝑠 ⋅(𝑇

𝑎𝑏𝑠+𝑇𝑔𝑙𝑎𝑠𝑠 2𝑇𝑤𝑎𝑙𝑙)

𝑐𝑜𝑛,𝑜𝑢𝑡⋅(𝐴𝑎𝑏𝑠+𝐴𝑠𝑖𝑑𝑒𝑠)

𝐴𝑎𝑏𝑠 ⋅(

𝑇𝑤𝑎𝑙𝑙𝑇𝑎𝑚𝑏)

𝑟𝑎𝑑,𝑜𝑢𝑡1⋅(

𝑇𝑤𝑎𝑙𝑙𝑇𝑎𝑚𝑏)

𝑟𝑎𝑑,𝑜𝑢𝑡1𝐴2⋅𝐴𝑠𝑖𝑑𝑒𝑠

𝑎𝑏𝑠⋅(

𝑇𝑤𝑎𝑙𝑙𝑇𝑎𝑚𝑏)

𝑟𝑎𝑑,𝑜𝑢𝑡2𝐴2⋅𝐴𝑠𝑖𝑑𝑒𝑠

𝑎𝑏𝑠⋅(

𝑇𝑤𝑎𝑙𝑙𝑇𝑠𝑘𝑦)

=0

Convectiveheattransfercalculationsfollowedmethodsandequa- tionsbased on well-established literature [39]. The convectionheat transfercoefficientontheinsideofthesolarcollector,𝑐𝑜𝑛,𝑖𝑛,wascal- culatedusingEquation5.

Equation5.Nusseltnumber.

𝑁𝑢=𝑐𝑜𝑛,𝑖𝑛𝐷𝐻 𝜆𝑎𝑖𝑟

where𝐷𝐻isthehydraulicdiametercalculatedusingEquation6.𝜆𝑎𝑖𝑟 isthethermalconductivityforairandNuisthedimensionlessNusselt number.

Equation6.Hydraulicdiameter.

𝐷𝐻=2⋅𝑤 +𝑤

Fig.7. Schematicfigureforallenergyflowsandtemperaturesmodelledofthe dryingcabinet.Energybalancesfortheairflow,innerandouterwallofthecol- lectorweremodelledaccordingtothisfigure.Bluearrowsrepresentconvective heattransferandredarrowsradiativeheattransfer.Theyellowarrowsrepresent solarenergyabsorbedbythedryingcabinet.

whereand𝑤aretheheightandwidthofthecrosssectionfortheair passageinthesolarcollector.

The Nusselt number, 𝑁𝑢, is stronglydependant on theReynolds number, 𝑅𝑒𝑎𝑖𝑟,calculatedusingEquation 7.Inthese calculationsthe flowwasassumedtobefullydevelopedturbulentif𝑅𝑒𝑎𝑖𝑟>3000.Oth- erwise,alaminarflowwasassumed.Moredetaileddescriptionsforthese calculationscanbefoundin[32].

Equation7.Reynoldsnumber.

𝑅𝑒𝑎𝑖𝑟=𝜌𝑎𝑖𝑟𝑢𝑎𝑖𝑟𝐷𝐻 𝜇𝑎𝑖𝑟

where𝜌𝑎𝑖𝑟isthedensityofair,⋅𝑢𝑎𝑖𝑟istheairvelocityinsidethesolar collectorand𝜇𝑎𝑖𝑟isthedynamicviscosityforair.

Resultsfromthesecalculationsledto𝑅𝑒𝑎𝑖𝑟 above4000[32].The airflowcanthereforebeconsideredtobeturbulent.𝑁𝑢couldtherefore becalculatedusingtheGnielinski’scorrelationandthefrictionfactorf accordingtoEquation8andEquation9.

Fig.6. Schematicfigureforallenergyflowsand temperaturesthatareincludedinthemodelof thecollector.Energybalancesfortheglass,air flow,absorberandouterwallofthecollectorwere modelledaccordingtothisfigure.Greenarrows representconvectiveheattransferandredarrows radiativeheattransfer.

(7)

Fig.8. Illustrationofthemeasurementsetupoftheminiatureindirectsolar dryerusedforpreliminarytests.(colour)

Equation8.Gnielinski’scorrelationforthecalculationof Nusselts number.

𝑁𝑢=

𝑓 8⋅(

𝑅𝑒𝑎𝑖𝑟−1000)

𝑃𝑟𝑎𝑖𝑟 1+12,7⋅(𝑓8)

1 2

( 𝑃𝑟𝑎𝑖𝑟23 −1

)

Equation9.Frictionfactor.

𝑓=(0,790⋅ln( 𝑅𝑒𝑎𝑖𝑟)

−1,64)−2

where𝑃𝑟𝑎𝑖𝑟isthePrandtlnumberforair.

Withtheparametersusedinthisexample𝑐𝑜𝑛,𝑖𝑛wascalculatedto be:

𝑐𝑜𝑛,𝑖𝑛= 𝑁𝑢𝜆𝑎𝑖𝑟

𝐷𝐻 = 13.75 ⋅ 0.0263

0.324 =1.12 𝑊 𝑚2𝐾

Aparametricanalysiswasperformedassumingthatthe𝑐𝑜𝑛,𝑖𝑛could beincreasedbyamultiplicationfactorintherange1to5betweenthe airandabsorber.𝑐𝑜𝑛,𝑖𝑛betweenairandglazingwaskeptthesame.This wasassumedtobepossibleusingfinstoincreasetheconvectiveheat transferorbyanyothermeanspossible.This calculationshouldthus beviewedasaninvestigationtoseehowmuchanincreasedconvection heattransfercoefficientcouldaffectthetemperatureoftheoutletair fromthesolarcollector.Theconvectionheattransfercoefficientwas assumedtobe20W/(m2K)ontheoutsideofthecollector[41].

Severalparametricstudieswerecarriedoutregardingthedesignof thesolardrying.Thebasecaseforthesimulationsisthefollowing.Col- lector:0.22mhigh;0.60mwide;1.70mlong.Sidesofcollector:1cm plywood.Bottomandsidesofcollector:1cmplywood+1cmStyro- foam.Dryer:0.60mhigh;0.60mwide;0.40mlong.Sidesofdryer:1 cmplywood+1cmStyrofoam.Sixshelves,10pouchespershelf.Ambi- entconditions:solarirradiation700W/m2;outdoortemperature25°C;

airvelocityincollector0.2m/s.

Prototypetesting

Basedontheknowledgegainedfromtheresultsofmodelling(shown furtheraheadinthisarticleunder‘Resultsandanalysis’)thedesignof thesolardryerwasimproved.Fig.8andTable2illustratetheexperi- mentalsetupofthesmall-scaleindirectsolardryerusedforpreliminary tests.Themosttrustworthyindicatorfoundtocharacterizetheperfor- manceofthedryingwasthedryingfluxexpressedinweightlossofthe pouchesperhour.However,openingthecabinettoweighthemem- branebagswoulddisruptthedryingconditions.Therefore,aloadcell wasmountedintothedryingcabinettoregularlymonitortheweight ofthepouches(illustratedbynumber7inFig.8).Thedryingfluxof

thepouchesinsidethedryerwascomparedtothatofacontrolpouch inopen-airdryingconditions.

Theinfluenceof varyingair velocitypassingthroughthepouches wasinvestigatedinpracticebydecreasingthecross-sectionareaofthe dryingcabinet(Fig.9).Thiswasdonebyinstallinganair-tightwall.

Seconddesign

Prototypedesign

Basedontheresultsfromthesmall-scalesolardryerdescribedunder

“Firstdesign” (furtheraheadinthepaperunder‘Resultsandanalysis’) thefollowingdesigncriteriaweresetfortheseconddesign(Table3).

Resultsfromthefirstdesignshowedtheimportanceofmakinguseof directsolarradiation,toincreaseairvelocity,andtoachieveahigher heattransferbetweenabsorberandair.Hence,duringtheseconddesign stagetwosolardryerswerebuilt:onepassiveandoneactive(Fig.10).

Thepurposeofbuildingapassivedryerwastoachieveasimpleand cheapdesignwheretheairflowisthermallydriven.Thedryerwastilted tomaximizeincomingradiationandtoincreasethermallydrivenair flow.However,placingthepouchesonatiltedsurfacewouldposea problemforthedrying.Aswaterevaporatesfromthepouchesthere- mainingjuice flowstothebottomtoformthepouchintoateardrop shape.Thisdecreasessurfaceareacomparedtovolumewhichmakes drying moredifficult.Thisproblemwassolvedusinganextensionat theend ofthedryer intheform ofa horizontalplatformwherethe pouchescouldlayhorizontallyduringtheentiredryingprocess.

Thepurposeofbuildinganactivedryerwastoachievehigherper- formanceandcapacity(largernumberofpouches).Theactivedryer wasclosed,andairflowwasforcedbyphotovoltaicdrivenfans.Con- sequently,hightemperatureandairvelocitycouldbereachedsimulta- neously.Thefansforceacircularflowinsidethedryerandaroundall pouches.Theaxialfansaredrivenby12VDCcurrent,0.28A,andthe sizeis120×120×25mm.Theratedairflowis35l/s[40].Fourfansare poweredbyaphotovoltaicmoduleof20Wppeakpower.Controllable sideopeningswereusedtoexchangetheairandregulatetherelative humidityinsidethedryer.Thefanspeedincreaseswithincreasedso- larradiationwhichprovidesacertaindegreeof‘self-regulation’tothe dryingprocess.Thepoucheswereplacedonagrateforsupportandto makesurethattheairflowsonbothsidesofthepouches.

Bothdryerswerebuiltinthesamewayandusingthesamelocally available materials, expect thephotovoltaic fansin the activedryer (Fig.11).Besidestheelementsillustratedinthefigure,anadditional blacknetwasaddedtothepassivedryerbetweentheabsorberandthe transparentcover.Theaimwastoforcetheairthroughitandincrease heattransfer.

Thetiltangleofthepassivesolardryerwaschosenconsideringthe solardistributionalongthedayduringtheharvestseason.Theharvest seasoninMozambiqueformostcitrusesisbetweenMarchtoJunewhen solaraltitudesarelowerinthesouthernhemisphere.Toachievemore balanced dryingconditions duringthedayredistributionof solarra- diationthroughoutthedayisdesired.Thetotalsolarenergyreceived throughoutthedayforseveralinclinationswasinvestigatedanda55°

tiltfromhorizontalwaschosen.

Modelling

Modellingofcomputationalfluiddynamics(CFD)wascarriedour usingthesoftwareCOMSOL5.2[41].CFDisthesimulationoffluids engineeringsystemsusingmodelling(mathematicalphysicalproblem formulation)andnumericalmethods(discretizationmethods,solvers, numericalparameters,andgridgenerations,etc.)Thiswascarriedout inparalleltothemeasurementsperformedontheseconddesign.The simulationsassumedsteadystateandconstantsolarradiation.Theplas- ticnetontopoftheabsorberwasneglectedandtheplasticcoverwas assumedtonotabsorbanyvisible radiation.Foramore detailedde- scriptionoftheCOMSOLsimulationssee[35].

(8)

Table2

Measurementequipment,accuracy,andnomenclature.Theright-handcolumnwithnum- bersisconnectedtothepreviousfiguretoillustratewherethemeasurementequipmentis placed.MeasurementequipmentfromVernierisused(ifnothingelseisstated).‘Cmax’is themaximumcapacityoftheloadcell,15kg.

Measurement Equipment Abbreviation Accuracy Number in illustration Stainless steel temperature probe T Ambient ± 0.4°C 11

Stainless steel temperature probe T C,In ± 0.4°C 1 Stainless steel temperature probe T C,Out ± 0.4°C 2 Surface temperature sensor T DC,Bottom ± 0.4°C 3 Surface temperature sensor T DC,Top ± 0.4°C 4 Surface temperature sensor T DC,Bag ± 0.4°C 10

RH sensor RH DC ± 2 % 5

RH sensor RH Ambient 0.2 % 13

Pyranometer I W/m 2± 5 % 6

Scaime load cell V MassLoss ± 0.017 % Cmax 7

Anemometer v wind ± 0.15 ms 1 8

Hand anemometer TSI 8330 v ± 0.05 ms 1 9

Scale House – HS-3000 m RB ± 2 g 12

Fig.9. Schematicillustrationofthecross-sectionmodificationinthe dryingcabinetshownbeforein(a)andafterin(b).

Table3

Summaryofthedesigncriteriaasaresultofthetestsforthefirstdesignandtakingintoaccountthesocialandfoodtechnologyinvestigationscarried outinparallel.

Design Parameters Requirement

Direct/Indirect/Mixed Dryer Direct or Mixed

Passive/Active Dryer Both

Air flow (Speed, characteristics, direction) Velocity: As high as possible, except if slowing the process

Characteristics: better turbulent (higher heat transfer) Direction: Parallel to the biggest dimension of the bag

Temperature Interval 50°C – 65°C

Drying time Two to three sunny days

Material No wood, has to be available in Mozambique

User friendliness As high as possible

Fig.10. Left:illustrationofthepassivesolardryer.Right:illustrationoftheactivesolardryer.

(9)

Fig.11. Localavailablematerialsusedinbothsolar dryers.

Fig.12. Left:indoorsolarsimulatorinlaboratory.Right:levelofirradiationontheleaningcollectorinlaboratory.(colour)

Thesimulationmodelwasvalidatedagainstfieldmeasurementscar- ried out in Mozambique.Temperature sensors placed on theplastic cover,intheair,ontheabsorber,insidetheinsulationandatthebottom ofthecollectorwereusedforthevalidation.

Prototypetesting

LaboratoryinSweden

BeforeperformingtestsinMozambique,thepassiveandactiveso- lardryerprototypeswerebuiltandtestedinalaboratoryatLundUni- versityinSweden.Thelaboratoryisequippedwithafull-scaleartifi- cialsolarsimulatorwhichallowsperformancetestingundercontrolled conditionssuchasradiation,roomtemperatureandrelativehumidity.

Fig.12showsthelevelsofincomingradiationontheleaningpartofthe passivedryer.Theaverageincomingradiationwas905W/m2 which isclosetofullsolarradiation.However,asillustratedinFig.12,the variationoftheincomingradiationwassignificant,speciallyfarfrom itscentre.Forinstance,theincomingirradiationatthetopwasclose to400W/m2whileitshighestvaluewasapproximately1400W/m2.A listofmeasuringequipment,theiraccuracy,range,andplacementare describedinTable4.Fig.13

FieldtestinginMozambique

AfterthetestsinlaboratoryinSweden,thepassiveandactivesolar dryerprototypeswerebuiltandtestedinrealconditionsinMozambique

(Fig.14).Ambientconditionsweremonitoredregularlywiththelogger:

temperature,relativehumidity,windspeedandsolarirradiation.The juiceinsidethepoucheswasmadefromlocaltangerinesfromthefarmer association collaboratingwiththeresearchgroup. Thesugarcontent ofthejuiceinfluencesnotonlythemicrobiologicalqualityofthefinal product[26]butcanalsoaffectthedryingprocess.Therefore,testswere performedwithandwithoutaddedsugar(i.e.,sucrose).Thepouches withaddedsugarwerepreparedsothat10%ofallweightwasadded sugarand90%juice.

Costestimatesandavailabilityofmaterials

Thecostestimatesforeachdryerwerebasedontheretailpriceof itsindividualcomponentsinlocalshopsinMozambique.Atthisstage, nocostwasattributedtolabour.Thedryersarethoughttobebuiltby farmingassociationsthatwillusethem.Also,availabilityofmaterials wasarequirementfortheprototypedesign.

Resultsandanalysis Firstdesign

Modelling

Resultsfrommodellingofthesmall-scaledryershowedthatitsper- formancecouldbesignificantlyimprovedsincethevastmajorityofin-

(10)

Table4

Measuringequipment,accuracy,andrangeofeachdevice.

Device Measures Accuracy Range Location

Testo 435-2 Airspeed ± (0.3 m/s

+ 4 % of mv)

0 to 20 m/s Bag

Temperature ± 0.3°C -20 to 70°C Bag

RH ± 2 % 0 to 100 % Bag

Vernier LabQuest Temperature ± 0.5°C -40 to 135°C Ambient

RH ± 2 % 0 to 85°C Ambient

Irradiation ± 5 % 0 to 1100 W/m 2 Ambient

Temperature ± 0.5°C -25 to 125°C Absorber

Scale Weight ± 1 g 0 to 3000 g Bag

Pyranometer (Vernier) Irradiation ± 1.29 % 0 to 1100 W/m 2 Collector

Fig.13. SolardryersandcontrolpouchesinruralareainMozam- bique.

Fig.14. Estimatedheatbalanceofthesolarcollector.

comingsolarradiationwasestimatedtobelostbyheatlossesfromthe bottom,glass andsidesof thecollector(Fig.14).Heatfromtheab- sorberwasestimatedtobemainlytransferredtotheglassandbackside andfurtherlostintoambient.Consequently,only13%ofincomingsolar radiationwasestimatedtobetransferredtoairflowwhichmeantlow temperatureandhighrelativehumidity.

Severalparametricstudieswerecarriedouttoinvestigateincrease ofconvectiveheattransferoftheabsorber.Onepossibilitywastoadd convectivefinstotheabsorberorothertypeofsurface(Fig.15).The figureshowsaparametricanalysisoftheoutletairtemperaturefrom thesolarcollectorasafunctionoftheeffectiveconvectiveheattransfer betweentheairandabsorberincreasedbyamultiplicationfactorinthe

range1to5resultingfromthepossibilityofaddingfins.Theconvective heattransferwascalculatedaccordingtoEquation5toEquation9in themethodsection.Ahigherairvelocitycanbeachievedbydecreasing thecross-sectionheightofthesolarcollector(Fig.16).

Ahigherairtemperatureresultsinalowerrelativehumidityinside thedryer,whichincreasesthedryingflux.Ahigherairvelocityincreases thedryingfluxduetohigherheattransferbetweenthepouchandtheair andmakesthedryingalongthedryingcabinetmoreeven.Thepouches placedonthefirstshelf,closesttotheentrance,willbeexposedtoa lowerrelativehumiditythanthepouchesplacedfurtherupinthedryer [42].Thisoccursduetotheabsolutehumiditybeinghigherfurtherup inthedryeraswellasthetemperaturebeinglowersinceheatwillbe

(11)

Fig.15. Parametricanalysisontheoutlettemperatureof thesolarcollectordependingonconvectiveheattransferbe- tweenairandabsorber.

Fig.16. Expectedinfluenceofcross-sectionheightonthe outlettemperatureofthesolarcollector.

absorbedbythepouchesandlostthroughthewalls.However,airtem- peratureandvelocityareinter-dependentwherea highervolumetric airflowresultsinlowertemperature.Abalancebetweenthesefactors isthereforeneeded.

Prototypetesting

FieldtestinginMozambique

Measurementresultsforthecontrolpouchshowedthatthedrying fluxwas150g/h/m2intheshadeand372g/h/m2indirectsunlight showingtheimportanceofmakinguseofdirectradiation.

Fig.17illustrates6runsinthesmall-scalesolardryer.Duringrun4 to6thecross-sectionofthedryingcabinetwasdecreasedaccordingto Fig.9.Duringrun1to3,beforethecross-sectionwasreduced,therun withthehighestdryingfluxwasrun3with247g/h/m2.Thisvalueis lowerthanthatofthecontrolpouchunderdirectsunlight,whichwas unexpected.However,thedryingfluxof run6,withasmallercross- sectionareaandthereforehigherairvelocity,was370g/h/m2which wasclosetothatofthecontrolpouchinopen-airdryingandunderdirect sunlight.Thedecreaseincross-sectioncausedanincreaseofairspeedof about44%andanincreaseofdryingfluxofapproximately33%while thetemperatureintervalformostoftherunswascomparable.

Basedontheresultsobtained,theairvelocityhadalargerimpact onthedryingfluxthanexpected.Whendryinglessjuicyandmorein- tactfruitsandvegetables,theimpactofairvelocityonthedryingflux isoftenlesssignificantduetothehighinternalmasstransferresistance

insidethefood.Forexample,in[4]itisstatedthat“… themosteffective factoronthedryingrateisthetemperatureoftheairinsidethecabinet;the effectofvariationofspeedofairinsidethedryingcabinetissmallandcan beneglected… ”;in[43]onecanread“...Studiesonthedryingoffruits andvegetablesindicatethattheairvelocityhaslittleinfluenceonthedrying kineticsofmostofthem...”;andin[44]“Theairdryingtemperatureisa principalfactorinfluencingthedryingkinetics… theairvelocityhadasmall impact onthe dryingkinetics”. Evenwiththeadditionalmasstransfer resistanceprovidedbythemembraneinthepouch,theexternalmass transferresistanceatthesurfaceofthepouchshowedtobehigherand thereforeadifferentdryingbehaviourwasobservedcomparedwiththe solardryingofmorein-tactfruitsandvegetables.

Aninterestingandimportantobservationwasthatatlowerairve- locitiesthepouchesinsidethedryerwerewetallaround.Dropletsof waterwereseendroppingfromthedrying cabinet.Furthermore,the temperatureofthepouchesinsidethedryerwasrelativelyhighandin- creasingduringthedryingprocess.Incomparison,thecontrolpouches inopen-airweredryandcolderduetoevaporativecoolingandlower ambientairtemperatures.

Fromtheanalysisoftheseresults,itseemedthatthehighertempera- tureandlowerrelativehumidityinsidethesolardryerwerenotenough toincreasethedryingfluxabovethelevelofthereferencebagplacedin ambientconditionswherewindanddirectsunlightwereavailable.The solardryerseemedtobemissingthecapacitytoremovethevapourfrom

(12)

Fig.17. Acomparisonofthedryingfluxesand temperatures.Averagedryingfluxesandtem- peraturesareplottedagainstairvelocity.The horizontalbarsrepresentthedeviationofthe airvelocitywhiletheverticalbarsrepresentthe deviationofthetemperatureinthedryingcabi- net.Afirstorderlinearapproximationisdrawn fortherateofmassloss.

thesurfaceofthebagtocontinuethepervaporationprocessthroughthe membrane.Theairflowvelocitywaslowandseemedtobelimitingdry- ing.Therefore,thenextdesignofsolarfruitdryertookthisimportant outcomeintoconsideration.

Seconddesign

Modelling

Resultsshowthatmeasurementsandsimulationsaremainlyingood agreement.Thelargerdifferencefortemperaturesontheplasticcover wasmostlikelyduetosensorsheatingupdirectlyfromthesun.This problemoccurredthroughouttheevaluationmeasurements.However, othermeasurementscarriedoutawayfromdirectsunlighthadsignifi- cantlyhighercorrelationtothesimulationresults.

Themodelsgiveasufficientestimationofthetemperatureandrela- tivehumidityinadirectandinanindirectsolardryerwithamaximum relativeerrorof10%fortheoutletairtemperatureandapproximately 30%fortherelativehumidity.Guidelinestoimprovethedesignwere providedbythemodel.Anadequatebalancebetweentheairflowveloc- ity,therelativehumidityandtheconvectionprovidedontheabsorber plateandaroundthebagswasfoundtosignificantlyimprovethedrying flux.

Prototypetesting

LaboratoryinSweden

Theinfluenceinthedryingprocessofclosingtheactivesolardryer wasinvestigatedinlaboratorybymonitoringtemperatureandrelative humidityoftheairinside.Pouchescontainingorangejuicewereused tomimicrealconditions.ResultsareshowninFig.18.After4hours, whentheparameterswerestable, itwas observedthat thetempera- tureof theclosedactivedryerwas closetothatof whentheplastic coverwasopen.However,amuchhigherrelativehumiditywasmea- sured(35%comparedto10%).Furthermore,condensationwasseenin severalplacesinsidethedryer.Itwasthereforeconcludedthattheab- senceofopeningsdoesnotallowtherelativehumiditytobelowenough toavoidsaturation.Therefore,testinginMozambiquewascarriedout

withopeningsontheplasticcover.Resultsfromthedryingfluxinlabo- ratoryforbothsolardryersareshownfurtheraheadinTable6.Theair flowcouldnotbemeasuredintheactivedesignsolardryer.Thereason isthattobeabletomeasureanairflowusingananemometertheair flowdirectionmustbeknown.Astheflowisturbulentandchaoticthis measurementcouldnotbeperformed.

FieldtestinginMozambique

Measurementsoftheairtemperatureinsidethepassiveandactive solardryersduringclearskyconditionsalongthedayareillustratedin Fig.19.Theillustratedairtemperaturesweremeasuredinsidethesolar dryers.Theairtemperatureinsidethepassivedryerwasmeasuredat thewarmestpointlocatedattheoutletofthesolarcollectoratitstop.

Theairflowintheactivesolardryeristurbulentandthereforetheair temperatureisfairlyhomogeneousinsidethedrier.Asexpected,theair temperatureofthepassivedryerwasshowntobelessstableduetoits sensitivitytowindconditionswhiletheincomingsolarradiationwas higherduetoitsfavourableinclinationtowardsthesun.Asillustrated below,between11:00and14:00temperaturesintherangeof70°C-78°C and58°C-65°Cweremeasured,forthepassiveandactivesolardryer respectively,duringclearskyconditionsandforthatperiodoftheyear.

Suchresultsareconsistentwithlaboratorymeasurementsasillustrated inFig.18(left)fortheactivesolardryerandmeasurementsduringother daysasillustratedin[34].Itshouldbenotedthatthesharptemperature increaseoftheactivedryerat12:00isexplainedbyanair-leakagefrom theplasticcoverthatwascorrected.

Largepouchesofover1.5kilogramsofjuiceeachweredriedinthe solardryers.Thisrepresentsa330mlpotofjamoffinalproductforeach bag. Table5showsthedryingfluxfor bothsolardryersandcontrol pouchduringathree-dayperiod.Thepouchesusedforalldayswere thesame.

Duringthefirstdayasignificantincreaseindryingfluxeswasob- servedwhenthebagsareplacedinthesolardryerscomparedtowhen theyareplacedoutsideinambientconditionswasobserved.Thedrying fluxesfortheseconddaywerenothashighasduringthefirstday,but stillhighercomparedtothecontrolpouch.Finally,thedryingfluxesfor thethirddaywerelowerthanthesecondday.Thedryingfluxofthe

(13)

Fig.18. Left:comparisonofrelativehumidityandtemperatureintheactivecollectorwhenplasticcoverwasopenedandclosed.Right:condensationontheplastic asaresultofnoairexchange.(colour)

Fig.19. Illustrationofairtemperaturesinsidethepassiveandactivesolar dryersandcorrespondingsolarradiationatthesurfaceofeachcollectordur- ingclearskyconditions.

Table5

Dryingfluxesforbothsolardryersandcontrolpouchduringthreedays,withandwithout addedsugar.

Day 1 Day 2 Day 3

Sugar No Sugar Sugar No Sugar Sugar No Sugar Active ( g/m 2/h ) 497 609 320 390 187 220 Passive ( g/m 2/h ) 465 457 325 354 216 287 Control ( g/m 2/h ) 293 311 246 264 192 227 Active (ratio to control) 1.70 1.96 1.30 1.48 0.97 0.97 Passive (ratio to control) 1.59 1.47 1.32 1.33 1.12 1.26

Control 1 1 1 1 1 1

pouchinsidetheactivedryerwasevenlowerthanthatofthecontrol pouch.Thismeansthatthedryingfluxdecreasesascumulativeweight lossincreasesasexpected,sincethemasstransferdrivingforcedecreases asthemoistureconcentrationinthejuicedecreasesandasthejuiceis turningintoamoreviscousproduct.Fortheactiveandpassivedryers, themoistureconcentrationdecreasedmorerapidlyexplainingwhythe dryingfluxesalsodecreasedsubstantiallyfromdays1to3.

Thepercentagecumulativeweightlossofpouchesinsidethepassive andactivesolardryersisshownin Fig.20 andFig.21,respectively.

Poucheswithandwithoutaddedsugarweretested andcomparedto controlpouches.Theminimumcumulativeweightlosswhenmicrobi- ologicalgrowthispreventedwascalculatedforthepoucheswithand withoutsugarandisrepresentedbythehorizontallines[26,p.2].These

linesrepresentthetargetfordrying.Thepoucheswereweighedatthe startandendofeachday,thisisshownbythecrossesinthefigures.

Thesuddenincreasefromendofonedaytostartthenextdayisdueto dryingduringnight.

Resultsshow thatpouchesdryfaster insidethe solardryers than theirrespectivecontrolpouches.Furthermore,poucheswithoutsugar dryfasterthantheoneswith,asexpected.Sugarwasnoticedtoslow downthedryingprocessbutthethresholdforcumulativeweightloss wheremicrobiologicalgrowthispreventedisalsolower.Consequently, pouches withandwithoutsugararethought tocomplete thedrying processapproximatelyatthesametime.Finally,resultsshowthatthe pouchesinsidetheactivecollectoralmostreachedthegoalforcumula- tiveweightlossduringthethree-dayperiod.

(14)

Fig.20. Cumulativeweightlossintheactivesolardryerandcon- trolpouchforathree-dayperiod,withandwithoutaddedsugar.

(colour)

Fig.21. Cumulativeweightlossinthepassivesolardryerandcon- trolpouchforathree-dayperiod,withandwithoutaddedsugar.

(colour)

Insummary,themeandryingfluxforthepoucheswithoutsugarin- sidethepassiveandactivesolardryersincomparisonwiththecontrol pouches,bothinlaboratoryandinMozambique,areshowninTable6. Bothdryersconsistentlyachievedthetargettemperatureofatleast50°C duringmostofthedays,whichpreventsbacterialgrowthandlowersthe relativehumiditysignificantly.Anincreaseofthedryingfluxfromap- proximately50%(passivedryer)to100%(activedryer)wasmeasured inrealconditionsinMozambiquewhichmeansthatallpouchesinthe solardryerssignificantlyoutperformthepouchesthatdonotuseasolar dryer.Thetotaldryingtimewasbelowfourdaysforallbagsinthedry- ers,evenwhentheweatherwasnotoptimal.Theactivesolardryerwas showntohavetheshortestdryingtimeandthehighestcapacity(more pouches)butalsothehighestprice(Table7).

Itisimportanttonoticethatmoldgrowthontheoutsideandfer- mentationofthejuicewasconsistentlyobservedonthecontrolpouches dryingin openair.Thesefactorscompromisedrying withoutasolar

dryer.Furthermore,duringfieldmeasurementsinMozambiqueitwas discoveredthatthepouchmaterialdegradeswhenexposedtodirectso- larradiationbothwithandwithoutasolardryerand,asmanufactured atthetime,couldnotresistmorethan5daysofdrying.

Costestimatesandavailabilityofmaterials

Thematerialsusedtobuildthesolardryerswerebasedonlocalavail- ability,costsandinputsfromthefarmers[29].Thecostestimatefor eachsolardryerwasbasedontheretailpriceofitsindividualcompo- nentsinlocalshopsinMozambiqueispresentedinTable7.Asshown, theactivesolardryercostsapproximately2.4timesmorethanthepas- sivecollector.Thisismainlyduetothecostoffans(mostexpensive component) andsolarcellswhich,together,madeup61%oftheto- talprice.Themeandryingfluxisincreasedbyapproximately33%.This couldindicatethatthepassivecollectorismorecost-effective.However,

(15)

Table6

Comparisonofthemeandryingfluxesforthepassiveandactivesolardryersincomparisonwiththecontrol pouches,bothinlaboratoryandinMozambique,forthepoucheswithoutsugar.

Place of testing Type of drying method Mean drying flux (g/m 2/h) Ratio (solar dryer / without)

Laboratory in Lund Solar passive dryer 678 1.65

Solar active dryer 924 2.25

Without solar dryer 411 1.00

Field tests in Mozambique

Solar passive dryer 457 1.47

Solar active dryer 609 1.96

Without solar dryer 311 1.00

Table7

Theretailpriceofallthecomponentsusedinbothdryers.(1MZN=0,0138589€,asof2017-08-08).

Product Size Unit price Qt. active Price active Qt. passive Price passive Metal sheet (mm) 800 3600 0.4 14.4 EUR 1 14.4 EUR 1 14.4 EUR

Net (m) 3 1 7.6 EUR 1 7.6 EUR 1 7.6 EUR

Styrofoam (cm) 100 200 2 12.4 EUR 1 12.4 EUR 1 12.4 EUR

Fillinf foam (ml) 750 5.3 EUR 2.5 13.3 EUR 2.5 13.3 EUR

Plastic sheet (m) 4 5 15.5 EUR 0.5 7.7 EUR 0.5 3.9 EUR Metal angles (cm) 8 pcs 10 10 0.5 EUR 8 4.0 EUR 1 4.0 EUR Plastic support (m) 10 2500 0.7 EUR 2 1.4 EUR 2 2.7 EUR Nuts and bolts (mm) 50 pcs, 6 75 6.5 EUR 1 6.5 EUR 1 6.5 EUR Wood for frame (mm) 38 38 5400 3.4 EUR 3 10.1 EUR 4 40.4 EUR Wood screws (mm) 50 pcs, 4 45 1.4 EUR 1 1.4 EUR 1 1.4 EUR

Fans (mm) 120 120 18.4 EUR 4 73.6 EUR 0 0 EUR

PV-panel (W) 20 47.8 EUR 1 47.8 EUR 0 0 EUR

Cables N/A N/A N/A 0 EUR 0 0 EUR

Total 200.3 EUR 78.6 EUR

theactivecollectorhasasignificantlylargercapacity,andthesolarcells couldpotentiallyalsobeusedforotherpurposesoutsidethejuicyfruit period.

Discussion

Theevaluatedsolardryerswerefoundtodecreasedryingtimeand increaseproductivity,toincreasefoodsafety,andtoprovideadditional protectionfromexternalenvironment.

However,animportantconstraintwasencountered.Thesuccessful- nessof theuse ofthepouch membraneis arequirementtosuccess- fullydryjuicyfruitsaccordingtotheinvestigatedconcept.Theobserved degradabilityofthepouchindirectsunlightmightbeanimportanthur- dleforsuccessfulimplementation.Thischallengeneedstobeovercome beforethepouchescanbecomesuitableforwidespreaduse.Moreover, moldgrowthontheoutsideandfermentationofthejuicewasobserved onthecontrolpouchesdrying inopenair.Openairsun dryingwith pouchesincreasestheriskofmoldgrowthontheoutsideofthepouch, whichfurtheremphasizestheusefulnessofasolardryer.Someopen-air samplesexperiencedmoldgrowthontheoutsideofthepouches,while allpassiveandactivesampleshadnovisiblemoldgrowthontheout- sidesofthepouches.Inanotherstudy,forthepoucheswithmoldonthe outside,thejuicewasnotcontaminatedwhichshowsthatthepouches havetheabilitytoactasabarriertomold[22].Despitethis,drying withasolardryerisstillpreferredoveropensundryingtoreducethe riskofanymoldgrowthduringtheprocessandalsodecreasethedrying time.Byusingsolardryerstoavoidmoldgrowth,thepersonhandling thepouchesalsoavoidstouchingmoldthatmayhaveaccumulatedon theoutsideofthepouch.Evenifapouchisnotused,theconceptofpro- tectingliquidfoodinacontainerisgoodtopreventasmuchmicrobial contaminationaspossible.

Concerningmeasurements,thehigheruncertaintyonmeasurements relatestoairflowvelocityonthepassivesolardryer.Thiswasmeasured attheoutletundercontrolledconditionsinlaboratoryinSweden.The measuredvaluedependsonflowcharacteristicsandhowfarthemea- surementistakenfromtheabsorberandsides.Approximately1m/scan beconsideredasareferencevalue.Astheaccuracyoftheanemometer

is±0.3m/s,therelativeerrorislarge.Ontheotherhand,largepouches ofover1500gramsofjuiceeachweredriedandsincetheaccuracyof thescaleis±1grams,thecorrespondentrelativeerrorinweightmea- surementsissmall.Hence,dryingfluxwasusedasakeyperformance indicatorforthedryingprocess.

Regardingfuturework,itisbelievedthatevenifthepouchisnot used thesolardryersmayhavepotential tobe used.Since theasso- ciationof farmersdonotcarryout anyfruitdryingtoday,thereisa largepotentialonsolarfruitdryingforallnon-juicyfruitsandherbs.

Furtherdevelopmentoftheconceptcouldfocusondesigningholistic solarphotovoltaicsystemsforactivesolarfooddryingandotheruses suchaslightingandcooking.Anotherpossibledevelopmentistodesign moreadvancedsolardryersthatincludethermalstorage,forexample.

Whenitcomestoprofitability,thecostestimatesshowasignificantly highercostfortheactivedryerbutalsoshorterdryingtime.Itbecomes thereforedifficulttoaccuratelyestimatethemostcost-effectivedesign.

Todoso,severalotherfactorsshouldbeaccountedforsuchasthecost ofbuildingthedryers,thequantityofjuicethatcanbedriedatonce, andtheselling priceofthefinishedproduct.Regardingmodellingof thesolardryer,itshouldbenotedthatthecalculationsfortheNusselt numbercontainsapproximations.UsingtheGnielinski’scorrelationis suitableasitisvalidfor0,5<Pr<2000and3000<Re<5×106.Noef- fectsduetoentrylengthwereincludedinthecalculations,whichcould leadtoalessaccurateestimationofNuwhichwouldbeinterestingto includeinfuturework.

Conclusions

Aholisticdevelopment,implementationandevaluationofsolardry- erscombinedwithsemi-permeablemembranepouchesfordryingjuicy fruitswascarriedout.Twoprototypedesigniterationswerecarriedout includingmodellingandtestinginMozambique.Thelatestversionof solardryerswereapassiveandanactivesolardryer.

Resultsfrommodellingshowedthattheaccuracywassufficientto estimatelevelsoftemperatureandrelativehumiditywithamaximum relativeerrorof10%and30%,respectively.Themodelswereusedto improvethedesignofthedryersforafasterandsaferdryingprocess.

Referanser

RELATERTE DOKUMENTER

The system can be implemented as follows: A web-service client runs on the user device, collecting sensor data from the device and input data from the user. The client compiles

As part of enhancing the EU’s role in both civilian and military crisis management operations, the EU therefore elaborated on the CMCO concept as an internal measure for

The dense gas atmospheric dispersion model SLAB predicts a higher initial chlorine concentration using the instantaneous or short duration pool option, compared to evaporation from

Based on the above-mentioned tensions, a recommendation for further research is to examine whether young people who have participated in the TP influence their parents and peers in

The increasing complexity of peace operations and the growing willingness of international actors to assume extended responsibil- ity for the rule of law in often highly

Overall, the SAB considered 60 chemicals that included: (a) 14 declared as RCAs since entry into force of the Convention; (b) chemicals identied as potential RCAs from a list of

Abstract A two-and-a-half-dimensional interactive stratospheric model(i.e., a zonally averaged dynamical-chemical model combined with a truncated spectral dynamical model),

Faraday rotation receivers on the rocket and the EISCAT UHF incoherent scatter radar provided simulta- neous electron density profiles whereas the ALOMAR Na lidar and meteor