• No results found

Longitudinal asymmetry and its effect on pseudorapidity distributions in Pb–Pb collisions at √sNN = 2.76 TeV

N/A
N/A
Protected

Academic year: 2022

Share "Longitudinal asymmetry and its effect on pseudorapidity distributions in Pb–Pb collisions at √sNN = 2.76 TeV"

Copied!
13
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Longitudinal asymmetry and its effect on pseudorapidity distributions in Pb–Pb collisions at √

s NN = 2 . 76 TeV

.ALICE Collaboration

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received30October2017

Receivedinrevisedform9March2018 Accepted15March2018

Availableonline22March2018 Editor:L.Rolandi

FirstresultsonthelongitudinalasymmetryanditseffectonthepseudorapiditydistributionsinPb–Pb collisions at√s

NN =2.76 TeVattheLargeHadronColliderareobtainedwiththe ALICEdetector.The longitudinal asymmetry arises becauseofanunequal number ofparticipatingnucleons fromthe two collidingnuclei,andisestimatedforeacheventbymeasuringtheenergyintheforwardneutron-Zero- Degree-Calorimeters(ZNs).Theeffectofthelongitudinalasymmetryismeasuredonthepseudorapidity distributionsofchargedparticlesintheregions|η|<0.9,2.8<η<5.1 and−3.7<η<1.7 bytaking theratioofthepseudorapiditydistributionsfromeventscorrespondingtodifferentregionsofasymmetry.

Thecoefficientsofapolynomialfittotheratiocharacterisetheeffectoftheasymmetry.AMonteCarlo simulationusingaGlaubermodelforthecollidingnucleiistunedtoreproducethespectrumintheZNs andprovidesarelationbetweenthemeasurablelongitudinalasymmetryandtheshiftintherapidity(y0) oftheparticipantzoneformedbytheunequalnumberofparticipatingnucleons.Thedependenceofthe coefficientofthelinearterminthepolynomialexpansion,c1,onthemeanvalueofy0isinvestigated.

©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Ina heavy-ion collision,the numberof nucleons participating fromeach ofthe two collidingnuclei isfinite, andwillfluctuate event-by-event. The kinematic centre of mass of the participant zone,definedastheoverlapregionofthecollidingnuclei,ingen- eralhasafinitemomentuminthenucleon–nucleoncentreofmass frame because of the unequal number of nucleons participating fromthetwonuclei.Thismomentumcausesalongitudinalasym- metry in the collision and corresponds to a shift of rapidity of the participantzone withrespect to the nucleon–nucleon centre ofmass (CM) rapidity,termed therapidity-shift y0. The value of y0isindicativeofthemagnitudeofthelongitudinalasymmetryof thecollision [1,2].Assumingthenumberofnucleonsparticipating fromeachofthetwonucleiis A andB,thelongitudinalasymme- tryinparticipantsisdefinedas

α

part= AA+BB andtherapidity-shift canbeapproximatedasy0∼=12lnAB atLHCenergies [2].

The shift in the CM frame of the participant zone, which evolvesintoastateofdensenuclearmatter,needstobeexplored in heavy-ion collision models. Comparison of model predictions with the observed -polarisation, possibly due to vorticity from the initial state angular momentum surviving the evolution, re- quiresaprecisedetermination ofinitial conditionsandhencethe

E-mailaddress:alice-publications@cern.ch.

shiftintheCMframe [3–5].Such ashiftmayalsoaffectobserva- tions on correlationsamongst particles,which eventually provide informationaboutthestate ofthematterthroughmodelcompar- isons.Further,theresultantdecreaseintheCMenergymayaffect various observables includingthe particle multiplicity.The trans- verse spectraareknowntobe affectedby theinitialgeometryof the events, as estimated through techniques of event shape en- gineering, indicating an interplay between radial and transverse flow [6].Themeasurementoflongitudinalasymmetrywillprovide anewparametertowardseventshapeengineering,affectingmany otherobservables.

The simplest of all possible investigations into the effect of longitudinal asymmetry is a search for modification ofthe kine- maticdistributionoftheparticles.Thepseudorapiditydistribution (dN/d

η

)ofsoftparticles,averagedoveralargenumberofevents, is symmetric in collisions of identical nuclei. These distributions were observed to be asymmetric in collisions of unequal nuclei such as d–Au [7] and p–Pb [8–10] and have been explained in termsoftherapidity-shiftoftheparticipantzone [11].Inaheavy- ioncollision,theeffectoftherapidity-shiftoftheparticipantzone shouldbediscernibleinthedistributionofproducedparticles.This smalleffectcan beestimatedby takingtheratioofpseudorapid- ity distributions inevents corresponding todifferent longitudinal asymmetries [2].

It was suggested that the rapidity distribution of an event, scaled by the average rapidity distribution, can be expanded in termsofChebyshevpolynomials, wherethecoefficientsofexpan- https://doi.org/10.1016/j.physletb.2018.03.051

0370-2693/©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

sionaremeasuresofthestrengthoflongitudinalfluctuationsand canbedeterminedbymeasuringthetwoparticlecorrelationfunc- tion [12]. Usingthe samemethodology,the event-by-eventpseu- dorapidity distributions are also expanded in terms of Legendre polynomials [13].TheATLASCollaborationexpandedthepseudora- piditydistributionsintermsofLegendrepolynomialsandobtained thecoefficientsbystudyingpseudorapiditycorrelations [14].

Inthepresentwork,theeventsare classifiedaccordingtothe asymmetrydeterminedfromthemeasurementofenergiesofneu- tron spectators on both sides of the collision [2]. The effect of asymmetryisinvestigatedbytakingtheratioofthemeasuredraw dN/d

η

distributionsforeventsfromdifferentregionsofthedistri- butionofmeasuredasymmetry.Amajoradvantageofstudyingthis ratioisthecancellationof(i)systematicuncertainties and(ii)the effectsofshortrange correlations. Thefirst measurements ofthe effectofasymmetry ontherawdN/d

η

distributionsarereported here.

Thepaperisorganisedasfollows:Sect.2providesanintroduc- tion to the experimental setup andthe details of the data sam- ple.Section3discusses thecharacterisation ofthechangeinraw dN/d

η

distributions for events classified in different asymmetry regions.Section 4 describesthe simulationsemployed to provide arelationbetweenthemeasuredasymmetryandtherapidity-shift y0 of the participant zone. The relation between the parameter characterisingthechangeinrawdN/d

η

distributionsisshownfor differentcentralities inSect.5,along withits relationto theesti- matedvaluesof y0.

2. Experimentaldetailsanddatasample

TheanalysisusesdatafromPb–Pb collisioneventsat√ sNN = 2.76TeV, recordedintheALICEexperimentin2010,withamin- imumbias trigger [15,16]. The data used inthe presentanalysis isrecordedintheneutronZeroDegreeCalorimeters (ZNs),theV0 detectors,theTimeProjectionChamber(TPC)andtheInnerTrack- ingSystem(ITS).Both ZNsandV0detectorsare oneithersideof theinteractionvertex,thoseinthedirectionofpositivepseudora- pidityaxisarereferredasV0AandZNAandthoseintheopposite directionarereferredasV0CandZNC.Adetaileddescriptionofthe ALICEdetectorsandtheirperformancecanbefoundelsewhere [17, 18].

Theeventasymmetryis estimatedusing theenergymeasured inthetwoZNssituated114metresawayfromthenominalinter- actionpoint(IP)oneitherside.TheZNsdetectonlyspectatorneu- tronsthatarenotboundinnuclearfragments,sincethelatterare bentawaybythemagneticfieldoftheLHCseparationdipole.The ZNdetectionprobability forneutrons is 97.0% ± 0.2%(stat) ±3%

(syst) [19]. The relative energyresolution of the1n peak at 1.38 TeVis21%fortheZNAand20% fortheZNC [19].Theproduction ofnuclearfragmentsincreaseswithcollisionimpactparameterde- grading the resolution on the number of participating nucleons.

TheenergyintheZNsisagoodmeasureofthenumberofspecta- torneutronsonlyforthemorecentralcollisions [18].Theanalysis islimited tothe top 35% mostcentral sample andemploys data from∼2.7 millionevents.

The raw dN/d

η

distributions in the region |

η

|<0.9 are ob- tainedbyreconstructingthechargedparticletracksusingtheTPC and ITS. The requirements on the reconstructed tracks obtained using the measurements in these detectors are the same as in other earlieranalyses [15]. The measured amplitudes inthe V0A (+2.8<

η

<+5.1) andV0C (−3.7<

η

<1.7) are used to es- timate the raw dN/d

η

distributions of charged particles in the forwardregions. Both V0AandV0Care scintillatorcounters,each withfour segments in pseudorapidity andeight segments in az- imuth.Therawdistributions measuredare termedasdN/d

η

dis-

tributionsthroughoutthemanuscript.Inordertoensureauniform detectorperformance,thepresentanalysisuseseventswithz po- sition (along the beam direction) of the interaction vertex, Vz, within ± 5 cm of the IP in ALICE. The centrality of Pb–Pb col- lisionswas estimatedby twoindependentmethods.Oneestimate wasbasedonthechargedparticlemultiplicityreconstructedinthe TPCandtheother wasbasedon theamplitudesintheV0detec- tors[20].

3. Analysisandsystematicuncertainties

Inthepresentanalysis,changesintherawpseudorapiditydis- tribution ofchargedparticles areinvestigated fordifferentvalues ofmeasuredasymmetryoftheevent.Themethodofmeasurement oftheasymmetryandtheparameterscharacterisingthechangein dN/d

η

distributionsarediscussedinthissection.

3.1. Analysis

Anyeventasymmetryduetounequalnumberofnucleonsfrom the two participatingnucleimaymanifest itself inthe longitudi- naldistributions,i.e.dN/dy (or dN/d

η

)oftheproducedparticles because of a shift in the effectiveCM. Assuming that the rapid- itydistributions can bedescribed by a symmetricfunction about a mean y0 (y0=0.0 for symmetricevents), the ratioofthe dis- tributions forasymmetric and symmetric eventsmay be written as

(

dN

/

dy

)

asym

(

dN

/

dy

)

sym

=

f

(

y

y0

)

f

(

y

)

n=0

cn

(

y0

)

yn (1) Foranyfunctionalformoftherapiditydistribution,thisratiomay beexpandedinaTaylorseries.Thecoefficientscn ofthedifferent termsin theexpansiondepend onthe shapeandtheparameters oftherapiditydistribution [2].IntheALICEexperiment,thepseu- dorapiditiesoftheemittedparticleswere measured.Theeffectof arapidity-shift y0 onthepseudorapiditydistributionis discussed inSect.4.2.

Theunequalnumberofparticipatingnucleonswillyieldanon- zero y0 ofthe participant zone andwill causean asymmetry in thenumberofspectators.Thisasymmetrycanprovideinformation aboutthemeanvaluesof y0 usingtheresponsematrixdiscussed inSect.4.Theasymmetryofeacheventisestimatedbymeasuring theenergyintheZNsonbothsidesoftheinteractionvertex:EZNA onthesidereferredtoastheA-side(

η

>0)andEZNC ontheside referred to astheC-side (

η

<0).A smalldifference inthe mean andtherelativeenergyresolutionofthe1npeakat1.38TeVwas observed in theperformance ofthe two ZNs [19]. Foreach cen- tralityinterval,theenergydistributionineachZNisdividedbyits mean,andthe widthofthe EZNC/EZNC distributionis scaledto thewidthofthecorrespondingdistributionusingEZNA.Theasym- metryinZNisdefinedas

α

ZN

= ε

ZNA

ε

ZNC

ε

ZNA

+ ε

ZNC

(2) where

ε

ZNC(A)isadimensionlessquantityforeachevent,obtained afterscalingthedistributionsofEZNC(A)asdescribedabove.

For the 15–20% centrality interval, Fig. 1 showsthe distribu- tionofthe asymmetry

α

ZN.Toinvestigatethesignificanceofthis distribution,the contributionof theresolutionof ZNsto theres- olution of the asymmetry parameter

α

ZN is evaluated. For each centralityinterval,valuesofEZNC andEZNAaresimulatedforeach eventbyassuminganormaldistributionpeakedatthemeanvalue

(3)

Fig. 1.ThedistributionoftheasymmetryparameterαZNforthe15–20%centrality interval.Thedistributionisdemarcatedintothreeregionsusing|αcutZN|.AGaussian fittothedistributionyieldsawidthof0.13.

corresponding tothe average numberofneutrons andthe corre- sponding energy resolution. The average number of neutrons is estimatedby dividing the experimental distribution of energyin ZNby1.38TeV.Thesevaluesareusedtoobtain

α

ZNforeachevent andits distribution.The widthofthe distributioncorresponds to theintrinsicresolutionofthemeasuredparameter

α

ZN andvaries from0.023 to0.050 fromthemostperipheral (30–35%)selection to themostcentral (0–5%) selection.The observed widthof 0.13 ofthedistributionof

α

ZN reportedinFig.1isconsiderablylarger than the resolution of

α

ZN (0.027 for the centralityinterval cor- responding to the data in the figure) and the increase in width maybeattributedtotheevent-by-eventfluctuationsinthenum- ber of neutrons detected in each ZN. To investigatethe effectof

α

ZN on the dN/d

η

distributions, the events are demarcated into three regions of asymmetry by choosing a cut value

α

ZNcut. These regions correspond to (i)

α

ZN<

α

cutZN (Region 1), (ii)

α

ZN

α

ZNcut

(Region 2)and(iii)−

α

cutZN

α

ZN<

α

ZNcut (Region3). Regions1and 2 are referred to as the asymmetric regions and Region3 is re- ferredtoasthesymmetricregion.

Theeffectofthemeasuredasymmetry

α

ZNonthepseudorapid- itydistributionsisinvestigatedbystudyingtheratioofdN/d

η

dis- tributionineventsfromtheasymmetricregion tothosefromthe symmetricregion.There aresmalldifferencesinthedistributions ofcentrality andvertexposition inevents ofdifferentregions of asymmetry.Itisnecessarytoensurethatanycorrelationbetween theratioofdN/d

η

andtheasymmetryisnotduetoasystematic effectofashiftintheinteractionvertex.Toeliminateanypossible systematicbiasonthemeasureddistributions,thedN/d

η

distribu- tionsare correctedbyweightfactorsobtainedbynormalisingthe numberofeventsinasymmetricandsymmetricregionsineach1%

centralityintervalandeach1cmrangeofvertexpositions.

For the 15–20% centrality interval, the distributions of these factorsinthetwocasescorrespondingtotheasymmetryregions 1 and 2 havea mean of 1.0and an rms of 0.05 and0.06 respec- tively.Theweightfactorsdonotshowanysystematicdependence onthepositionofthevertex.Thisisexpectedconsideringthelarge distancebetweentheZNsascomparedtovariationsinthevertex position.Thefactorsshowasystematicdependenceon1%central- itybinswithineach centralityinterval.The1% centralitybinwith thegreaternumberofparticipantstendstohavemoreasymmetric events,presumablytocompensateforthedecreaseintheeffective CMenergyduetothemotionoftheparticipantzone;theweight

factoris1.08forthemostcentral15–16%centralitybinandis0.94 forthe19–20%centralitybin.

The ratio of dN/d

η

for events corresponding to different re- gions of asymmetry,asshowninFig. 1,is determined.For |

η

|<

1.0, the ratio is obtained using dN/d

η

for tracks. For |

η

|>1.0, the ratioshowninFig.2(a) and(b)isobtainedfromamplitudes measured inV0Aandthe oneshownin Fig.2(c)and(d)isfrom amplitudesmeasuredinV0C.ThesquaresinFig.2(a)and(c)rep- resent the ratio ofdN/d

η

inthe asymmetry Region1 to that in Region3(R13),andthestarsrepresentthecorresponding ratioin Region2toRegion3(R23).Thefilledcircles inFig.2(b)and(d) are obtained by (i) reflecting thedata points labelled R23 across

η

=0 and (ii) taking the averages of R13 and reflected-R23 for

|

η

|<1.0.Athirdorderpolynomial isfittedto thepointsandthe values of the coefficients cn along with the

χ

2 are shown. The polynomialfittotheratioofdN/d

η

distributionhasadominantly linearterm.Asmallresidualdetectoreffectisobservedwhende- termining c1 using data measured in V0A andwhen using data measured in V0C. In all subsequent discussion, the values of c1 quoted are the mean ofvalues obtainedfrom themeasurements inV0AandV0C.

Considering thatthe eventsamplescorresponding to different regions ofasymmetry areidenticalinall aspectsother thantheir valuesofmeasured

α

ZN,theobservationofnon-zerovaluesofc1 can be attributedto the asymmetry.For a fixed centralityinter- val, c1 depends on the choice of

α

ZNcut. The analysis is repeated for differentvalues of

α

ZNcut andthe dependenceof c1 on

α

ZNcut is shown in Fig. 3, for different centralities. For each centrality in- terval thecoefficient c1 has alineardependenceon

α

ZNcut andthe slope increaseswithdecreasingcentrality;c1 increasesforevents corresponding to larger values of average event asymmetry. The rangeofvaluesof

α

ZNcutwasguidedbytheresolutionandthewidth of the distribution of

α

ZN, as mentioned in reference to Fig. 1.

Increasing thevalue of

α

ZNcut increasesthe mean

α

ZN forevents from theasymmetric class (Region 1or Region2), andincreases theRMSof

α

ZNforeventsfromthesymmetricclass(Region3).

3.2. Systematicuncertainties

The current method of analysisuses the ratio of two dN/d

η

distributions from events divided on the basis of measurements inZNs,within acentralityinterval.Alleffects duetolimitedeffi- ciency,acceptanceorcontamination wouldcancelwhileobtaining the value oftheratio.The contributionsto thesystematicuncer- taintiesonc1 areestimatedduetothefollowingsources:

1. Centralityselection: the ratioofdN/d

η

is obtainedfromthe measurements of tracks in the ITS+TPC at midrapidity and charge particlesignalamplitudesintheV0atforwardrapidi- ties. For theformer, theeventcentrality isdetermined using themeasurementsintheV0andforthelatterusingthetrack multiplicityintheTPC.Theanalysisisrepeatedbyinterchang- ingthecentralitycriteriaandtheresultantchangeintheval- uesofc1 fordifferentcentralityintervalsisintherange0.1%

to3.6%.

2. V0AandV0C:thesystematicuncertaintyonthemeanvalueof c1 isestimatedbyassumingauniformprobabilitydistribution forthecorrectvalue ofc1 to lie betweenthe twovaluesob- tainedusingthecharged-particle signalamplitudesmeasured intheV0AandtheV0C.The uncertaintyisintherange2.1%

to4.6%anddoesnotdependonthecentralityvalue.

3. Vertexposition:theanalysisis repeatedforthe zpositionof theinteraction vertex|Vz|≤3.0 cm.Forthemostcentralin- terval, the results change by lessthan 0.1%. For the 15–20%

(4)

Fig. 2.TheratioofdN/dηdistributionforeventsfromthedifferentregionsofαZN distributionofFig.1.ThedN/dηdistributionsareobtainedasdescribedinSect.2.

(a) Thesquare(star)symbolscorrespondingtoR13(R23)areobtainedbytakingtheratioofdN/dηofeventsfromRegion1(Region2)toRegion3.(b)Thedatapointsare obtainedafterreflectionacrossη=0 asdescribedinthetext.Thedatafor|η|>1.0 inpanels(a)and(b)arefrommeasurementsinV0Aandinpanels(c)and(d)arefrom measurementsinV0C.

Fig. 3.Thecoefficientc1characterisingthechangeindN/dηdistributionforasym- metricregionsisshownfordifferentvaluesofαcutZN (αZNcutdemarcatestheasymmet- ricandsymmetricevents)foreachcentralityinterval.

centralityinterval,theresultschangeby3.3%andforallother centralityintervals,thechangesarelessthan1.3%.

4. Weightfactorsfornormalisation:theanalysisisalsorepeated withouttheweightfactorsmentionedinSect.3.1forthecen- tralityandthevertexnormalisationinthenumberofevents.

Thechangeintheresultsis4.9%inthemostcentralclassand lessthan1%forallothercentralityintervals.

Thetotalsystematicuncertaintyisobtainedbyaddingthefour uncertainties in quadrature. The resultant uncertainty is in the range2.3%to5.8%andisshownbythebandinFig.8.

4. Simulations

Thesimulationusedforobtaining arelationbetweenrapidity- shift y0 andthe measurableasymmetry

α

ZN is described in this section.Thissimulationhasthreecomponents:(i)aGlauberMonte Carlo to generate number of participants and spectator protons andneutrons, (ii) a function parametrised to fit the average loss ofspectator neutrons dueto spectatorfragmentation(the loss of spectatorneutrons ineacheventissmeared aroundthisaverage) and (iii)the response of the ZNto single neutrons. The simula- tion encompassing the above is referred to in the presentwork asTunedGlauberMonteCarlo(TGMC),andreproducestheenergy distributions in the ZNs. The effect of y0 on the pseudorapidity distributionshasbeenestimatedusingadditionalsimulationsfora GaussiandN/dyandarealsodescribedinthissection.

4.1. Asymmetryandrapidity-shift

TheGlauberMonteCarlomodel [21] usedinthepresentwork assumesa nucleon–nucleoninteractioncrosssection of64mb at

sNN = 2.76TeV. The model yields the numberof participating nucleonsintheoverlapzonefromeachofthecollidingnuclei.The rangeofimpactparametersforeach5%centralityintervalistaken fromourPb–Pbcentralitypaper [20].Foreach centralityinterval, 0.4millioneventsaregenerated.

Foreachgenerated event,thenumberofparticipatingprotons andneutronsisobtained,enablingadeterminationoftherapidity- shift y0 andthevarious longitudinalasymmetries.IfAandBare thenumberofspectators(spectatorneutrons)inthetwocolliding nuclei,theasymmetryisreferredtoas

α

spec(

α

specneut).Fig.4(a) showsthe correspondencebetween y0 and

α

part.Figs. 4 (b)and (c) show the relation between y0 and

α

spec and

α

specneut re- spectively [2].Thesefiguresshowthattherapidity-shifty0 canbe estimatedbymeasuring

α

specor

α

specneutinanyexperimentthat uses Zero DegreeCalorimeters. However, the lack of information

(5)

Fig. 4.Rapidity-shifty0asafunctionofasymmetryin(a)numberofparticipants, (b)numberofspectators, (c)numberofspectatorneutronsand(d)energyinZNobtained usingTGMCasdescribedinthetext.Theresultsinallfourpanelsareshownforthe15–20%centralityinterval.

Fig. 5.(a)DistributionofenergyinZNCineach5%centralityintervalforeventssimulatedusingTGMCandfortheexperimentaldata.Thepeakofthedistributionshiftsto smallervaluesofEZNCwithincreasingcentrality.(b) DistributionoftheasymmetryparameterαZNinthesimulatedeventsandinexperimentaldatafordifferentcentralities.

Thewidthofthedistributionincreaseswithincreasingcentrality.Forclarity,only5distributionsareshown.Thedistributionscorrespondingto20–25% and25–30%lie betweenthoseof15–20%and30–35%.

onthenumberofparticipantsworsenstheprecisionindetermin- ing y0.Fig.4(d)showstherelationbetweeny0and

α

ZNobtained inTGMC,asdescribedinthenextparagraph.

The Glauber MonteCarloistuned to describe theexperimen- tal distributions of ZN energy. For each 1% centrality interval, the mean number of spectator neutrons (Ns) is obtained in the GlauberMonteCarlo.FoldingtheZNresponseyieldsthesimulated valuesofmeanenergyasafunctionofcentrality.Theexperimen- tallymeasuredmeanenergyintheZNisalsodeterminedforeach 1%centralityinterval.Theratioofthemeasuredvalueofmeanen- ergy to the simulated value of mean energy gives the fractional loss(f)ofneutronsduetospectatorfragmentsthatveerawaydue tothemagneticfield. Thevalueoff forthe0–5%centralityinter- valis0.19. Forallother centralities itvariesfrom0.40 for5–10%

to0.55for30–35%centralityinterval.Afluctuationproportionalto thenumberofremaining neutrons(Ns×(1−f))is incorporated toreproducetheexperimentaldistributionoftheenergydeposited intheZNshowninFig.5(a).ThepeakandtheRMSoftheenergy distributions matchwell.The fractional difference intheposition of the peak varies between3.7% for the 0–5% centrality interval and0.1% for the30–35% centrality interval. The fractional differ- enceinRMSforthemostcentralclassis8.6%andisintherange 1.0–2.0%forall other centralityintervals. Thedistributions ofthe asymmetryparameterfortheTGMCeventsandthemeasureddata foreachcentralityintervalareshowninFig.5(b).TheTGMCcon-

tains information of y0 and

α

ZN for each event. A scatter plot between y0 and

α

ZNisshowninFig.4(d)forthe15–20%central- ityinterval.Thisconstitutestheresponsematrix.Foranymeasured value of

α

ZN,the distribution of y0 can be obtained. Any differ- ence in the experimental and TGMC distributions of

α

ZN can be accountedforby scalingthe y0 distributionbythe ratioofnum- berofeventsindatatothenumberinTGMCas

f

(

y0

, α

ZNData

) =

f

(

y0

, α

ZNTGMC

)

N

Dataevents

NTGMCevents

,

(3)

withData(TGMC)inthesuperscriptofnumberofevents,Nevents, denoting the experimental data (TGMC events). For each of the three regions of asymmetry shown in Fig. 1, corresponding to a chosenvalueof

α

cutZN=0.1,thedistributionofrapidity-shift y0ob- tained using the response matrix is shown in Fig. 6. It isworth mentioningthatthewidthofthedistributionofy0foreventsfrom Region 3,corresponding to −

α

cutZN

α

ZN<

α

cutZN, is comparableto thewidthsofthecorresponding distributionsfromRegions1and 2.Theeffectofdifferenceinthevalueofthemeansofthey0 dis- tributionsisinvestigatedinthepresentwork.

4.2. Effectofrapidity-shiftonpseudorapiditydistributions

The effect ofa shift inthe rapidity distribution by y0 on the measurablepseudorapiditydistribution(dN/d

η

)isinvestigatedus- ingsimulations.Foreachevent,therapidityofchargedparticlesis

(6)

Fig. 6.Thedistributionofrapidity-shifts forthe eventsfromthe threedifferent regionsofmeasuredasymmetryshowninFig.1.Determinationofy0usesthedif- ferenceinnumberofnucleons.Forsmallvaluesofthisdifference,thechangesin valuesneary0=0 arediscrete,andaresmearedintoacontinuousdistributionas y0increases.

generatedfromaGaussiandistributionofachosenwidth

σ

y [22].

ThepseudorapidityisobtainedbyusingtheBlast-Wavemodelfit to the data for the transverse momentum distributions and the experimentally measured relativeyields ofpions, kaonsand pro- tons [23].Tosimulatetheeffectofdifferentwidthsoftheparent rapidity distribution fordifferent centralities, different

σ

y widths arechosentoreproducethemeasured FWHM(FullWidthatHalf Maximum) of the pseudorapidity distribution [24]. Forthe most central(0–5%)class,a value3.86isusedforthewidthofthera- pidity distribution,anda value 4.00 isused forthe widthofthe leastcentralclassemployedinthisanalysis(30–35%).

Thedistributionof rapidity-shift y0,similar tothe oneshown in Fig. 6, is obtained for each centrality interval and each

α

cutZN

usingTGMC.Fig.7(a)showsthey0asafunctionof

α

cutZN fordif- ferentcentralities.Oneobservesalinearrelationbetweenthetwo quantities, showing that an asymmetry in the ZN measurement, arisingfromtheunequal numberofparticipatingnucleons, isre- latedtothe meanrapidity-shift y0.The rapidity distributionof theparticlesproducedineacheventisgeneratedassumingaGaus- sianformcentred abouta y0,which isgeneratedrandomly from the y0 distribution.Events witharapidity distributionshifted by

y0=0 yieldanasymmetricpseudorapiditydistribution.Athirdor- derpolynomialfunctionin

η

isfittedtotheratioofthesimulated dN/d

η

fortheasymmetricregiontothesimulateddN/d

η

forthe symmetricregion. Thevaluesofthe coefficientsintheexpansion dependupontherapidity-shift y0andtheparameterscharacteris- ingthedistribution [2].

The simulations described above were repeated for different valuesof

α

ZNcut to obtainthepseudorapiditydistributions forsym- metric and asymmetric regions. Fitting third order polynomial functions to the ratios of the simulated pseudorapidity distribu- tions determines the dependenceof c1 on

α

ZNcut.Fig. 7 (b)shows that c1 hasalineardependenceon

α

cutZN foreachcentralityinter- val. The difference in the slopes for different centralities is due to differencesinthedistributions of y0 andtodifferencesin the widthsoftherapiditydistributions.

Itisimportanttonotethattheparameterc1,characterisingthe asymmetry inthe pseudorapidity distribution,showsa linearde- pendence on the parameter

α

ZNcut in the event sample generated usingTGMCandsimulationsforaGaussiandN/dy,akintothede- pendenceoftheestimatedvalueofrapidity-shift y0 forthesame sampleofevents.

5. Results

The longitudinalasymmetry ina heavy-ioncollision has been estimatedfromthedifference intheenergyofthespectatorneu- tronson both sidesofthe collisionvertex. The effectof thelon- gitudinal asymmetry is observed in the ratioof dN/d

η

distribu- tions corresponding to differentasymmetries. The linear term in a polynomial fitto thedistribution ofthe ratiois dominant, and ischaracterisedbyitscoefficientc1.Thecentralitydependenceof the coefficient c1 for

α

ZNcut=0.1 is shown in Fig. 8. It is worth emphasising thatthevaluesofc1 andhenceits centralitydepen- dence are affected by (i) the distribution of rapidity-shift y0 for each centralityinterval, (ii) the chosen value of

α

ZNcut, as seen in Fig.7and(iii) the shapeorthewidthofthe parentrapidity dis- tributionforeachcentrality.Fig.8alsoshowstheresultsobtained usingsimulationsasdescribed inSec. 4.2for

α

cutZN=0.1.The sys- tematicuncertaintyonthesimulatedeventsampleisestimatedby (i) varying the resolution ofZNs from 20% to 30%, (ii) assuming all charged particles are pions and(iii) varying thewidth of the parentrapiditydistributionwithintherangecorresponding tothe uncertainties onFWHMquoted inRef. [24]. Thesimulatedevents showagoodagreementwiththeexperimentaldataprovidingcre-

Fig. 7.(a)Theestimatedmeanvalueofrapidity-shifty0fortheasymmetricregioncharacterisedbydifferentvaluesofαZNcutforeachcentralityinterval.(b)Thecoefficient c1characterisingthechangeinthepseudorapiditydistributionsfordifferentvaluesofαZNcut,foreachcentralityinterval.TheseresultsareobtainedusingTGMCandsimulated pseudorapiditydistributions,asdescribedinthetext.

(7)

Fig. 8.Themeanvaluesofthecoefficientc1areshownasfilledcirclesfordifferentcentralities.ThesecorrespondtotheratioofdN/dηdistributionsofpopulationsofevents demarcatedbyαZNcut=0.1.Thesquaresshowthecorrespondingvaluesfromsimulations,andcorrespondtoαcutZN=0.1 inFig.7,fordifferentcentralities.Thesystematic uncertaintiesareshownasbands.

Fig. 9.ForeachsetofeventscharacterisedbyαcutZN,themeasuredvaluesofcoef- ficientc1asafunctionofestimatedvaluesofmeanrapidity-shiftobtainedusing TGMCasdescribedinthetext.Theresultsareshownfordifferentcentralities.The uncertaintiesfory0shownarestatisticalandwithinitssymbolsize.Thelinesare linearfitspassingthroughtheorigin.

dencetotheassumptions ofthesimulation,inparticularthatthe asymmetryinthedistributionsarisesfromtheshiftofrapidity of theparticipantzone.

There are two quantities fromindependent measurements for eachselection ofasymmetricevents.Theseare (i) c1,theparam- eter characterising the effect of asymmetry in the dN/d

η

distri- butions andshowninFig.3and(ii) themeanrapidity-shift y0 obtainedfromthemeasured asymmetry,filteredthrough thecor- responding responsematrix (Fig. 4 (d)), andshown inFig. 7 (a).

Therelationbetweenc1 andy0isshowninFig.9.Theparame- terc1 showsalineardependenceony0foreachcentrality.The differenceintheslopesindicatesthesensitivityofthelongitudinal asymmetry tothedetails oftherapidity distribution.ForaGaus- sianrapiditydistributionthecorrespondingparameterc1wouldbe relatedtotherapidity-shiftasc1=σy0

y2

[2],implyingthattheslope isinverselyproportionaltothesquareofthewidthofthedistribu- tion.Theobservationofan increaseintheslopewithanincrease in the centrality in the present data indicates a decrease in the widthofthepseudorapiditydistributionwithincreasingcentrality.

Such a decrease in the width of the pseudorapidity distribution withincreasingcentralityhasbeenobservedindependentlybyfit-

tingthe pseudorapiditydistributions ina broadrangeofpseudo- rapidity [24].

6. Conclusions

The present analysis demonstratesthe existence ofa longitu- dinalasymmetry inthe collisionofidenticalnucleiduetofluctu- ationsin thenumberofparticipants fromeachcollidingnucleus.

This asymmetry has beenmeasured in the ZNs inthe ALICEex- periment (Fig. 1), andaffects thepseudorapidity distributions, as demonstratedbytakingtheratioofdistributionofeventsfromthe asymmetric region tothe corresponding onefromthe symmetric region(Fig.2).Theeffectcanbecharacterisedbythecoefficientof thelinearterminthepolynomialexpansionoftheratio.Thecoef- ficientsshowalineardependenceon

α

cutZN,aparametertoclassify the events into symmetric and asymmetric regions (Fig. 3). Dif- ferent values of

α

ZNcut correspond to different valuesof the mean rapidityshifty0(Fig.7(a)).Theparameterdescribingthechange inthepseudorapiditydistributions(c1)hasasimpleexplanationin the rapidity-shifty0of theparticipantzone (Fig.9). The analy- sisconfirms thatthelongitudinaldistributions areaffectedbythe rapidity-shiftoftheparticipantzonewithrespecttothenucleon–

nucleonCMframe.Theresultsprovidesupporttotherelevanceof numberofnucleons affectingtheproductionofchargedparticles, evenatsuchhighenergies.

The longitudinal asymmetry is a good variable to classify the eventsandprovidesinformationontheinitialstateofeach event.

Asystematicstudyoftheeffectsoflongitudinalasymmetryondif- ferentobservables, e.g.theoddharmonicsofanisotropicflow, the forward-backwardcorrelations, thesourcesizes, inheavy-ioncol- lisions may reveal other characteristics ofthe initial state andof particleproductionphenomena.

Acknowledgements

The ALICECollaboration would like to thank all its engineers andtechniciansfortheirinvaluablecontributionstotheconstruc- tion of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collab- oration gratefully acknowledges the resources and support pro- videdbyallGridcentresandtheWorldwideLHCComputingGrid (WLCG) collaboration. The ALICE Collaboration acknowledges the following fundingagenciesfortheir supportin buildingandrun- ningthe ALICEdetector:A.I. AlikhanyanNationalScience Labora- tory(YerevanPhysicsInstitute)Foundation (ANSL),State Commit- teeofScienceandWorldFederationofScientists(WFS),Armenia;

(8)

AustrianAcademy ofSciences andNationalstiftung fürForschung, Technologie und Entwicklung, Austria; Ministry of Communica- tions and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fun- dação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), Na- tional Natural Science Foundation of China (NSFC) and Ministry of Education of China (MOEC), China; Ministry of Science, Edu- cation andSport and Croatian Science Foundation, Croatia; Min- istryofEducation,YouthandSportsoftheCzechRepublic, Czech Republic; The Danish Council for Independent Research | Natu- ral Sciences, the Carlsberg Foundation and Danish National Re- search Foundation (DNRF), Denmark;Helsinki Institute ofPhysics (HIP),Finland;Commissariatàl’EnergieAtomique(CEA)andInsti- tut Nationalde Physique Nucléaire etde Physique des Particules (IN2P3)andCentre National de laRecherche Scientifique (CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum für Schw- erionenforschung GmbH, Germany; General Secretariat for Re- search andTechnology,Ministry ofEducation, Researchand Reli- gions,Greece;NationalResearch,DevelopmentandInnovationOf- fice,Hungary;DepartmentofAtomicEnergy,GovernmentofIndia (DAE),DepartmentofScienceandTechnology,GovernmentofIndia (DST),University Grants Commission, Governmentof India(UGC) andCouncil ofScientificandIndustrialResearch(CSIR), India;In- donesian Institute of Science, Indonesia; Centro Fermi – Museo StoricodellaFisicaeCentroStudieRicercheEnricoFermiandIsti- tutoNazionalediFisicaNucleare(INFN),Italy;InstituteforInnova- tiveScienceandTechnology,NagasakiInstituteofAppliedScience (IIST),Japan Societyforthe PromotionofScience(JSPS)KAKENHI andJapanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia (CONA- CYT)yTecnología,throughFondodeCooperaciónInternacionalen CienciayTecnología (FONCICYT)andDirección Generalde Asun- tosdelPersonalAcademico(DGAPA),Mexico;NederlandseOrgan- isatievoorWetenschappelijk Onderzoek(NWO),Netherlands; The ResearchCouncil ofNorway, Norway;CommissiononScienceand TechnologyforSustainableDevelopmentintheSouth(COMSATS), Pakistan;PontificiaUniversidadCatólicadelPerú,Peru;Ministryof ScienceandHigherEducationandNationalScienceCentre,Poland;

KoreaInstituteofScienceandTechnologyInformationandNational ResearchFoundationofKorea(NRF),RepublicofKorea;Ministryof EducationandScientificResearch,Institute ofAtomicPhysicsand Romanian National Agency for Science, Technology and Innova- tion,Romania;JointInstituteforNuclear Research(JINR),Ministry ofEducation andScience of the Russian FederationandNational Research Centre Kurchatov Institute, Russia; Ministry of Educa- tion,Science,ResearchandSportoftheSlovakRepublic, Slovakia;

NationalResearch Foundation of SouthAfrica, South Africa; Cen- tro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía,Cuba,Ministeriode CienciaeInnovacion andCentro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT),Spain; Swedish Research Council (VR) and Knut& Al- iceWallenbergFoundation(KAW),Sweden;EuropeanOrganization forNuclear Research, Switzerland; NationalScience andTechnol- ogyDevelopment Agency (NSDTA), Suranaree University ofTech- nology(SUT)andOfficeoftheHigherEducationCommissionunder NRUprojectofThailand,Thailand;TurkishAtomic EnergyAgency (TAEK),Turkey;NationalAcademyofSciencesofUkraine,Ukraine;

ScienceandTechnologyFacilitiesCouncil(STFC),UnitedKingdom;

NationalScienceFoundationoftheUnitedStatesofAmerica(NSF)

andUnitedStatesDepartmentofEnergy,OfficeofNuclearPhysics (DOENP),UnitedStatesofAmerica.

References

[1]V.Vovchenko,D.Anchishkin,L.P.Csernai,Longitudinalfluctuationsofthecen- ter ofmass ofthe participantsinheavy-ioncollisions, Phys. Rev.C 88 (1) (2013)014901,arXiv:1306.5208 [nucl-th].

[2]R. Raniwala, S. Raniwala, C. Loizides, Effects oflongitudinal asymmetry in heavy-ion collisions, Phys. Rev. C 97 (2) (2018) 024912, arXiv:1608.01428 [nucl-ex].

[3]STARCollaboration,L.Adamczyk,etal.,Globalhyperonpolarizationinnu- clearcollisions:evidenceforthemostvorticalfluid,Nature548(2017)62–65, arXiv:1701.06657 [nucl-ex].

[4]F.Becattini,L.Csernai,D.J.Wang,polarizationinperipheralheavyioncol- lisions,Phys.Rev.C88 (3)(2013)034905,arXiv:1304.4427 [nucl-th];Erratum Phys.Rev.C93 (6)(2016)069901.

[5]Y.Xie,D.Wang,L.P.Csernai,Globalpolarizationinhighenergycollisions, Phys.Rev.C95 (3)(2017)031901,arXiv:1703.03770 [nucl-th].

[6]ALICECollaboration,J.Adam,etal.,Eventshapeengineeringforinclusivespec- traandellipticflowinPb–Pbcollisionsat

sNN=2.76 TeV,Phys.Rev.C93 (3) (2016)034916,arXiv:1507.06194 [nucl-ex].

[7]PHOBOSCollaboration,B.B.Back,etal.,Pseudorapiditydistributionofcharged particlesind+Aucollisionsats(NN)**(1/2)=200-GeV,Phys.Rev.Lett.93 (2004)082301,arXiv:nucl-ex/0311009.

[8]ALICECollaboration,B.Abelev,etal.,Pseudorapiditydensityofchargedparti- clesinp+Pbcollisionsat

sN N=5.02 TeV,Phys.Rev.Lett.110 (3)(2013) 032301,arXiv:1210.3615 [nucl-ex].

[9]ALICECollaboration,J.Adam,etal.,Centralitydependenceofparticleproduc- tioninp-Pbcollisionsats

NN=5.02 TeV,Phys.Rev.C91 (6)(2015)064905, arXiv:1412.6828 [nucl-ex].

[10]ATLASCollaboration,G.Aad,etal.,Measurementofthecentralitydependence ofthecharged-particlepseudorapiditydistributioninproton–leadcollisionsat

sNN=5.02 TeV withtheATLASdetector,Eur.Phys.J.C76 (4)(2016)199, arXiv:1508.00848 [hep-ex].

[11]P.Steinberg,Inclusivepseudorapiditydistributionsinp(d)+Acollisionsmod- eled with shifted rapiditydistributions, Phys. Lett.B (2007), submittedfor publication,arXiv:nucl-ex/0703002.

[12]A.Bzdak,D.Teaney,Longitudinalfluctuationsofthefireballdensityinheavy- ioncollisions,Phys.Rev.C87 (2)(2013)024906,arXiv:1210.1965 [nucl-th].

[13]J. Jia,S.Radhakrishnan, M.Zhou,Forward–backwardmultiplicity fluctuation and longitudinal harmonics inhigh-energy nuclear collisions, Phys. Rev. C 93 (4)(2016)044905,arXiv:1506.03496 [nucl-th].

[14]ATLAS Collaboration, M.Aaboud, et al., Measurement offorward–backward multiplicity correlations inlead–lead, proton–lead,and proton–protoncolli- sions with the ATLAS detector, Phys. Rev. C 95 (6) (2017) 064914, arXiv:

1606.08170 [hep-ex].

[15]ALICECollaboration,K.Aamodt,etal.,EllipticflowofchargedparticlesinPb–

Pbcollisionsat2.76TeV,Phys.Rev.Lett.105(2010)252302,arXiv:1011.3914 [nucl-ex].

[16]ALICECollaboration,K.Aamodt,etal.,Centralitydependenceofthecharged- particle multiplicity density at mid-rapidityin Pb–Pb collisionsats

NN= 2.76 TeV,Phys.Rev.Lett.106(2011)032301,arXiv:1012.1657 [nucl-ex].

[17]ALICECollaboration,K.Aamodt,etal.,TheALICEexperimentattheCERNLHC, J.Instrum.3(2008)S08002.

[18]ALICECollaboration,B.B.Abelev,etal.,PerformanceoftheALICEexperimentat theCERNLHC,Int.J.Mod.Phys.A29(2014)1430044,arXiv:1402.4476 [nucl- ex].

[19]ALICECollaboration,B.Abelev,etal.,Measurementofthecrosssectionforelec- tromagneticdissociationwithneutronemissioninPb–Pbcollisionsat

sNN= 2.76 TeV,Phys.Rev.Lett.109(2012)252302,arXiv:1203.2436 [nucl-ex].

[20]ALICECollaboration, B.Abelev,etal.,Centrality determinationofPb–Pbcol- lisions ats

NN=2.76 TeV with ALICE, Phys.Rev.C88 (4)(2013)044909, arXiv:1301.4361 [nucl-ex].

[21]B.Alver,M.Baker,C.Loizides,P.Steinberg,ThePHOBOSGlauberMonteCarlo, arXiv:0805.4411 [nucl-ex].

[22]ALICECollaboration,E.Abbas,etal.,Centralitydependenceofthepseudora- piditydensitydistributionforchargedparticlesinPb–Pbcollisionsat

sNN= 2.76 TeV,Phys.Lett.B726(2013)610–622,arXiv:1304.0347 [nucl-ex].

[23]ALICECollaboration,B.Abelev,etal.,Centralitydependenceofπ,K,pproduc- tioninPb–Pbcollisionsats

NN=2.76 TeV,Phys.Rev.C88(2013)044910, arXiv:1303.0737 [hep-ex].

[24]ALICECollaboration,J.Adam,etal.,Centralityevolutionofthecharged-particle pseudorapiditydensityoverabroadpseudorapidityrangeinPb–Pbcollisions at

sNN=2.76 TeV,Phys.Lett.B754(2016)373–385,arXiv:1509.07299 [nucl- ex].

Referanser

RELATERTE DOKUMENTER

1 shows the ratio of the charged-particle pseudorapidity density in p–Pb and Pb–Pb collisions to the charged- particle pseudorapidity density in pp collisions, all at the

France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Ger- many; General Secretariat for Research and

Ministry of Education and Scientific Research, Institute of Atomic Physics and Romanian National Agency for Science, Technology and Innovation, Romania; Joint Institute

Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communica- tions and High Technologies, National

Danish Natural Science Research Council, the Carlsberg Founda- tion and the Danish National Research Foundation; The European Research Council under the European

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Fi- nanciadora de Estudos e Projetos (Finep) and

ogy, Ministry of Education, Research and Religions, Greece; National Research, Develop- ment and Innovation Office, Hungary; Department of Atomic Energy Government of

In this article, measurements of the nuclear modification factors R AA of primary charged particles and of light neutral mesons in Pb–Pb, in Xe–Xe and in p–Pb collisions in a wide