• No results found

process: An in vitro study Cellular responses of human astrocytoma cells to dust from theAcheson NeuroToxicology

N/A
N/A
Protected

Academic year: 2022

Share "process: An in vitro study Cellular responses of human astrocytoma cells to dust from theAcheson NeuroToxicology"

Copied!
7
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

Full Length Article

Cellular responses of human astrocytoma cells to dust from the Acheson process: An in vitro study

Yke Jildouw Arnoldussen

a

, Torunn Kringlen Ervik

a

, Balazs Berlinger

a

, Ida Kero

b

, Sergey Shaposhnikov

c

, Shanbeh Zienolddiny

a,

*

aDepartmentofBiologicalandChemicalWorkEnvironment,NationalInstituteofOccupationalHealth,Pb8149Dep.,N-0033,Oslo,Norway

bDepartmentofIndustrialProcess,TechnologySINTEFMaterialsandChemistry,PB4760,N-7465,Trondheim,Norway

cNorgenotechAS&CometBiotechAS,N-1290Oslo,Norway

ARTICLE INFO

Articlehistory:

Received8August2017

Receivedinrevisedform2November2017 Accepted2November2017

Availableonlinexxx

Keywords:

Achesonprocess Neurotoxicity Astrocytes Siliconcarbide

ABSTRACT

Siliconcarbide(SiC)islargelyusedinvariousproductssuchasdieselparticulatefiltersandsolarpanels.It isproducedthroughtheAchesonprocesswhereaerosolizedfractionsofSiCandotherby-productsare generatedintheworkenvironmentandmaypotentiallyaffecttheworkers’health.Inthisstudy,dustwas collected directly on afilter ina furnacehall overatime periodof24h. The collected dustwas characterizedbyscanningelectronmicroscopyandfoundtocontainahighcontentofgraphiteparticles, andcarbonandsiliconcontainingparticles.Only6%wasclassifiedasSiC,whereofonly10%hadafibrous structure.Tostudyeffectsofexposurebeyondtherespiratorysystem,neurotoxiceffectsonhuman astrocyticcells,wereinvestigated.Bothlow,occupationallyrelevant,andhighdosesfrom9E-6mg/cm2 upto4.5mg/cm2wereused,respectively.Cytotoxicityassayindicatednoeffectsoflowdosesbutaneffect ofthehigherdosesafter24h.Furthermore,investigationofintracellularreactiveoxygenspecies(ROS) indicatednoeffectswithlowdoses,whereasahigherdoseof0.9mg/cm2inducedasignificantincreasein ROSandDNAdamage.Insummary,lowdosesofdustfromtheAchesonprocessmayexertnoorlittle toxiceffects,atleastexperimentallyinthelaboratoryonhumanastrocytes.However,higherdoseshave implicationsandarelikelyaresultofthecomplexcompositionofthedust.

©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1.Introduction

Siliconcarbide(SiC)producedbytheAchesonprocessisawell- knownceramicmaterialknownforitspropertiessuchaschemical inertness, elevated thermal stability and excellent mechanical properties.Itisusedinawidevarietyofindustrialpurposesbothin theceramicandcompositematerialfields(Oliverosetal.,2013).

Furthermore,thereisanincreasedinterestintheuseofmicroand nanoscaleSiCmaterialsintheareasofceramics,electronicsand catalysis.Thus,asSiClikelywillcontinuetobeusedinavarious numberofproducts, researchonpotentialhealth effectsdue to occupationalexposurewillbeofimportance.

Most toxicological effects related to SiC from the Acheson processhavefocusedontherespiratoryeffects andmostof the knowledge is on SiCwhiskers. Analyses on the effects of dust exposureofworkersintheSiCindustryhaveindicatedincreased loss of lung function, increased mortality from non-malignant

respiratorydiseasesandincreasedincidenceoflungcancer(Bugge etal.,2011,2012;Johnsenetal.,2013).Duetotheirabilitytocause lungcancer,occupationalexposureassociatedwiththeAcheson process has been classified as carcinogenic to humans by the InternationalAgencyforResearchonCancer(Grosseetal.,2014).

SubchronicinhalationandintrapleuralinjectionofSiCwhiskers in rats inducedinflammatorylesions, thickeningof the pleural wall, pleural fibrosis and mesotheliomas (Lapin et al., 1991;

Johnsonand Hahn,1996).StudiesonSiCmicroparticlesshowed thattheparticlestriggeredlunginflammation(Cullenetal.,1997), granulomas (Vaughanetal.,1993),fibroticchangesinthelungs (Akiyama et al., 2007), exerted cytotoxic and genotoxiceffects (Vaughan et al., 1993), induced reactive oxygen species (ROS) (Svenssonetal.,1997)andincreasedtheexpressionofinflamma- torycytokines(Cullenetal.,1997).Furthermore,accumulationof nanoscaleSiCparticleswasobservedinlungepithelialcells and induced ROSand DNA damage(Fan etal., 2008; Barillet et al., 2010).

Thereislittleknowledgeonpotentialneurotoxiceffectsofdust fromtheAchesonprocess.DustemittedfromtheAchesonprocess hasseveralcomponents,includingsilicaparticlesthatmayhavean

* Correspondingauthor.

E-mailaddress:shan.zienolddiny@stami.no(S.Zienolddiny).

https://doi.org/10.1016/j.neuro.2017.11.001

0161-813X/©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/

).

xxx–xxx ContentslistsavailableatScienceDirect

NeuroToxicology

(2)

impactonthecentralnervoussystem.Nanoscalesilicaparticles showedincreasedoxidativedamageandinflammatoryresponses inthebrainafterintranasalinstillationinexperimentalanimals (Wu et al., 2011). Furthermore, uptake of silica nanoparticles decreased neuron cell viability, induced ROS, apoptosis, and increasedAlzheimer-likepathology(Yangetal.,2014).Supporting this,arecentstudyshowedthatsilicananoparticlescancrossthe blood-brainbarrierandinduceneuronalcelldamage(Zhouetal., 2016).Otherelements,suchascarbon,aluminumandvanadium, thatcanbepartofoccupationalexposureintheAchesonfurnace hallhave allbeen showntohave neurotoxic effects (Campbell, 2002;Garciaetal.,2005;Onodaetal.,2017).

We soughttoinvestigatetheeffectsof dustcollectedinthe furnacehallofaSiCfacilityonahumanastrocyticcelllinecultured inthe laboratory.Thehumancells were exposedtoa range of doses,includinglowoccupationallyrelevant,andhighdoses.The resultsshowedminimaldose-dependenttoxicity,ROSproduction andDNAdamage.

2.Materialsandmethods

2.1.CollectionoftheAchesondust

A 142mm stainless steel filter holder, YY3014236 (Merck Millipore,Massachusetts, USA) wasplaced inthemiddle ofan Acheson furnace hall close to one of the furnaces. A 142mm diameterpolycarbonatefilter withporesize10

m

mwasplaced

ontopofthefilterholderandthen connectedtoa highoutput vacuum pump, WP6222050 (Merck Milllipore, Massachusetts, USA), withadjustable output.This was left on for a period of 24hwheredustwascollectedfromthefilterthreetimesduring this period. The dust can beconsidered as an impure powder with no industrial application and is representative of the airbornedustthatcanbeinhaledintheworkenvironmentofa furnacehall.

2.2.PreparationoftheAchesondustforcharacterizationandcell cultureexperiments

Thedustwas weighedand fordispersiona slightlymodified versionoftheNANOGENOTOXprotocolwas used(Jensenetal., 2011;Phuyaletal.,2017).Briefly,toobtainwell-dispersedparticles asolutionofsterile-filtered0.05%BovineSerumAlbumin (BSA) (dilutedinH2O,m/v)wasaddedtoobtainastocksolutionof1mg/

ml.Afterabriefvortexing,thesolutionwassonicatedusingaprobe sonicatorat 10%amplitude (Sonifier450S, BransonUltrasonics, Danbury,USA)for 15min.Foreach single experimenta freshly preparedstockwasused.Inthecellcultureexperiments,controls wereexposedtothehighestvolumeof0.05%BSAthatwasusedto preparethehighestdoseof Achesondustfor exposure.Forthe highestdoseofAchesondust(4.5

m

g/cm2)thiscorrespondedtoa finalBSAconcentrationof0.000675%inthecellculturemedia.

2.3.Achesondustcharacterization 2.3.1.SEM

The Acheson dust was prepared as follows: a volume correspondingto100

m

gwastakenfroma1mg/mlstockdispersed

in0.05%BSAwhichwassonicatedasdescribedabovefollowedby filteringona47mmWhatmanNucleporepolycarbonatefilterwith 50nm pore size. Thereafter the filter was coated with a thin platinum film in a sputter coater (Cressington 208HR sputter coater,UK).Specimensof1010mmwerecutfromthefilterand gently fixed on aluminum specimen stubs with double-sided

carbonadhesivediscs.ThespecimenswereanalyzedwithaHitachi SU 6600 (Ibaraki-ken, Japan) field emission scanning electron microscope(FE-SEM)equippedwithaBrukerenergy-dispersiveX- raydetector. Theinstrument was operatedunderthefollowing conditions: accelerating voltage 15keV and working distance 10mm.Highresolutionimagesoftheparticleswereobtainedby acquiring at slow scanning speed. Initially, specimens were examined in theSEM todeterminetheirmorphology and size.

The chemical composition of the Acheson dust particles was obtainedbyenergydispersivex-rayspectroscopy(EDX).

2.3.2.Dynamiclightscattering

To obtain information on the dusts’ hydrodynamic size distributionafterdispersion,ZetaSizerNanoZS(MalvernInstru- mentsLtd,UK)wasused.Immediatelyaftersonication1mlofthe sonicatedsolutionwaspipettedintoacuvette,leftonthebenchfor 5minandwasthereafterleftfor5minintheZetaSizerapparatus before measuring over 10 cycles. ZetaSizer software (Malvern InstrumentsLtd, UK)wasused toanalyzethedata.Theresults shownarefromthreeindependentmeasurements.

2.4.Cellsandcellculture

Thehumanastrocytoma1321N1celllinewaspurchasedfrom Sigma-Aldrich(catalogueno.86030402).Theseareglialcellsfrom ahumanbrainastrocytomathatwasinitiallyisolatedin1972asa subcloneofthecellline1181N1(Macintyreetal.,1972).Cellswere routinelykeptinahumidified5%CO2and95%air incubatorat 37C in Dulbecco’s Modified Eagle’s Medium (DMEM, Fisher Scientific) containing 10% fetal bovine serum (FBS, Biochrom), 50U/mlpenicillinand50

m

g/mlstreptomycin(ThermoScientific).

Thepassagenumberofthecellswaskeptbelow30.

2.5.Estimationofdustdosesusedforcellcultureexperiments The doses usedfor cell cultureexposures werekeptlow to mimic occupational exposure and were calculated following a mathematicalcalculationmodifiedfromAntoniniandcoworkers (Antoninietal.,2010,2013)todeterminethedailylungburdenofa worker working 8h per day. Incorporated factors were the occupational exposure limit for respirable dust in the silicon carbideindustry(0.5mg/m3),humanminuteventilationvolume (20.000ml/minE-6m3/ml),theexposureduration(8h/day),the deposition efficiency (set to 20%; (Oberdorster et al., 2005a, 2005b)).

Thedailydepositeddosewas:

0.5mg/m3(20.000ml/min106m3/ml)(8h60min/h) 0.20=0.96mg

Whenusingthesurfaceareaofthealveolarepithelium(human 102m2(Stoneetal.,1992))thisleadstoadepositeddoseof9E- 4

m

g/cm2 (0.96mg/1.020.000cm2=0.9E-6mg/cm2!0.0009

m

g/

cm2).Thisdosewas setas 1x andthe otherdoses(0,0.01, 0.1,10,100,1000,5000)usedinthisstudywerecalculated accordingly.Thuscellswereexposedto0,9E-6,9E-5,9E-4,9E-3, 0.09,0.9and4.5

m

g/cm2takingintoaccountthesurfaceareaofthe

cellculturedish,respectively.

2.6.Cytotoxicityassay

For eachtoxicity experiment 5000 cells/wellwere seededin triplicate in black 96-well plates with a transparent bottom (Nunclon,ThermoScientific).Cellswereallowedtoattachfor24h priortoadditionofdispersedAchesondustattheindicateddoses.

xxx–xxx

(3)

Thereafter themedium was removed and thecellswere washed once withphosphate-buffered saline (PBS) toremoveexcessparticles.The Cell Counting Kit-8 (CCK-8) assay (Sigma-Aldrich) was used to measurecytotoxicitylevelsbydilutingitinthecellculturemedia withoutsupplementsaccordingtothemanufacturer’sinstructions.

Afterincubationat37Cfor1h,absorbanceasopticaldensity(OD) wasmeasuredat450nmusingaSpectraMaxi3(MolecularDevices, California, USA).In addition, ODwas measured at 750nm asa referencewavelengthforbackgrounddetectionandwassubtracted

Fig. 1.CharacterizationofthecollectedAchesondust.A)Avolumecorrespondingto100mgdustwastakenfroma1mg/mlstockdispersedin0.05%BSAandfilteredthrougha 47mmWhatmanNucleporepolycarbonatefilterwith50nmporesize.ThedustwasinvestigatedbySEMandrepresentativeimagesweretakenfromthedifferentparticles thatwerefound.RepresentativeimagesofparticlescontainingSiC,C>80%,80%>C>50%and25%>Si,Ti-Alareshown.B)Particlesweredividedintogroupsaccordingto theirmorphologyandelementalcontents.PercentagesandrepresentativeSEMimagesofeachparticletypeareshown.n=308.SiC:siliconcarbide,C:carbon,Si:silicon,Ti:

titanium,Al:aluminum.C)Overviewofparticlesizemeasuredbydynamiclightscattering.AftersonicationoftheAchesondust1mlofsolution(1mg/ml)wasimmediately transferredtoatransposablecuvetteandleftonthebenchfor5minandthereafterinsidethemachinefor5minbeforemeasuring.10cycleswererun.TheZ-averagefrom threeindependentdispersedbatchesisshownstandarddeviation(SD).

xxx–xxx

(4)

fromsampleODat450nm.Astandardcurvewithaknownnumber ofcellswasestablishedtocalculatethenumberofcellsineachwell.

2.7.MeasurementofintracellularROS

IntracellularROSlevelsweremeasuredusingdichlorodihydro- fluorescein (DCF) fluorescence. 2070-dichlorodihydrofluorescein diacetate (DCFH/DA) (Sigma-Aldrich) is a cell-permeable com- poundthatyieldsa fluorescent productwhenoxidizedbyROS.

1321N1cellswereseededinsixwellplates,allowedtoattachfor twodaysandexposedtothedispersedAchesondustfor24,48and 72h.TheprotocolforROSmeasurementismodifiedfrom(Liand Ellis,2014).Briefly,followingexposurethemediumwasremoved andmediumcontaining100

m

MDCFH/DAwasaddedtothecells

whichwerethenincubatedat37Cfor1h.Positiveandnegative controls were included in each experiment. Cells were then washedwith1xPBSandincubatedwith2%TritonX-100inPBSon icefor5min.CellswerecollectedinEppendorftubesbyscraping and then sonicated on a VialTweeter (UIS250V, Hielscher Ultrasonics GmbH, Teltow, Germany) for 25s at maximum amplitude.Thereaftertubeswerecentrifugedat15.000RPMfor 10minat4CandsupernatantwastransferredtonewEppendorf tubes.Eachsamplewasaddedintriplicatetoa96-wellplateand fluorescence was measured using SpectraMax i3 (Molecular Devices,California,USA)upon excitationof488nm.Finally,the protein concentration of each sample was measured and DCF fluorescencewascalculatedrelativetotheproteincontentofeach sample.

2.8.AssessmentofDNAdamagewiththecometassay

ToexamineDNAdamagingeffectsafterAchesondustexposure, themodifiedcometassaywasperformedfollowingapreviously describedprotocol(Azquetaetal.,2014).Briefly,cellswereseeded onsixwellPlates24hbeforeexposure.Cellswerethenexposedto theAchesondustfor24,48and72h.Attheendofexposure,cells wereharvestedbytrypsinization,mixedwithlowmeltingpoint (LMP)agaroseandtwodropsfromthis mixturewereplaced on glassslidesthatwerepre-coatedwith0.5%standardmeltingpoint agarose.Afterlysis incoldlysis buffer(2.5MNaCl,0.1MEDTA, 10mMTris,1%TritonX-100,pH10),incubationincold0.3MNaOH, 1mMEDTAfor20minandelectrophoresisinthesamebufferat 0.8V/cmfor20min,slideswereneutralizedwithPBSandstained withSybrGold1(Invitrogen)dilutedinTEbuffer.Slideswerethen examined under a Nicon fluorescent microscope using Comet assayIVsoftware(PerceptiveInstruments,UK),wheremean%DNA incomettailsfrom100comets/gelwasusedasameasureofDNA

strand breaks. To detect oxidative DNA damage, post-lysis incubation with the formamidopyrimidine DNA glycosylase (Fpg) was also carried out. Fpg is a multifunctional DNA base excisionrepairenzymethatremovesawiderangeofoxidatively- damaged bases (N-glycosylase activity) creating a so called apurinic/apyrimidinic site (AP site); and its AP lyase activity cleavesboththe30-and50-phosphodiesterbondsoftheresulting APsite.TheAPlyaseactivityintroducesnicksintheDNAstrand, cleavingtheDNAbackbonetogenerateasingle-strandbreakatthe siteoftheremovedbasewithboth30-and50-phosphates.Fpghasa preferenceforoxidizedpurines,excisingoxidizedpurinessuchas 7,8-dihydro-8-oxoguanine(8-oxoG).Since Fpgconvertsoxidized purinestostrandbreaks,thisallowsindirectreadoutofoxidative baselesions.

2.9.Statistics

StatisticalanalyseswereperformedinSigmaPlot(Systat,USA).

ThedatawereanalyzedusingonewayANOVAfollowedbyTukey’s posthoctest.IncaseoflackofnormaldistributiontheKruskal- WallistestfollowedbyTukey’sposthoctestwasused.Statistical significancewasassessedatP<0.05.

3.Results

3.1.CharacteristicsoftheAchesondust

The dust collectedin the furnace hall of a SiC factory was characterizedbyscanningelectronmicroscopy(SEM)andenergy dispersive x-ray spectroscopy (EDX). Representative images of someof the particlestructuresare shown in Fig.1A. Thetotal numberofparticlesinvestigated(n=308)weredividedintogroups taking into account their morphology and elemental content (Fig.1B).Thelargestgroup(34%)ofparticleswerecharacterizedby ahighpercentageofcarbon(>80%C)andflake-likemorphology.

The next particlegroup represents 29% of thetotal number of particlesexaminedandhadacarboncontentbetween50and80%, combinedwithasiliconcontentbelow25%,inadditiontooxygen.

Theseparticleshaddifferentstructures,includingdroplet-likeand more irregularly shaped particles. As seen from Fig. 1A, the particlesappeartobeagglomeratesofsmallerparticleswhichmay explain the somewhat large variations in carbon and silicon content.TheagglomeratesmayconsistofsmallerSiCparticles.The interactionvolumeofx-raysislargeandgeneratesEDXsignalfrom an effective volume much larger than the actual particle investigatedand quantitativeEDXanalysisis thereforedifficult.

Furthermore,22%of theexaminedparticles containedtitanium

0 20 40 60 80 100

Cell viability %

0 1 2 3 4 5 6

Fold change

*

* *

* *

*

*

*

*

*

*

*

*

(24 h)

- 9E-6 9E-5 9E-4 9E-3 0.09 0.9 4.5

dust

*

Fig.2. Achesondust-inducedcytotoxicityandROSisdose-andtime-dependent.A)Human1321N1astrocytomacellsweregrownandexposedtoshamortoAchesondustat theindicatedconcentrationsfor24,48and72hbeforemeasurementofcellularcytotoxicity.Cellviabilityofsham-treatedcellswassetto100%.B)Theindicateddoseswere usedtomeasurethelevelsofintracellularROSafter24,48and72h.Sham-treatedcontrolsweresetto1andthemeanfoldchangefromthreeindependentexperimentsin triplicateisshown.Bars:SE.*:P<0.05indicatesasignificantdifferencebetweenexposedcellsandthecorrespondingsham-treatedcontrol.

xxx–xxx

(5)

(25% Ti) and aluminum (2.7% Al), and 8% of the particles containedtitanium(38%Ti),aluminum(3%Al)andvanadium (2.7%V).Atthesiteofcollection,theairborneparticulatematter seemtohavecomefromrawmaterialsandsourcesunrelatedto theactivefurnace heat zone. The smallfractionof SiCmay be attributedtothefactthatnofurnaceswerebeingdismantledinthe proximityofthesamplingequipmentduringsampling.Moreover, onlytwoofthe308(approx.0.65%)investigatedparticleshada fibrous shape. Measurements of the hydrodynamic size by dynamic light scattering indicated that the majority of the particleshad a Z-averageof 42657nmfollowed bya peakof 14430nm that are higher than the suggested 100nm to be considerednanoscaleparticles(Fig.1C).Thesesizescorrespondto the sizes of the smallest particles, including titanium and aluminum(22%)andtitanium,aluminumandvanadiumcontain- ingparticles(8%)foundbySEM.Inaddition,apeakof537478nm wasdetected andlikely consistsof thelargerSiC-,carbon- and silicon-containingparticles.

3.2.TheeffectofAchesondustoncellviability,ROSgenerationand DNAdamage

Exposure of the cells to the increasing concentrations of Achesondustindicateda dose-dependenteffectoncellviability whichwasreversibleatlatertimepoints(Fig.2A).Alldosesexcept for9E-6and9E-5

m

g/cm2induceda significantreductionincell viabilityafter24h.Forboth9E-4and9E-3

m

g/cm2thisresponse

wasbiphasicascellviabilityincreased.After72hthehighestand notoccupationalrelevantdosesof0.09,0.9and4.5

m

g/cm2hada

significantimpactonthecellviability.Thus,thecytotoxiceffectof the Acheson dust on the 1321N1 cells is dose-dependent but transientwheretheinitialreductionincellviabilityobservedafter 24hisreversibleafter48and72hwithlowoccupationalrelevant doses(Fig.2A).Fourdoses,including9E-5,9E-4,9E-3and0.9

m

g/

cm2werechosenforfurtherexperiments.Thelowdoseswouldbe comparable of occupational exposure scenarios, whereas the higher doses were included to look for extreme and overload exposurescenarios.

InvestigationofthelevelsofintracellularROSshowedthatthe low doses up to 9E-3

m

g/cm2 did not induce ROS (Fig. 2B).

Moreover,a significantreductionwasobservedforthe9E-5

m

g/

cm2 dose after 24h. The highest dose, 0.9

m

g/cm2, gave a

significant increase in ROS levelsat all the time points tested andpeakedat48h.Thus,lowandoccupationallymorerelevant dosesoftheAchesondustdonotinduceROS.

TofurtherinvestigatethemoleculareffectsoftheAchesondust onthe1321N1cells,cometassaywasperformedtodetectpossible damagetotheDNA.TheresultsshowedanincreaseinDNAdamage after24hwhichwassignificantforthehighestdose,0.9

m

g/cm2

(Fig. 3A). This response was reversible as no changes were observedafter48and72h,exceptforasignificantdecreaseinDNA damage for the 0.9

m

g/cm2 dose after 48h. Furthermore, a significant, although small, increase was shown with 9E-4and 9E-3

m

g/cm2 after 72h. To investigate possible oxidative DNA damagefollowingexposuretoAchesondust,post-lysisincubation withFpgwas alsoperformed.Theindirectreadoutof oxidative baselesionsshowedthattherewerenosignificantchangesforall thedosesandtimepointstested(Fig.3B).

4.Discussion

Exposure to emitted dust in industrial processes poses a potential human health problem. There may be a correlation betweenhealtheffectsandexposurestoknownaircontaminants inSiCplants.Littleresearchhasbeenperformedontheeffectsof dustcollecteddirectlyfromthefurnacehallintheSiCindustryon

humanbraincells.However,inothercelltypessuchasRAW264.7 macrophages that were exposed to various manufactured SiC powderscollectedfromtheAchesonprocessandtoaSiCpowder representativeofairbornedustthisdidnotinducecytotoxicityin dosesrangingfrom20to120

m

g/106cellsafter24h(Boudardetal.,

2014).However,theairbornedustrepresentativeinducedtumor necrosisfactor

a

(TNF

a

)possiblyduetothepresenceofcrystalline silicaandironimpurities(Boudardetal.,2014).

Toxicityofparticlesiscloselyrelatedtotheirphysico-chemical properties, including size, shape, surface area, and chemical composition. The raw materials for SiC production consist of quartzsandandpetroleumcoke,inadditiontobothunreactedand partlyreactedmaterialfrompreviousfurnacecycles.Graphiteis usedasanelectricconductorandthereforetracesofgraphitemay alsobepresent.MostconcernondustfromtheAchesonprocessis on SiC fibers and most studies focus on this. In ourcollected material only 6% consisted of SiC and among the particles detected asSiC,only10%had a fibrous structure.Otherstudies frombothNorwayandCanadahavereportedonairbornefibers and presence of carbonaceous matter, quartz, cristobalite, SiC, respirabledust,benzene solublematterand commonpolycyclic aromatichydrocarbons(Byeetal., 1985;Dufresneetal.,1987, 1995;

Dionetal.,2005).Asthefurnacehallcontainsamixtureofdusts andgasestheexposurepatternmaybedifferentatvariousplaces inthefurnacehall.Moreover,thelevelsofimpuritieswilllikelybe differentforthevariousAchesonprocessworkplaceswheredustis collected.Thesefactorswouldcomplicatecomparisonofdifferent studies.

0 0.5 1 1.5 2

Fold change

24 h 48 h 72 h

*

*

0 0.5 1 1.5 2

Fold change

- 9E-5 9E-4 9E-3 0.9

dust µg/cm2

* *

Fig.3.DNAdamageinthe1321N1astrocytomacellsafterexposuretotheAcheson dust.A)CellswereexposedtotheindicateddosesofAchesondustfortheindicated times.ThereafterdamagetotheDNAwasinvestigatedusingthecometassayas describedinMaterialsandMethods.Foranalysisthepercentageoftailintensitywas calculated.B)OxidativedamagetotheDNAwasalsoinvestigatedbypost-lysis incubationwithFpg.Foranalysisthepercentageoftailintensitywascalculated.

Foldchangeforeachexposurefromthreeindependentexperimentsintriplicateis shownwith sham-treated controls set to 1. Bars: SE. *: P<0.05 indicates a significantdifferencebetweenexposedcellsandthecorrespondingsham-treated control.

xxx–xxx

(6)

Thedosesinthepresentstudywerekeptverylowtomimic occupationalexposurescenariosandwereestimatedtakinginto considerationtheoccupationalexposuresituationsforparticulate matterfromtheAchesonprocess.TheAchesondusthadadose- andtime-dependenteffectonthecells.Withthelowestdosesthe initialdecreaseincellviabilityasaresponsetoacutetoxicitywas biphasicas cellviabilitywas restored atlater time points.The highestdose,0.9

m

g/cm2,inducedasignificantincreaseinROSand correspondedtoacontinuingdecreaseincellviability.Thus,for thelowerdosesdetoxificationprocessesmighthaverestoredcell viabilityprobablyduetoincreasedcellproliferation,whereasthis wasnotobtainedforthehigherdoses.Itisknownthatparticle- inducedROScanoccurinvariousways,includingthepresenceof pro-oxidantgroupsonthesurfaceoftheparticles,redoxreactions onthesurfaceofmetalsandparticle-cellinteractions(Mankeetal., 2013).Furthermore,astheinductionof ROSwastransientwith 0.9

m

g/cm2, peaking after 48h, this may indicate activation of

detoxificationprocessestoreducetheselevels.Transientincreases inROSlevelshavealsobeenreportedbyothers(Barilletetal.,2010;

Mankeetal.,2013;Carrascoetal.,2016).However,atthistimecell viability was not completely restored and indicates that other cellularprocessesareactivatedthatcontributetothereducedcell viability.Asthereweresmallandtransienteffectsoncellviability and ROS production it was of interest to investigate possible damagetotheDNA.Also,ROSlevelsmayincreaseduetodamageto theDNA(Roweetal.,2008;Kangetal.,2012)andhasbeenshown tobeimportantfortheregulationofcellsurvivaland apoptosis (Simon et al., 2000; Hamanaka and Chandel, 2010). The data indicatedDNAdamageafter24hwiththehighestdosetested,and after72hwith9E-4and9E-3

m

g/cm2.However,thelevelsarevery

lowandforthehighestdosereversible,indicatingthatDNArepair mechanisms possibly are activated. Furthermore, testing for oxidative damage by including Fpg in the assay indicated no significantdifferences,butothertypesofDNAdamagecannotbe ruledout.

Exactly what fraction of the Acheson dust that causes the increaseincytotoxicity,ROSandDNAdamageisnotknown.Metal impuritieshaveanimpactontheseendpoints andtheAcheson dustusedherecontainsavarietyofelementsthatmaycausethe observedeffects.Severalstudieshaveinvestigatedtheeffectsof differenttypesofparticlesonprimaryastrocytes.Astudyfocusing oncarbonshowedthatastrocytesgrownoncarbondecreasedtheir function(Mckenzieetal.,2004).Workperformedoncarbonblack nanoparticlesshowedthatmiceexposedtothismaterialinduceda long-termactivationofastrocytesresultinginreactiveastrogliosis inthebrains oftheiroffspring,probablyduetothepresenceof carbon(Onodaetal.,2017).Moreover,severalneurotoxicological studieshavebeenperformedontheeffectsofaluminumexposure.

It has beenassociated with a variety of neurological disorders linkedtoanincreaseinoxidativeandinflammatoryeventsleading totissuedamage(Campbell,2002).Culturedastrocytesexposedto aluminum had an intracellular accumulation and reduced cell viabilitywascharacterizedbyDNAfragmentationandapoptosis (Suarez-Fernandez et al., 1999). Vanadium, another element presentinthedust,haspreviouslybeenshowntobeneurotoxic to the central nervous system in rats where it increased the presenceofenlargedastrocytesinthecerebellumandhippocam- pus(Garcia etal.,2005).AsmoststudiesondustfromtheSiC industrymainlyfocusonSiC,inparticularSiCfibers,onemustnot forgetthepossibleeffectscausedbyotherelementalcontents.

Inthecurrentstudy,anastrocytomacelllinewasemployed.The 1321N1 cell lineis well-established and used in many studies investigatingneurotoxiceffectsofvariouscompounds,andcould bea suitable cellmodeltogain insightin possibleeffectsafter exposuretoAchesondust.However,thecharacteristicsofthese cellsmaydifferfromprimarycellsandtherefore,asimilarstudy

using primary astrocytes would be more relevant. During the experiments serum was used in the cell culture media as recommended by the manufacturer. As serum may vary from batchtobatchthismayhavehadasmallpotentialimpactonthe results. Theoccupationallyrelevantdoses wehaveused inthis study do not reflect the actual amount of particles that are translocatedintothecirculationthroughuptakebythebloodinthe lungsorbytheolfactorybulb.Differencesinbreathing,deposition inupperairways,andclearanceoftheparticlesfromtheairways andparticlecharacteristicswillinfluencetheactualdepositionin the alveolar region. Studies on the actual amount of particles passingfromthelungstothebloodarefewandinconclusive.A studybyGeiserandKreylingshowedforexamplethataverylow percentagemaytranslocatefromlungsandcrossthebloodbrain barrierandenterthebrain(GeiserandKreyling,2010).Therefore, thedosesusedinthepresentstudywouldstillbehighcomparedto thedosethat mayultimatelyenter thebrainafteroccupational exposure.

Conclusively, the main idea of this study was to look for cytotoxiceffectsofdustfromtheAchesonprocess,andthentolook if the toxicity could be related to increased ROS production followedbyifROSproductionwasduetodamagetoDNAbases, specificallypurines,orwhetheritwasnotrelatedtoDNAdamage.

Atthispoint,ourmechanisticdatasuggestthattheAchesondust maynotbehighlytoxicatleastatlowdosesortheremightbea transienttoxicitywhichmaynotberelatedtopermanentdamage toDNAbases.

Conflictofinterest

None oftheauthorshasany potentialconflict ofinterest or financialintereststodisclose.

Acknowledgements

This work was supported by a postdoctoral grant from the ResearchCouncilofNorwaytoYJA(RCNgrantno.245216O70).We wouldliketothankVainetaVebraiteforexcellenthelpwiththe cometassays.

References

Akiyama,I.,Ogami,A.,Oyabu,T.,Yamato,H.,Morimoto,Y.,Tanaka,I.,2007.

Pulmonaryeffectsandbiopersistenceofdepositedsiliconcarbidewhiskerafter 1-yearinhalationinrats.Inhal.Toxicol.19,141–147.

Antonini,J.M.,Roberts,J.R.,Chapman,R.S.,Soukup,J.M.,Ghio,A.J.,Sriram,K.,2010.

Pulmonarytoxicityandextrapulmonarytissuedistributionofmetalsafter repeatedexposuretodifferentweldingfumes.Inhal.Toxicol.22,805–816.

Antonini,J.M.,Roberts,J.R.,Schwegler-Berry,D.,Mercer,R.R.,2013.Comparative microscopicstudyofhumanandratlungsafteroverexposuretoweldingfume.

Ann.Occup.Hyg.57,1167–1179.

Azqueta,A.,Slyskova,J.,Langie,S.A.,Gaivao,I.O'neill,Collins,A.,2014.Cometassay tomeasureDNArepair:approachandapplications.Front.Genet.5,288.

Barillet,S.,Jugan,M.L.,Laye,M.,Leconte,Y.,Herlin-Boime,N.,Reynaud,C.,Carriere, M.,2010.InvitroevaluationofSiCnanoparticlesimpactonA549pulmonary cells:cyto-:genotoxicityandoxidativestress.Toxicol.Lett.198,324–330.

Boudard,D.,Forest,V.,Pourchez,J.,Boumahdi,N.,Tomatis,M.,Fubini,B.,Guilhot,B., Cottier,M.,Grosseau,P.,2014.Invitrocellularresponsestosiliconcarbide particlesmanufacturedthroughtheAchesonprocess:impactofphysico- chemicalfeaturesonpro-inflammatoryandpro-oxidativeeffects.Toxicol.In Vitro28,856–865.

Bugge,M.D.,Foreland,S.,Kjaerheim,K.,Eduard,W.,Martinsen,J.I.,Kjuus,H.,2011.

Mortalityfromnon-malignantrespiratorydiseasesamongworkersinthe Norwegiansiliconcarbideindustry:associationswithdustexposure.Occup.

Environ.Med.68,863–869.

Bugge,M.D.,Kjaerheim,K.,Foreland,S.,Eduard,W.,Kjuus,H.,2012.Lungcancer incidenceamongNorwegiansiliconcarbideindustryworkers:associations withparticulateexposurefactors.Occup.Environ.Med.69,527–533.

Bye,E.,Eduard,W.,Gjonnes,J.,Sorbroden,E.,1985.Occurrenceofairbornesilicon carbidefibersduringindustrialproductionofsiliconcarbide.Scand.J.Work.

Environ.Health11,111–115.

Campbell,A.,2002.ThepotentialroleofaluminiuminAlzheimer'sdisease.Nephrol.

Dial.Transplant.17(Suppl.2),17–20.

xxx–xxx

(7)

Carrasco,E.,Blázquez-Castro,A.,Calvo,M.I.,Juarranz,Á.,Espada,J.,2016.Switching onatransientendogenousROSproductioninmammaliancellsandtissues.

Methods109,180–189.

Cullen,R.T.,Miller,B.G.,Davis,J.M.,Brown,D.M.,Donaldson,K.,1997.Short-term inhalationandinvitrotestsaspredictorsoffiberpathogenicity.Environ.Health Perspect.105(Suppl.5),1235–12340.

Dion,C.,Dufresne,A.,Jacob,M.,Perrault,G.,2005.Assessmentofexposureto quartz:cristobaliteandsiliconcarbidefibres(whiskers)inasiliconcarbide plant.Ann.Occup.Hyg.49,335–343.

Dufresne,A.,Lesage,J.,Perrault,G.,1987.Evaluationofoccupationalexposureto mixeddustsandpolycyclicaromatichydrocarbonsinsiliconcarbideplants.Am.

Ind.Hyg.Assoc.J.48,160–166.

Dufresne,A.,Loosereewanich,P.,Armstrong,B.,Infante-Rivard,C.,Perrault,G.,Dion, C.,Masse,S.,Begin,R.,1995.Pulmonaryretentionofceramicfibersinsilicon carbide(SiC)workers.Am.Ind.Hyg.Assoc.J.56,490–498.

Fan,J.,Li,H.,Jiang,J.,So,L.K.,Lam,Y.W.,Chu,P.K.,2008.3C-SiCnanocrystalsas fluorescentbiologicallabels.Small4,1058–1062.

Garcia,G.B.,Biancardi,M.E.,Quiroga,A.D.,2005.Vanadium(V)-induced neurotoxicityintheratcentralnervoussystem:ahisto-immunohistochemical study.DrugChem.Toxicol.28,329–344.

Geiser,M.,Kreyling,W.G.,2010.Depositionandbiokineticsofinhalednanoparticles.

Part.FibreToxicol.7,2.

Grosse,Y.,Loomis,D.,Guyton,K.Z.,Lauby-Secretan,B.,ElGhissassi,F.,Bouvard,V., Benbrahim-Tallaa,L.,Guha,N.,Scoccianti,C.,Mattock,H.,Straif,K.,2014.

Carcinogenicityoffluoro-edenite,siliconcarbidefibresandwhiskers,and carbonnanotubes.LancetOncol15,1427–1428.

Hamanaka,R.B.,Chandel,N.S.,2010.Mitochondrialreactiveoxygenspeciesregulate cellularsignalinganddictatebiologicaloutcomes.TrendsBiochem.Sci.35,505–

513.

Jensen,K.,Kembouche,Y.,Christiansen,E.,Jacobsen,N.,Wallin,H.,Guiot,C.,2011.

2011.ThegenericNANOGENOTOXdispersionprotocol.Stand.Oper.Proced.

Backgr.Doc.FinalProtoc.Prod.SuitableManuf.Nanomater.Expo.Media Available.

Johnsen,H.L.,Bugge,M.D.,Foreland,S.,Kjuus,H.,Kongerud,J.,Soyseth,V.,2013.

Dustexposureisassociatedwithincreasedlungfunctionlossamongworkersin theNorwegiansiliconcarbideindustry.Occup.Environ.Med.70,803–809.

Johnson,N.F.,Hahn,F.F.,1996.Inductionofmesotheliomaafterintrapleural inoculationofF344ratswithsiliconcarbidewhiskersorcontinuousceramic filaments.Occup.Environ.Med.53,813–816.

Kang,M.A.,So,E.Y.,Simons,A.L.,Spitz,D.R.,Ouchi,T.,2012.DNAdamageinduces reactiveoxygenspeciesgenerationthroughtheH2AX-Nox1/Rac1pathway.Cell.

Death.Dis.3,e249.

Lapin,C.A.,Craig,D.K.,Valerio,M.G.,Mccandless,J.B.,Bogoroch,R.,1991.A subchronicinhalationtoxicitystudyinratsexposedtosiliconcarbidewhiskers.

Fundam.Appl.Toxicol.16,128–146.

Li,D.,Ellis,E.M.,2014.Aldo-ketoreductase7A5(AKR7A5)attenuatesoxidative stressandreactivealdehydetoxicityinV79-4cells.Toxicol.InVitro28,707–714.

Macintyre,E.H.,Ponten,J.,Vatter,A.E.,1972.Theultrastructureofhumanand murineastrocytesandofhumanfibroblastsinculture.ActaPathol.Microbiol.

Scand.A80,267–283.

Manke,A.,Wang,L.,Rojanasakul,Y.,2013.Mechanismsofnanoparticle-induced oxidativestressandtoxicity.Biomed.Res.Int.2013,942916.

Mckenzie,J.L.,Waid,M.C.,Shi,R.,Webster,T.J.,2004.Decreasedfunctionsof astrocytesoncarbonnanofibermaterials.Biomaterials25,1309–1317.

Oberdorster,G.,Maynard,A.,Donaldson,K.,Castranova,V.,Fitzpatrick,J.,Ausman, K.,Carter,J.,Karn,B.,Kreyling,W.,Lai,D.,Olin,S.,Monteiro-Riviere,N.,Warheit, D.,Yang,H.,2005a.AreportfromtheILSIResearchFoundation/RiskScience InstituteNanomaterialToxicityScreeningWorkingGroup.Principlesfor characterizingthepotentialhumanhealtheffectsfromexposureto nanomaterials:elementsofascreeningstrategy.Part.FibreToxicol.2,8.

Oberdorster,G.,Oberdorster,E.,Oberdorster,J.,2005b.Nanotoxicology:an emergingdisciplineevolvingfromstudiesofultrafineparticles.Environ.Health Perspect.113,823–839.

Oliveros,A.,Guiseppi-Elie,A.,Saddow,S.E.,2013.Siliconcarbide:aversatile materialforbiosensorapplications.BiomedMicrodevices15,353–368.

Onoda,A.,Takeda,K.,Umezawa,M.,2017.Dose-dependentinductionofastrocyte activationandreactiveastrogliosisinmousebrainfollowingmaternalexposure tocarbonblacknanoparticle.Part.FibreToxicol.14,4.

Phuyal,S.,Kasem,M.,Rubio,L.,Karlsson,H.L.,Marcos,R.,Skaug,V.,Zienolddiny,S., 2017.Effectsonhumanbronchialepithelialcellsfollowinglow-dosechronic exposuretonanomaterials:a6-monthtransformationstudy.Toxicol.InVitro 44,230–240.

Rowe,L.A.,Degtyareva,N.,Doetsch,P.W.,2008.DNAdamage-inducedreactive oxygenspecies(ROS)stressresponseinSaccharomycescerevisiae.FreeRadic.

Biol.Med.45,1167–1177.

Simon,H.U.,Haj-Yehia,A.,Levi-Schaffer,F.,2000.Roleofreactiveoxygenspecies (ROS)inapoptosisinduction.Apoptosis5,415–418.

Stone,K.C.,Mercer,R.R.,Gehr,P.,Stockstill,B.,Crapo,J.D.,1992.Allometric relationshipsofcellnumbersandsizeinthemammalianlung.Am.J.Respir.Cell Mol.Biol.6,235–243.

Suarez-Fernandez,M.B.,Soldado,A.B.,Sanz-Medel,A.,Vega,J.A.,Novelli,A., Fernandez-Sanchez,M.T.,1999.Aluminum-induceddegenerationofastrocytes occursviaapoptosisandresultsinneuronaldeath.BrainRes.835,125–136.

Svensson,I.,Artursson,E.,Leanderson,P.,Berglind,R.,Lindgren,F.,1997.Toxicityin vitroofsomesiliconcarbidesandsiliconnitrides:whiskersandpowders.Am.J.

Ind.Med.31,335–343.

Vaughan,G.L.,Trently,S.A.,Wilson,R.B.,1993.Pulmonaryresponse,invivo,to siliconcarbidewhiskers.Environ.Res.63,191–201.

Wu,J.,Wang,C.,Sun,J.,Xue,Y.,2011.Neurotoxicityofsilicananoparticles:brain localizationanddopaminergicneuronsdamagepathways.ACSNano5,4476–

4489.

Yang,X.,He,C.,Li,J.,Chen,H.,Ma,Q.,Sui,X.,Tian,S.,Ying,M.,Zhang,Q.,Luo,Y., Zhuang,Z.,Liu,J.,2014.Uptakeofsilicananoparticles:neurotoxicityand Alzheimer-likepathologyinhumanSK-N-SHandmouseneuro2a neuroblastomacells.Toxicol.Lett.229,240–249.

Zhou,M.,Xie,L.L.,Fang,C.J.,Yang,H.,Wang,Y.J.,Zhen,X.Y.,Yan,C.H.,Wang,Y.J.,Zhao, M.,Peng,S.Q.,2016.Implicationsforblood-brain-barrierpermeability:invitro oxidativestressandneurotoxicitypotentialinducedbymesoporoussilica nanoparticles:effectsofsurfacemodification.RscAdv.6,2800–2809.

xxx–xxx

Referanser

RELATERTE DOKUMENTER

This paper analyzes the Syrian involvement in Lebanon following the end of the Lebanese civil war in 1989/90 and until the death of Syrian President Hafiz al-Asad, which marked the

The negative sign indicates that the particles were negatively charged, the positive current seen in the ECOMA dust data above 95 km is not an indication of positively charged

The increasing complexity of peace operations and the growing willingness of international actors to assume extended responsibil- ity for the rule of law in often highly

In many practical cases, the working particles usually consist of a few kinds of particles with different sizes. As mentioned above, the particle distribution is also

This study aimed to investigate the toxicity and biological effects of dust particles from laboratory-scale processes where molten silicomanganese (SiMn) was exposed to air, using

These particles had different structures, including droplet-like and more irregularly shaped particles. As seen from Fig. 1A, the particles appear to be agglomerates of

1) Resolution: surface oil needs to be represented by a sufficient number of spillets (numerical particles) and grid cells (numerical units) to capture the thickness in

In particular, this means that the resulting droplet from a binary coalescence event can be represented by two simulation particles, with mass flows corresponding to the