• No results found

Information Theory and Visualization

N/A
N/A
Protected

Academic year: 2022

Share "Information Theory and Visualization"

Copied!
51
1
0
Vis mer ( sider)

Fulltekst

(1)

Tutorial on Information Theory in Visualization

Information Theory and Visualization

Min Chen

University of Oxford

(2)

Facts

Theoretic Framework

Facts

Wisdom

W W W W W W W W W W W W W W W W W W W W

Theory

W T W T

W T

T

T

T T

T T

T T

T T

T

T

T T

(3)

Source Filtering Visual

Mapping Rendering

raw data D

information I

geometry & labels

N N G N

Perception Cognition Destination

information I'

knowledge K

Displaying Optical Transmission

image V

optical signal S

optical signal

N N S'

Viewing

image

N V'

N N

image V'

image V

vis-encoder

vis-channel

vis-decoder

Source Encoder Destination

(Transmitter)

message M

Channel Decoder

(Receiver)

signal S

signal S'

message

N M' M. Chen and H. Jänicke, An information-theoretic

framework for visualization, IEEE Transactions on Visualisation and Computer Graphics, 2010

(4)

Source vis- encoder

raw data

D N

vis-

decoder Destination

knowledge K image

V' N

Source Encoder Destination

(Transmitter)

message M

Channel Decoder

(Receiver)

signal S

signal S'

message

N M' image

V

vis- channel

N

?

compactness

?

error detection error correction

(5)

X

x1, x2, ..., xm

p(xi)

Claude E. Shannon (1916-2001)

m

i

i

i p x

x p

X ) ( )log ( )

( 2

H

(6)

Information Theory and Visualization

1. Data Intelligence  a big picture 2. Visualization  a small picture

3. Measurement, Explanation, and Prediction 4. Example: Visual Multiplexing

5. Example: Error Detection and Correction 6. Example: Process Optimization

7. Summary

Min Chen

(7)

Information Theory and Visualization

1. Data Intelligence  a big picture 2. Visualization  a small picture

3. Measurement, Explanation, and Prediction 4. Example: Visual Multiplexing

5. Example: Error Detection and Correction 6. Example: Process Optimization

7. Summary

Min Chen

(8)

Communication System

G, A, C, T

Z

H

Min Chen, Cost-Benefit Analysis of Data Intelligence, https://vimeo.com/145258513, 2015

(9)

Communication System

G, A, C, T

Z

H

(10)

45 letters

pneumonoultramicroscopicsilicovolcanoconiosis

189,819 letters a word or a formula?

(11)

X Y Z

I(X; Y) I(Y; Z)

Process 1 Process 2 p(x, y, z) = p(x) p(y|x) p(z|y)

p(x) p(y|x) p(z|y)

)

; ( )

;

(X Y I X Z

I

(12)

Process

X Y

I

H X H Y

I

(13)

r decisions

3 valid values each (e.g., buy, sell, hold)

Z2

Aggregated Data

at 1-minute resolution

Z1

Raw Data

1 hour long at 5-second resolution

Z3

Time Series Plots

Z4

Feature Recognition

Z5

Correlation Indices

Z6

Graph Visualization

Z7

Decision

rtime series

720 data points

232valid values

rtime series

60 data points

232valid values

M

M H

M M

H

rtime series

60 data points

128 valid values

r(r-1)/2 data points

230.7valid values

r(r-1)/2 connections

5 valid values

r decisions

3 valid values rtime series

10 features

8 valid values

M machineprocess H humanprocess ... alphabet

Hmax=23040r Hmax=1920r

Hmax=30r Hmax=420r

Hmax1.16r(r-1) Hmax15r(r-1)

Hmax1.58r

(14)

Data Process 1

Process

2 ...

alphabet

Z1

Process L-1

Process

L Decision

alphabet

Z2

alphabet

Z3

alphabet

ZL-1

alphabet

ZL

alphabet

ZL+1

I I

I I

II   II

(15)

Big Data Process 1

Process

2 ...

alphabet

Z1

Process L-1

Process

L Decision

alphabet

Z2

alphabet

Z3

alphabet

ZL-1

alphabet

ZL

alphabet

ZL+1

entropy H ( Z

1

)

entropy

H(ZL+1)

I(Z1;ZL+1)

mutual information

(16)

X Y Z

I(X; Y) I(Y; Z)

Process 1 Process 2 p(x, y, z) = p(x) p(y|x) p(z|y)

p(x) p(y|x) p(z|y)

)

; ( )

;

(X Y I X Z

I

X Process 1 Y Process 2 Z interaction U1 interaction U2

X Process 1 Y Process 2 Z domain knowledge about X

)

; (

)

;

( X Y I X Z

I

M. Chen and H. Jänicke, An information-theoretic

framework for visualization, IEEE Transactions on Visualisation and Computer Graphics, 2010

(17)

entropy H ( Z

1

)

Big Data Process 1

Process

2 ...

alphabet

Z1

Process

L-1

Process

L Decision

alphabet

Z2

alphabet

Z3

alphabet

ZL-1

alphabet

ZL

alphabet

ZL+1

entropy H ( X )

I(Z1;X)

mutual information

x  X is a piece of soft knowledge All possible decisions under different conditions

a) totally data-driven b) totally instinct-driven c) data-informed

d) due to unknown or uncontrollable factors

a b c d

(18)

Data Process

1 ...

alphabet

Z1

... Process

L Decision

alphabet

Z2

alphabet

Zs

alphabet

Zs+1

alphabet

ZL

alphabet

ZL+1

Process s

Alphabet Compression

Z Z

Potential Distortion

Z Z

M. Chen and A. Golan, What may visualization processes optimize?, IEEE Transactions on Visualisation and Computer Graphics, 2015

(19)

Data Process

1 ...

alphabet

Z1

... Process

L Decision

alphabet

Z2

alphabet

Zs

alphabet

Zs+1

alphabet

ZL

alphabet

ZL+1

Process s

(20)

Process

Z V

forward mapping

z1 z2 ...

zn

v1 v2 ...

vm

Process

Z V

z’1 z’2 ...

z’n backward mapping

DKL

Solomon Kullback 1907-1994

Richard Leibler 1914-2003

(21)

Cost-Benefit Ratio

Data Process

1 ...

alphabet

Z1

... Process

L Decision

alphabet

Z2

alphabet

Zs

alphabet

Zs+1

alphabet

ZL

alphabet

ZL+1

Process s

M. Chen and A. Golan, What may visualization processes optimize?, IEEE Transactions on Visualization and Computer Graphics, 2015

(22)

Data Process

1 ...

alphabet

Z1

... Process

L Decision

alphabet

Z2

alphabet

Zs

alphabet

Zs+1

alphabet

ZL

alphabet

ZL+1

Process s

Process

s

Alphabet Compression

Potential Distortion

Cost Process

s+1

Alphabet Compression

Potential Distortion

Cost

Composite Process for s and s+1

Alphabet Compression Potential Distortion

Cost

(23)

Information Theory and Visualization

1. Data Intelligence  a big picture 2. Visualization  a small picture

3. Measurement, Explanation, and Prediction 4. Example: Visual Multiplexing

5. Example: Error Detection and Correction 6. Example: Process Optimization

7. Summary

Min Chen

(24)

H(X)

V(G)

D

) (

) (VMR) (

Ratio Mapping

Visual

X G H

V

) (

) 0 ), ( )

( (ILR) max(

Ratio Loss

n Informatio

X

G X

H

V H

D V( ) (DSU)

on Utilizati Space

Display G

M. Chen and H. Jänicke, An information-theoretic framework for visualization, IEEE Transactions on Visualisation and Computer Graphics, 2010

(25)

V(G) = H(Z)

D

D

0

64 128 192 256

0 8 16 24 32 40 48 56 64 minimal 64 pixels

minimal 256 pixels

X

X X X X

X X X X X X

X X X X

X X X

X X X

X

X X

X X X X X X X X X X X

X X X X

X X X X X

X X

X X X

X X X X

X X

X X X

X X X X

X X

X X X X X

X X X

X X X X X X X X

X X X X

X X X X

X X X X X X X X X X X X X X

X X X X

X X

X X X X X X

X X X X X

X X X X

X

X X X X X

X X X X

X X X X

X X X X X

X X X X X

X X X

X X X

X X X X

X X X X

X X X X X

X X X X

X X X X X X X X X

X X X X X

X X X X

X X X X

X X

X X X X

X X X X X X X X X X X X X X X

X X X X

X X X X X X

X X X X X

X X X X X

X X X X X

minimal 8 pixels

minimal 64 pixels

byte 1

byte 16

byte 32

byte 64 byte 48

7 6 5 4 3 2 1 0

256 512 log 1

256 ) 1

(

64

0 255

0

2



t i

Z H

(26)

0 64 128 192 256

0 8 16 24 32 40 48 56 64 0

64 128 192 256

0 8 16 24 32 40 48 56 64

(a) evenly distributed p

0 64 128 192 256

0 8 16 24 32 40 48 56 64 minimal 64 pixels

minimal 256 pixels

H(X) = 512 bits V(G) = 512 bits D = 16382 bits VMR = 1

ILR = 0 DSU = 0.03

H(X) = 512 bits V(G) = 384 bits D = 4096 bits VMR = 0.75 ILR = 0.25 DSU = 0.09

(27)

Information Theory and Visualization

1. Data Intelligence  a big picture 2. Visualization  a small picture

3. Measurement, Explanation, and Prediction 4. Example: Visual Multiplexing

5. Example: Error Detection and Correction 6. Example: Process Optimization

7. Summary

Min Chen

(28)

0 64 128 192 256

0 8 16 24 32 40 48 56 64 0

64 128 192 256

0 8 16 24 32 40 48 56 64

(a) evenly distributed p

information loss:

25%

0 64 128 192 256

0 8 16 24 32 40 48 56 64 minimal 64 pixels

minimal 256 pixels

M. Chen and H. Jänicke, An information-theoretic framework for visualization, IEEE Transactions on Visualisation and Computer Graphics, 2010

(29)

0 64 128 192 256

0 8 16 24 32 40 48 56 64 0

64 128 192 256

0 8 16 24 32 40 48 56 64

(a) evenly distributed p

0 64 128 192 256

0 8 16 24 32 40 48 56 64 0

64 128 192 256

0 8 16 24 32 40 48 56 64

(b) unevenly distributed p

information loss:

25.8%

Z Z'

A:

0 32 64 96 128 160 192 224 256

B:

C:

D:

0 8 16 24 32 40 48 56 64

probability linear

2

1 p

4

1 p

8

1 p

8

1 p

information loss:

25.0%

(30)

0 32 64 96 128 160 192 224 256

0 8 16 24 32 40 48 56 64 0

64 128 256

0 8 16 24 32 40 48 56 64 192

0 64 128 192 256

0 8 16 24 32 40 48 56 64 0

64 128 192 256

0 8 16 24 32 40 48 56 64

(a) evenly distributed p

0 64 128 192 256

0 8 16 24 32 40 48 56 64 0

64 128 192 256

0 8 16 24 32 40 48 56 64

(b) unevenly distributed p (c) 4 regional mappings

information loss:

25.8%

information loss:

25.0%

information loss:

22.6%

(31)

0 64 128 192 256

0 8 16 24 32 40 48 56 64 0

64 128 192 256

0 8 16 24 32 40 48 56 64

(a) evenly distributed p

0 64 128 192 256

0 8 16 24 32 40 48 56 64 0

64 128 192 256

0 8 16 24 32 40 48 56 64

(b) unevenly distributed p (c) 4 regional mappings

20 22 24 26 28

0 8 16 24 32 40 48 56 64 0

64 128 192 256

0 8 16 24 32 40 48 56 64

(d) logarithmic plot

0 32 64 96 128 160 192 224 256

0 8 16 24 32 40 48 56 64 0

64 128 256

0 8 16 24 32 40 48 56 64 192

information loss:

25.8%

information loss:

25.0%

information loss:

22.6%

information loss:

0%

A:

B:

C:

D:

2

1 p

4

1 p

8

1 p

8

1 p

12

p

22

1 p

23

1 p

2 1

1

k p

p k

2

1

p k

2

1

...

k

(32)

D

H(X) Hmax(X)

V(G)

http://en.wikipedia.org/wiki/Treemapping http://hci.stanford.edu/jheer/files/zoo/

(33)

Information Theory and Visualization

1. Data Intelligence  a big picture 2. Visualization  a small picture

3. Measurement, Explanation, and Prediction 4. Example: Visual Multiplexing

5. Example: Error Detection and Correction 6. Example: Process Optimization

7. Summary

Min Chen

(34)

http://learnpracticalgis.com/how-to-overlay-maps/

(35)

vis-encoder vis-link (consisting of many vis-channels) vis-decoder

information about at p

at p c3 cc14 c2

ck c2 ck

c3 spatial domainD

temporal domainT

other signals and noise

MUX DEMUX

Location pcan be associated with X in the source data or determined by a spatial mapping.

Xcan be a data record or a set of partially encoded visual attributes.

Perceived information may include estimated values and relationships with data conveyed by other signals.

p

M. Chen, S. Walton, K. Berger, J. Thiyagalingam, B. Duffy, H. Fang, C. Holloway, and A. E. Trefethen, Visual multiplexing, Computer Graphics Forum, 2014.

(36)
(37)
(38)
(39)

60 70

50

(40)

text label

(41)
(42)

Data Space

Visualization Space

Display Space

H

Data Space Entropy

V(G)

Visualization Capacity (Visualization Space Entropy)

D

Display Space Capacity

V(G) D

<< 1

(43)

R. P. Botchen, S. Bachthaler, F. Schick, M. Chen, G. Mori, D.

Weiskopf and T. Ertl, Action-based multi-field video visualization, IEEE Transactions on Visualization and Computer Graphics, 2008.

(44)

Information Theory and Visualization

1. Data Intelligence  a big picture 2. Visualization  a small picture

3. Measurement, Explanation, and Prediction 4. Example: Visual Multiplexing

5. Example: Error Detection and Correction 6. Example: Process Optimization

7. Summary

Min Chen

(45)

Information Theory and Visualization

1. Data Intelligence  a big picture 2. Visualization  a small picture

3. Measurement, Explanation, and Prediction 4. Example: Visual Multiplexing

5. Example: Error Detection and Correction 6. Example: Process Optimization

7. Summary

Min Chen

(46)

Four Levels of Visualization

M. Chen and A. Golan, What may visualization processes optimize?, IEEE Transactions on Visualisation and Computer Graphics, 2015

(47)
(48)

Observational Visualization

(49)

Observational Visualization

(50)

Information Theory and Visualization

1. Data Intelligence  a big picture 2. Visualization  a small picture

3. Measurement, Explanation, and Prediction 4. Example: Visual Multiplexing

5. Example: Error Detection and Correction 6. Example: Process Optimization

7. Summary

Min Chen

(51)

Referanser

RELATERTE DOKUMENTER

Gröller, “Volume analysis using multimodal surface similarity,” IEEE Transactions on Visualization and Computer Graphics, vol. Dickson, “BrainGazer – Visual queries for

Figure 2.7 shows an example where we plotted the signal excess as a function of range and sensor depth for three different target depths (50, 90 and 130 m).. In this case the

[r]

Workshops have been held, or are planned, during 2002 on Parallel Graphics, Rendering, Data Visualization (with IEEE CS), Virtual Environments, Graphics Hardware (with ACM SIGGRAPH)

Workshops have been held, or are planned, during 2004 on Rendering, Visualization Symposium (with IEEE TCVG), Point-based Graphics, Parallel Graphics and Visualization, Graphics

The AlgoViz project provides a software collection which is currently focused on the visualization of fundamental computer graphics algorithms and geometric modeling concepts..

Ljung has published several papers in international conferences and journals including IEEE Visualization, Eurographics conferences, IEEE TVCG and others, on volume rendering of

In 3DPVT ’06: Proceedings of the Third International Symposium on 3D Data Processing, Visualization, and Trans- mission (Washington, DC, USA, 2006), IEEE Computer

• Compact representation of large scale data sets important in many areas of scientific visualization and computer graphics. • Use a mathematical framework for the decomposition

“Hierarchical Event Selection for Video Storyboards with a Case Study on Snooker Video Visualization”.. To appear in IEEE Visualization (VisWeek),

[Skal13b] Skala,V.: Projective Geometry, Duality and Precision of Computation in Computer Graphics, Visualization and Games, Tutorial Eurographics 2013, Girona, 2013.

Michael Raschke, Xuemei Chen, Thomas Ertl: Parallel Scan-Path Visualization – ETRA 2012 Michael Raschke, Dominik Herr, Tanja Blascheck, Michael Burch, Michael Schrauf, Sven

Sbert: Automatic Transfer Functions based on Informational Divergence, IEEE TVCG (Proceedings of IEEE Visualization), 2010. • [Haidacher

Institute of Computer Graphics &amp; Knowledge Visualization at Graz University of Technology and.. Fraunhofer IGD (Fraunhofer Institute for Computer Graphics Research), Darmstadt

Institute of Computer Graphics &amp; Knowledge Visualization at Graz University of Technology and.. Fraunhofer IGD (Fraunhofer Institute for Computer Graphics Research), Darmstadt

Certain topics, like medical visualization, flow visualization, tabular data visualization, and network visualization have attracted continued interest over many years and every

His research interests include information and scientific visualization, visual analytics, eye tracking, GPU methods, computer graphics, and special and general relativity. He

They cover a variety of topics in Computer Graphics and Visual Computing, such as scientific visualization, visual data analysis, volumetric models visualization and

Institute of Computer Graphics &amp; Knowledge Visualization at Graz University of Technology and.. Fraunhofer IGD (Fraunhofer Institute for Computer Graphics Research), Darmstadt

In: Biological Data Visualization (BioVis), 2013 IEEE Symposium on. Data-driven visualization of mul- tichannel EEG coherence networks based on community structure analy- sis.

Institute of Computer Graphics &amp; Knowledge Visualization at Graz University of Technology and.. Fraunhofer IGD (Fraunhofer Institute for Computer Graphics Research), Darmstadt

IEEE Transactions on Visualization and Computer Graphics (2020), 1–1.. “Human-Centered Tools for Coping with Imperfect Algorithms During

She has also served on the editorial boards of IEEE Transactions on Visualization and Computer Graphics, ACM Journal of Computing and Cultural Heritage and IEEE Computer Graphics