• No results found

A numerical evaluation of the effect of the electro‐magnetic force on bubble flow in aluminium smelting process

N/A
N/A
Protected

Academic year: 2022

Share "A numerical evaluation of the effect of the electro‐magnetic force on bubble flow in aluminium smelting process"

Copied!
16
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

2

Proceedings of the 12

th

International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries

SINTEF

PROCEEDINGS

Progress in Applied CFD –

CFD2017

(2)

Editors:

Jan Erik Olsen and Stein Tore Johansen

Progress in Applied CFD – CFD2017

Proceedings of the 12

th

International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries

SINTEF Proceedings

SINTEF Academic Press

(3)

SINTEF Proceedings no 2

Editors: Jan Erik Olsen and Stein Tore Johansen Progress in Applied CFD – CFD2017

Selected papers from 10th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metal lurgical and Process Industries

Key words:

CFD, Flow, Modelling

Cover, illustration: Arun Kamath

ISSN 2387-4295 (online) ISBN 978-82-536-1544-8 (pdf)

© Copyright SINTEF Academic Press 2017

The material in this publication is covered by the provisions of the Norwegian Copyright Act. Without any special agreement with SINTEF Academic Press, any copying and making available of the material is only allowed to the extent that this is permitted by law or allowed through an agreement with Kopinor, the Reproduction Rights Organisation for Norway. Any use contrary to legislation or an agreement may lead to a liability for damages and confiscation, and may be punished by fines or imprisonment

SINTEF Academic Press

Address: Forskningsveien 3 B PO Box 124 Blindern

N-0314 OSLO

Tel: +47 73 59 30 00 Fax: +47 22 96 55 08 www.sintef.no/byggforsk www.sintefbok.no

SINTEF Proceedings

SINTEF Proceedings is a serial publication for peer-reviewed conference proceedings on a variety of scientific topics.

The processes of peer-reviewing of papers published in SINTEF Proceedings are administered by the conference organizers and proceedings editors. Detailed procedures will vary according to custom and practice in each scientific community.

(4)

PREFACE  

This book contains all manuscripts approved by the reviewers and the organizing committee of the  12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and  Process Industries. The conference was hosted by SINTEF in Trondheim in May/June 2017 and is also  known as CFD2017 for short. The conference series was initiated by CSIRO and Phil Schwarz in 1997. 

So far the conference has been alternating between CSIRO in Melbourne and SINTEF in Trondheim. 

The conferences focuses on the application of CFD in the oil and gas industries, metal production,  mineral processing, power generation, chemicals and other process industries. In addition pragmatic  modelling  concepts  and  bio‐mechanical  applications  have  become  an  important  part  of  the  conference. The papers in this book demonstrate the current progress in applied CFD.  

The conference papers undergo a review process involving two experts. Only papers accepted by the  reviewers are included in the proceedings. 108 contributions were presented at the conference  together with six keynote presentations. A majority of these contributions are presented by their  manuscript in this collection (a few were granted to present without an accompanying manuscript).  

The organizing committee would like to thank everyone who has helped with review of manuscripts,  all those who helped to promote the conference and all authors who have submitted scientific  contributions. We are also grateful for the support from the conference sponsors: ANSYS, SFI Metal  Production and NanoSim. 

Stein Tore Johansen & Jan Erik Olsen 

3

(5)

Organizing committee: 

Conference chairman: Prof. Stein Tore Johansen  Conference coordinator: Dr. Jan Erik Olsen  Dr.

 

Bernhard Müller 

Dr.Sigrid Karstad Dahl  Dr.Shahriar Amini  Dr.Ernst Meese  Dr.Josip Zoric  Dr.Jannike Solsvik  Dr.Peter Witt   

                     

Scientific committee: 

Stein Tore Johansen, SINTEF/NTNU  Bernhard Müller, NTNU 

Phil Schwarz, CSIRO 

Akio Tomiyama, Kobe University 

Hans Kuipers, Eindhoven University of Technology  Jinghai Li, Chinese Academy of Science 

Markus Braun, Ansys  Simon Lo, CD‐adapco 

Patrick Segers, Universiteit Gent  Jiyuan Tu, RMIT 

Jos Derksen, University of Aberdeen  Dmitry Eskin, Schlumberger‐Doll Research  Pär Jönsson, KTH 

Stefan Pirker, Johannes Kepler University  Josip Zoric, SINTEF 

         

             

 

4

(6)

CONTENTS 

 

PRAGMATIC MODELLING ... 9 

On pragmatism in industrial modeling. Part III: Application to operational drilling ... 11 

CFD modeling of dynamic emulsion stability ... 23 

Modelling of interaction between turbines and terrain wakes using pragmatic approach ... 29 

  FLUIDIZED BED ... 37 

Simulation of chemical looping combustion process in a double looping fluidized bed        reactor with cu‐based oxygen carriers ... 39 

Extremely fast simulations of heat transfer in fluidized beds ... 47 

Mass transfer phenomena in fluidized beds with horizontally immersed membranes ... 53 

A Two‐Fluid model study of hydrogen production via water gas shift in fluidized bed   membrane reactors  ... 63 

Effect of lift force on dense gas‐fluidized beds of non‐spherical particles ... 71 

Experimental and numerical investigation of a bubbling dense gas‐solid fluidized bed ... 81 

Direct numerical simulation of the effective drag in gas‐liquid‐solid systems ... 89 

A Lagrangian‐Eulerian hybrid model for the simulation of direct reduction of iron ore  in fluidized beds... 97 

High temperature fluidization ‐ influence of inter‐particle forces on fluidization behavior  ... 107 

Verification of filtered two fluid models for reactive gas‐solid flows ... 115 

  BIOMECHANICS ... 123 

A computational framework involving CFD and data mining tools for analyzing disease in       cartoid artery  ... 125 

Investigating the numerical parameter space for a stenosed patient‐specific internal  carotid artery model ... 133 

Velocity profiles in a 2D model of the left ventricular outflow tract, pathological  case study using PIV and CFD modeling ... 139 

Oscillatory flow and mass transport in a coronary artery ... 147 

Patient specific numerical simulation of flow in the human upper airways for assessing       the effect of nasal surgery ... 153 

CFD simulations of turbulent flow in the human upper airways ... 163 

  OIL & GAS APPLICATIONS ... 169 

Estimation of flow rates and parameters in two‐phase stratified and slug flow by an   ensemble Kalman filter ... 171 

Direct numerical simulation of proppant transport in a narrow channel for hydraulic   fracturing application ... 179 

Multiphase direct numerical simulations (DNS) of oil‐water flows through   homogeneous porous rocks ... 185 

CFD erosion modelling of blind tees ... 191 

Shape factors inclusion in a one‐dimensional, transient two‐fluid model for stratified  and slug flow simulations in pipes ... 201 

Gas‐liquid two‐phase flow behavior in terrain‐inclined pipelines for wet natural  gas transportation ... 207 

   

(7)

NUMERICS, METHODS & CODE DEVELOPMENT ... 213 

Innovative computing for industrially‐relevant multiphase flows ... 215 

Development of GPU parallel multiphase flow solver for turbulent slurry flows in cyclone ... 223 

Immersed boundary method for the compressible Navier–Stokes equations using  high order summation‐by‐parts difference operators ... 233 

Direct numerical simulation of coupled heat and mass transfer in fluid‐solid systems ... 243 

A simulation concept for generic simulation of multi‐material flow,   using staggered Cartesian grids ... 253 

A cartesian cut‐cell method, based on formal volume averaging of mass,   momentum equations ... 265 

SOFT: a framework for semantic interoperability of scientific software ... 273 

  POPULATION BALANCE ... 279 

Combined multifluid‐population balance method for polydisperse multiphase flows ... 281 

A multifluid‐PBE model for a slurry bubble column with bubble size dependent   velocity, weight fractions and temperature ... 285 

CFD simulation of the droplet size distribution of liquid‐liquid emulsions   in stirred tank reactors ... 295 

Towards a CFD model for boiling flows: validation of QMOM predictions with   TOPFLOW experiments ... 301 

Numerical simulations of turbulent liquid‐liquid dispersions with quadrature‐based   moment methods ... 309 

Simulation of dispersion of immiscible fluids in a turbulent couette flow ... 317 

Simulation of gas‐liquid flows in separators ‐ a Lagrangian approach ... 325 

CFD modelling to predict mass transfer in pulsed sieve plate extraction columns ... 335 

  BREAKUP & COALESCENCE ... 343 

Experimental and numerical study on single droplet breakage in turbulent flow ... 345 

Improved collision modelling for liquid metal droplets in a copper slag cleaning process ... 355 

Modelling of bubble dynamics in slag during its hot stage engineering ... 365 

Controlled coalescence with local front reconstruction method ... 373 

  BUBBLY FLOWS ... 381 

Modelling of fluid dynamics, mass transfer and chemical reaction in bubbly flows ... 383 

Stochastic DSMC model for large scale dense bubbly flows ... 391 

On the surfacing mechanism of bubble plumes from subsea gas release ... 399 

Bubble generated turbulence in two fluid simulation of bubbly flow ... 405 

  HEAT TRANSFER ... 413 

CFD‐simulation of boiling in a heated pipe including flow pattern transitions   using a multi‐field concept ... 415 

The pear‐shaped fate of an ice melting front ... 423 

Flow dynamics studies for flexible operation of continuous casters (flow flex cc) ... 431 

An Euler‐Euler model for gas‐liquid flows in a coil wound heat exchanger ... 441 

  NON‐NEWTONIAN FLOWS ... 449 

Viscoelastic flow simulations in disordered porous media ... 451 

Tire rubber extrudate swell simulation and verification with experiments ... 459 

Front‐tracking simulations of bubbles rising in non‐Newtonian fluids ... 469 

A 2D sediment bed morphodynamics model for turbulent, non‐Newtonian,   particle‐loaded flows ... 479   

(8)

METALLURGICAL APPLICATIONS ... 491 

Experimental modelling of metallurgical processes ... 493 

State of the art: macroscopic modelling approaches for the description of multiphysics   phenomena within the electroslag remelting process ... 499 

LES‐VOF simulation of turbulent interfacial flow in the continuous casting mold ... 507 

CFD‐DEM modelling of blast furnace tapping ... 515 

Multiphase flow modelling of furnace tapholes ... 521 

Numerical predictions of the shape and size of the raceway zone in a blast furnace ... 531 

Modelling and measurements in the aluminium industry ‐ Where are the obstacles? ... 541 

Modelling of chemical reactions in metallurgical processes ... 549 

Using CFD analysis to optimise top submerged lance furnace geometries ... 555 

Numerical analysis of the temperature distribution in a martensic stainless steel   strip during hardening ... 565 

Validation of a rapid slag viscosity measurement by CFD ... 575 

Solidification modeling with user defined function in ANSYS Fluent ... 583 

Cleaning of polycyclic aromatic hydrocarbons (PAH) obtained from ferroalloys plant ... 587 

Granular flow described by fictitious fluids: a suitable methodology for process simulations ... 593 

A multiscale numerical approach of the dripping slag in the coke bed zone of a   pilot scale Si‐Mn furnace ... 599 

  INDUSTRIAL APPLICATIONS ... 605 

Use of CFD as a design tool for a phospheric acid plant cooling pond ... 607 

Numerical evaluation of co‐firing solid recovered fuel with petroleum coke in a   cement rotary kiln: Influence of fuel moisture ... 613 

Experimental and CFD investigation of fractal distributor on a novel plate and   frame ion‐exchanger ... 621 

  COMBUSTION ... 631 

CFD modeling of a commercial‐size circle‐draft biomass gasifier ... 633 

Numerical study of coal particle gasification up to Reynolds numbers of 1000 ... 641 

Modelling combustion of pulverized coal and alternative carbon materials in the   blast furnace raceway ... 647 

Combustion chamber scaling for energy recovery from furnace process gas:   waste to value ... 657 

  PACKED BED ... 665 

Comparison of particle‐resolved direct numerical simulation and 1D modelling   of catalytic reactions in a packed bed ... 667 

Numerical investigation of particle types influence on packed bed adsorber behaviour ... 675 

CFD based study of dense medium drum separation processes ... 683 

A multi‐domain 1D particle‐reactor model for packed bed reactor applications ... 689 

  SPECIES TRANSPORT & INTERFACES ... 699 

Modelling and numerical simulation of surface active species transport   ‐ reaction in welding processes ... 701 

Multiscale approach to fully resolved boundary layers using adaptive grids ... 709 

Implementation, demonstration and validation of a user‐defined wall function   for direct precipitation fouling in Ansys Fluent ... 717   

   

(9)

FREE SURFACE FLOW & WAVES ... 727  Unresolved CFD‐DEM in environmental engineering: submarine slope stability and  

other applications... 729  Influence of the upstream cylinder and wave breaking point on the breaking wave  

forces on the downstream cylinder ... 735  Recent developments for the computation of the necessary submergence of pump  

intakes with free surfaces ... 743  Parallel multiphase flow software for solving the Navier‐Stokes equations ... 752   

PARTICLE METHODS ... 759  A numerical approach to model aggregate restructuring in shear flow using DEM in  

Lattice‐Boltzmann simulations ... 761  Adaptive coarse‐graining for large‐scale DEM simulations ... 773  Novel efficient hybrid‐DEM collision integration scheme ... 779  Implementing the kinetic theory of granular flows into the Lagrangian  

dense discrete phase model ... 785  Importance of the different fluid forces on particle dispersion in fluid phase  

resonance mixers ... 791  Large scale modelling of bubble formation and growth in a supersaturated liquid ... 798   

FUNDAMENTAL FLUID DYNAMICS ... 807  Flow past a yawed cylinder of finite length using a fictitious domain method ... 809  A numerical evaluation of the effect of the electro‐magnetic force on bubble flow  

in aluminium smelting process ... 819  A DNS study of droplet spreading and penetration on a porous medium ... 825  From linear to nonlinear: Transient growth in confined magnetohydrodynamic flows ... 831 

(10)

                                                             

       

 

10

(11)

12th International Conference on CFD in Oil & Gas, Metallurgical and Process Industries SINTEF, Trondheim, Norway

May 30th – June 1st 2017

CFD 2017

1

A NUMERICAL EVALUATION OF THE EFFECT OF ELECTRO-MAGNETIC FORCE ON BUBBLE FLOW IN ALUMINIUM SMELTING PROCESS

Yuqing FENG1,*, Peter J. WITT1, Zhibin ZHAO1,2, Kaiyu ZHANG3, M. Philip SCHWARZ1, Zhaowen WANG2

1 CSIRO Mineral Resources, Victoria 3169, AUSTRALIA

2 NORTHEASTERN UNIVERSITY School of Metallurgy, Shenyang, CHINA

3 Hefei University of Technology, CHINA

*E-mail: Yuqing.Feng@csiro.au

ABSTRACT

This paper aims to investigate the effect of electro- magnetic forces on bubble flow under an anode using a computational fluid dynamics (CFD) model with the volume-of-fluid (VOF) method to capture the gas-liquid interface. Current flow was solved simultaneously to determine the Lorentz forces. As an initial phase of investigation, the investigation was conducted using part of a single anode geometry as a test bed. The CFD model was run with a fixed bubble volume and two anode inclination angles. The effect of Lorentz forces was assessed in terms of bubble sliding velocities, bubble shapes and trajectories.

Keywords: CFD, Aluminium Electrolytic Cell, Bubble Flow, Electro-Magnetic Force.

NOMENCLATURE Greek Symbols

Volume fraction.

Mass density, [kg m-3].

 Electric potential [V].

 Electrical conductivity, [S m-1].

µ Dynamic viscosity, [kg m-1 s-1].

Latin Symbols

B Magnetic flux density, [T].

E Electric field, [V m-1].

FL Volumetric Lorentz force, [N m-3].

FS Surface tension force, [N m-3].

g Gravity vector [m s-2].

J Electric current density, [A m-2].

p Pressure, [Pa].

t Time [s].

u Velocity, [m s-1].

Sub/superscripts g Gas.

l Liquid.

INTRODUCTION

Bubble flow is an inherent phenomena in Hall- Héroult reduction cells for aluminium smelting, and plays an import role in determining cell performance. A better understanding of the bubble dynamics and the resulting liquid flow is key to improving cell performance. Due to the corrosive and high temperature environment, bubble dynamics are traditionally studied using substitute physical models, including water models, low temperature electrolytic models, small-scale high- temperature electrolytic cells. A detailed summary of these models was made in a recent publication (Zhao et al., 2016a). Due to the limitation of measurement technology, the detailed bubble dynamics cannot be studied quantitatively in physical models at or near industrial scale. In the last decade, numerical modelling has been used increasingly to study bubble dynamics in the aluminium smelting system. These studies have focused on different areas, such as bubble detachment on the effect of aluminium-cryolite interfaces (Einarsrud, 2010), bubble detachment and sliding mechanism (Das et al., 2011), anode edge shape on bubble release (Wang and Zhang, 2010) and the effect of MHD forces on global bubble behaviour and voltage fluctuation (Einarsrud et al., 2012).

The CSIRO CFD team, in collaboration with a number of aluminium smelting companies, has developed a multi- scale CFD modelling approach to study bubble induced bath flow in aluminium smelting cells. This bath flow model (Feng et al., 2010, 2015) was developed using a local averaged approach accompanied with PIV measurement for model validation (Cooksey and Yang, 2006). To understand detailed bubble dynamics a micro- approach based on the Volume of Fluid (VOF) model was developed in parallel. Using the latter approach, for the first time, the difference in bubble dynamics between air-water and CO2-cryolite systems were quantified for motion of a single bubble in the ACD (anode-cathode distance) and for continuous bubbles motion in side

819

(12)

Y.Q. Feng, P. J. Witt, Z. Zhao, K. Zhang, M. P. Schwarz and Z. Wang

2 channels (Zhang et al., 2013; Zhao et al., 2015). In the detailed bubble model the electro-magnetic force, or Lorentz force, was not included.

Bojarevics and Roy (2012) performed an analytical evaluation of the electro-magnetic force on a hemispherical stationary bubble under an anode, and suggested that the presence of the electro-magnetic force could significantly affect the bubble transport, concentration and detachment. In a recent physical model study using aqueous CuSO4 electrolysis (Das et al., 2015), the superposition of a magnetic field significantly affected the bubble density, coalescence, velocity and the overall sliding characteristics. Using a multiscale modelling approach, Einarsrud et al (2012) found that the inclusion of Lorentz force did not appear to influence global bubble behaviour and voltage fluctuations significantly. However, the Lorentz force appeared to enhance bubble departure by 7 and 12% in the two cases they investigated. To quantitatively evaluate the effect of electric-magnetic force on bubble behaviour, it is necessary to simulate the motion of individual bubbles in three dimensions.

This paper aims to further investigate the effect of electro-magnetic forces on bubble flow under an anode using a computational fluid dynamics (CFD) model with the volume-of-fluid (VOF) method used to capture the gas-liquid interface. Current flow was solved simultaneously to determine the Lorentz force. The investigation was conducted using part of a single anode geometry as a test bed. The CFD model was run for a single bubble with fixed bubble volume and two anode inclination angles with different directions of the electro- magnetic field. The effect of Lorentz force was assessed in terms of bubble sliding velocities, bubble shape and trajectories.

MODEL DESCRIPTION Gas-Liquid Flow Model

Transient fluid dynamics of the gas and liquid bath are simulated by solving transport equations for the conservation of mass and momentum. The governing equations for the two-phase mixture are:

Global continuity equation

∇ ∙u= 0 (1)

Momentum equation ( )

+∇ ∙( )

=−∇ +∇ ∙[ (∇ +∇ )] + + +

(2)

Mixture density and viscosity are weighted based on volume fraction in the following manner:

= + (3)

= + (4)

The interface location between the two phases is calculated using the volume of fluid (VOF) approach in which a transport equation for the gas volume fraction is solved.

Gas phase continuity equation

+∇ ∙ u = 0 (5) Electro-Magnetic Model

The Lorentz force in equation (2) is given by:

= × (6)

where the current density, J, is;

=σ( + × ) (7)

noting that the electrical conductivity, , is phase weighted as the other fluid properties (e.g. density). Since the velocities are small the induced current term on the right hand side is small and ignored in this work. The electric field can be defined in terms of a scalar potential ( =−∇∅) then from equation (7) and current conservation the potential equation to be solved is:

∇ ∙( ∇∅) = 0 (8)

Geometry and Boundary Conditions

The model geometry is a 0.15[m] wide three dimensional slice of a section of the anode and bath from a reduction cell. The model domain and boundary condition locations for the model are shown in Figure 1, consisting of a solid domain for the anode and fluid domain for the cryolite- CO2 mixture. The brown slice is through the centre of the anode, which has a height of 0.4 [m] and a length of 0.65 [m] in Z and Y directions respectively. A uniform current density of 9 [kA m-2] is applied to the top pink coloured surface.

A plane through the centre of the bath coloured, by volume fraction, shows the initial conditions for the blue CO2 and red cryolite fluids. The fluid domain consists of the volume under the anode in the ACD, which has a depth of 40 [mm], and the volume in the centre channel beside the anode. Centre channel half width is 0.12 [m]

with the top light blue face set as an outlet boundary at zero gauge pressure. Initial liquid height in the centre channel is 0.15 [m] above the base of the bath. The grey base of the bath is a non-slip wall set at a fixed voltage of 0 [V] and represents the top surface of the metal pad in an operating cell. Two surfaces couple the anode and bath domains via conducting walls that allow current to pass between the domains. For the fluid side the flow boundary condition is a non-slip wall. The high and low x-direction surfaces are set as symmetry planes or effectively free-slip insulating walls. Other surfaces and insulated non-slip walls.

A small surface, 5 [mm] by 5 [mm] square and 0.07 [m]

from the low y end of the anode, is located on the base of the anode. As detailed nucleation of the gas is not considered here, it is assumed that CO2 gas enters the domain at this surface to form a bubble. Inclination of the anode is accounted for by altering the direction of the gravity vector.

820

(13)

A Numerical Evaluation of the Effect of Electro-Magnetic Force on Bubble Flow in Aluminium Smelting Process / CFD 2017

3 Figure 1: Schematic diagram of geometry.

Initially the domain is meshed using 620,000 hexahedral cells with 485,000 in the anode domain and 135,000 in the fluid domain. This cell size is consistent with our previous work in Zhao et al., (2015). To resolve details of the bubble interface three levels of adaptive meshing was used based on the gradient of volume fraction.

Figure 2 shows the cut-cell mesh refinement around the bubble at 0.22 [s] with the green line indicating the gas- liquid interface. The grey surface in Figure 2 is in the X- Y (horizontal) plane and the colored surface is a Y-Z (vertical) plane. With mesh refinement the cell count increases to approximately 1.2 million cells with most of the increase being in the fluid domain.

Gas is added to cells adjacent to the 5 [mm] x 5 [mm]

square “nucleation site” at a rate of 2.5x10-6 [kg s-1] for a period of 0.16 seconds. Thus, a single bubble with an equivalent bubble size of 25.2 [mm] is formed, with an approximate thickness of 2 [mm]. For cases with a magnetic field, it was applied at a uniform strength of 0.02 [T] in either the x or y direction as defined in Figure 1.

Figure 2: Mesh refinement around bubble at 0.22 [s], grey surface - anode base, blue - CO2, .red - cryolite,

pink – gas “nucleation site”.

Material Properties

Properties were based on typical values for operating industrial cells as are summarised in Table 1.

Table 1: Physical Properties.

Cryolite Density 2100 [kg m-3] CO2 Density 0.4 [kg m-3] Cryolite Dynamic Viscosity 0.003 [Pa s]

CO2 Dynamic Viscosity 1.37x10-5 [Pa s]

Cryolite-CO2 Surface Tension 0.132 [N m-1] Contact angle Cryolite-CO2 120°

Cryolite Electrical

Conductivity 222 [S m-1] CO2 Electrical Conductivity 1 [S m-1]

Carbon Anode Electrical

Conductivity 21,430 [S m-1] Solution Scheme

Model results were obtained using ANSYS-Fluent 17.1 to solve equations (1,2,5 and 8) in the fluid domain and equation (8) in the solid domain by a finite volume scheme. PISO is used for pressure velocity coupling and a second order upwind scheme used for momentum. A first order implicit transient scheme with adaptive time stepping is used for time advancement. The time step is determined by targeting a Courant number of 0.5, typically this results in a time step of 0.0002 seconds and approximately 8-12 iterations are required to converge each time step.

The location of the gas-liquid interface is predicted using the explicit VOF formulation and geometric reconstruction of the interface shape. Surface tension effects in equation (2) are calculated using the continuum surface force model with wall adhesion.

Equation (8) is solved as a user defined scaler equation with no transient or convective terms, using a second order central difference scheme. User defined functions are used to calculate the current density and Lorentz force. UDFs are also used to add mass source terms for gas nucleation at the base of the anode.

RESULTS

No Lorentz Force

To obtain a baseline for the bubble behaviour the model was run with no magnetic field and thus no Lorentz force.

The gravity vector was orientated such that the base of the anode was sloping upward toward the centre channel at 1.5° to the horizontal. This being representative of an anode that has worn to the shape of a metal pad with significant heave.

Iso-surfaces showing the gas-liquid interface are plotted at a number of time instants in Figure 3. Results are plotted looking upward from the metal pad to the anode and from the side of the cell. The first image is at 0.16 seconds at the time that CO2 gas stops entering the model.

821

(14)

Y.Q. Feng, P. J. Witt, Z. Zhao, K. Zhang, M. P. Schwarz and Z. Wang

4

Time [s] 0.16 0.32 0.48 0.64 0.8 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 3: Bubble interface locations at various time instants with no Lorentz force a 1.5° anode slope, View from underneath (top) View from side (bottom). Insets shows details of the bubble shape and size at 3.0 seconds.

Time [s] 0.16 1.0 2.0 3.0 4.0

Figure 4: View from underneath of bubble outline at various time instants with a 1.5° anode slope and with

no Lorentz force,

Bx=-0.02 [T],

Bx=0.02 [T]. Inset shows direction of the fields and force for Bx=0.02 [T].

Time [s] 0.16 0.32 0.48 0.64 0.8 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 5: Bubble interface locations at various time instants with a 1.5° anode slope and a magnetic field of By=0.02 [T], View from underneath (top) View from side (bottom). Inset shows details of the bubble shape and size at

3.0 seconds.

Y X

Bx

Fy  Jz

Y X

Fx

By

Jz

822

(15)

A Numerical Evaluation of the Effect of Electro-Magnetic Force on Bubble Flow in Aluminium Smelting Process / CFD 2017

5

Table 2: Predicted average bubble dimensions.

Anode base angle 1.5° Anode base angle 0.5°

Magnetic Field 0 Bx=0.02 [T] Bx=-0.02 [T] By=0.02 [T] Bx=0.02 [T] Bx=-0.02 [T]

Width [m]

(Y direction) 0.0149 0.0147 0.0146 0.0212 0.0196 0.0260

Length [m]

(X direction) 0.0529 0.0528 0.0517 0.0372 0.0391 0.0297

Aspect Ratio 3.6 3.6 3.5 1.8 2.0 1.1

Velocity [m s-1] 0.145 0.146 0.144 0.156 0.121 0.056

Thickness [mm] 1.99 2.00 2.00 2.24 1.88 1.75

At this time the bubble has moved under buoyancy to the right with the left edge of the bubble just exposing the edge of the nucleation site. As shown in previous work (Zhao et al., 2015) the bubble is initially circular and deforms to a sausage bubble as it moves towards the centre channel under buoyancy.

Bubble dimensions obtained by averaging the bubble position at half second intervals between 1.5 and 3.5 seconds are given in Table 2. The predicted behaviour, thickness, aspect ratio and velocity are in agreement with those reported and validated by Zhao et al. (2015) for a similar system using a similar modelling methodology.

Effect of Transverse Magnetic Field

To identify if the Lorentz force has an effect on bubble motion, a magnetic field of 0.02 [T], typical of that found in industrial potlines, was applied in the x-direction and in the negative x-direction. From equation (6) for a downward current, Jz, and transverse magnetic field, Bx, the Lorentz force acts in the negative y-direction, away from the centre channel, as shown schematically in the top left of Figure 4. When the magnetic field is applied in the negative x-direction the force acts in the positive y-direction, towards the centre channel. Figure 4 shows the bubble position at four time instants for the case with no magnetic field and two cases with the magnetic field in the x-direction.

As evident by the results in Figure 4 and Table 2 the Lorentz force arising from Bx causes a small change in the bubble velocity and thus motion of the bubble with time.

Effect of Longitudinal Magnetic Field

Results from a simulation with the magnetic field acting in the y-direction are presented in Figure 5. Reorienting the magnetic field also changes the force direction with it now acting in positive x-direction. The bubble trajectory is plotted in Figure 5 and shows that the bubble is moved across the base of the anode and at approximately 2.0 seconds contacts the model boundary. In the model the boundary is effectively a free slip wall thus the bubble travels along the wall before rising along the anodes in the centre channel. From Table 2 the bubble length reduces and its thickness increases changing its profile and thus drag, resulting in an increased velocity. In a reduction cell this change would not occur and the bubble would continue traversing across the anode base until it reached a slot or edge of the anode.

Effect of Anode Base Angle

The two cases with the magnetic field in the positive and negative x-direction were run with the anode inclination angle reduced from 1.5° to 0.5°. Figure 6 shows plots of the bubble locations for the reduced inclination cases.

With the buoyancy force reduced, the Lorentz force has a stronger effect on the bubble. As shown in Table 2 and Figure 6, when the Lorentz force acts in the same direction as the buoyancy force on the bubble, the bubble velocity is reduced to half of that when compared to the case with the Lorentz force opposing to the buoyancy force.

Figure 6: View from underneath of bubble interface locations at various time instants for a 0.5° anode slope

and with Lorentz force of Bx=-0.02 [T] (bottom) and Bx=0.02 [T] (top). Time [s] from left to right are:

0.16 0.64 1.0 1.5 2.0 2.5 3.0 3.5 4.0.

CONCLUSION

Numerical simulations of CO2 bubbles moving in cryolite bath under an anode in the presence of a magnetic and electric field were performed using a three dimensional VOF model. Results show that the Lorentz force produced by the electro-magnetic fields alters the behaviour of the CO2 bubbles.

Bubbles are predicted to move in the direction opposing the MHD force acting on the liquid. For a case with the anode at an angle of 1.5° and a transverse magnetic field the effect on bubble motion was small. For the same geometry but when the magnetic field is aligned in the longitudinal direction of the anode the MHD force cause the bubbles to move transverse to their trajectory when only buoyancy is acting.

With a reduced anode inclination angle of 0.5° the MHD force had a strong influence on the bubble velocity with

Y X Fy

Fy

823

(16)

Y.Q. Feng, P. J. Witt, Z. Zhao, K. Zhang, M. P. Schwarz and Z. Wang

6 the velocity varying between 0.056 and 0.121 [m s-1] depending on the direction of the magnetic field.

This work demonstrates that the electro-magnetic force in aluminium reduction cells has the potential to alter the behaviour of gas bubbles.

ACKNOWLEDGEMENT

Zhibin Zhao and Kaiyu Zhang would like to thank the China Scholarship Council (CSC) and the National Natural Science Foundation of China (Grant No.

51529401) for their visiting Ph.D. scholarships to study at CSIRO.

REFERENCES

BOJAREVICS, V. and ROY, A., (2012), “Effect of magnetic forces on bubble transport and MHD stability of aluminium electrolysis cells”, Magnetohydrodynamics, 48, 125-136.

COOKSEY, M.A. and YANG, W., (2006), “PIV measurements on physical models of aluminium reduction cells”, Light Metals, 359-365.

DAS, S., MORSI, Y., BROOKS, G., YANG, W. and CHEN, J. J. J., “The principal characteristics of the detachment and sliding mechanism of gas bubble under an inclined anode”, 10th Australasian Aluminium Smelting Technology Conference. Launceston, Tasmania, 2011.

DAS, S., WEERASIRI, L.D. and JEGATHEESAN, V., (2015), “Bubble flow in a static magnetic field”, Light Metals 2015, 789-793.

EINARSRUD, K. E., (2010), “The effect of detaching bubbles on aluminum−cryolite interfaces: An experimental and numerical investigation”, Metall.

Mater. Trans. B., 41, 560.

EINARSRUD, K. E., Johansen, S. T. and Eric, I., (2012), “Anodic bubble behaviour in Hall-Heroult cells”, Light Metals, 875-880.

FENG, Y.Q., YANG, W., COOKSEY, M. and SCHWARZ, M.P., (2010), “Development of Bubble Driven Flow CFD Model Applied for Aluminium Smelting Cells”, J. Comp. Multiphase Flows, 2(3), 179- 188.

FENG, Y.Q., SCHWARZ, M.P., YANG, W. and COOKSEY, M.A., (2015), “Two-phase CFD model of the bubble-driven flow in the molten electrolyte layer of a Hall-Héroult aluminum cell”, Metall and Materi Trans B., 46, 1959-1981.

WANG, Y. F. and ZHANG, L. F., “Numerical modelling on the fluid flow-related phenomena in an aluminium electrolysis cell”, Light Metal 2010, 14.

ZHANG, K., FENG, Y.Q., SCHWARZ, P., WANG, Z.

and COOKSEY, M., (2013), “Computational fluid dynamics (CFD) modeling of bubble dynamics in the aluminum smelting process”, Ind. Eng. Chem. Res., 52 (33), 11378–11390.

ZHAO, Z.B., GAO, B.L., WANG, Z.W., HU, X.W., FENG, Y.Q., (2016a), “Anodic Bubble Behaviour and Voltage Drop in a Laboratory Transparent Aluminium Electrolytic Cell”, METALLURGICAL AND MATERIALS TRANSACTIONS B, 47B, 1962-1975

ZHAO, Z.B., FENG, Y.Q., SCHWARZ, M.P., WITT, P.J., WANG, Z.W. and COOKSEY, M., (2016b),

“Numerical modeling of flow dynamics in the aluminum smelting process: Comparison between Air–Water and CO2–Cryolite systems”, Metall and Materi Trans B, 2016.

824

Referanser

RELATERTE DOKUMENTER

The system can be implemented as follows: A web-service client runs on the user device, collecting sensor data from the device and input data from the user. The client compiles

3.1 Evolution of costs of defence 3.1.1 Measurement unit 3.1.2 Base price index 3.2 Operating cost growth and investment cost escalation 3.3 Intra- and intergenerational operating

In April 2016, Ukraine’s President Petro Poroshenko, summing up the war experience thus far, said that the volunteer battalions had taken part in approximately 600 military

Only by mirroring the potential utility of force envisioned in the perpetrator‟s strategy and matching the functions of force through which they use violence against civilians, can

This report documents the experiences and lessons from the deployment of operational analysts to Afghanistan with the Norwegian Armed Forces, with regard to the concept, the main

We have rerun the neon model with photoionization, but using the oxygen collision cross sections, and this causes the maximum relative neon abundance (after 3 hr) to increase from

Overall, the SAB considered 60 chemicals that included: (a) 14 declared as RCAs since entry into force of the Convention; (b) chemicals identied as potential RCAs from a list of

An abstract characterisation of reduction operators Intuitively a reduction operation, in the sense intended in the present paper, is an operation that can be applied to inter-