• No results found

Measuring K0SK± interactions using Pb–Pb collisions at √sNN=2.76 TeV

N/A
N/A
Protected

Academic year: 2022

Share "Measuring K0SK± interactions using Pb–Pb collisions at √sNN=2.76 TeV"

Copied!
14
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

.ALICE Collaboration

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received22May2017

Receivedinrevisedform24August2017 Accepted4September2017

Availableonline8September2017 Editor:L.Rolandi

WepresentthefirstevermeasurementsoffemtoscopiccorrelationsbetweentheK0SandK±particles.The analysis wasperformedonthedatafromPb–Pbcollisionsat√s

NN=2.76 TeVmeasuredbytheALICE experiment.Theobservedfemtoscopiccorrelationsareconsistentwithfinal-stateinteractionsproceeding via the a0(980) resonance. The extracted kaon source radiusand correlation strengthparameters for K0SK are foundto beequal withintheexperimental uncertaintiesto thosefor K0SK+.Comparing the results ofthe present studywith those from published identical-kaonfemtoscopic studies by ALICE, mass and coupling parameters for thea0 resonance are tested. Ourresults are also compatiblewith theinterpretationofthea0havingatetraquarkstructureinsteadofthatofadiquark.

©2017TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Identicalboson femtoscopy, especiallyof identicalcharged pi- ons, has been used extensively over the years to study experi- mentallythespace–timegeometryofthecollisionregioninhigh- energy particle and heavy-ion collisions [1]. Identical-kaon fem- toscopy studies have also been carried out, recent examples of which are the ones with Au–Au collisions at √

sNN=200 GeV by theSTARCollaboration[2](K0SK0S)andwithpp at√

s=7 TeV andPb–Pbcollisions at√

sNN=2.76 TeV by theALICECollabora- tion [3–5] (K0SK0S and K±K±). The pair-wise interactions between the identical kaons that form the basis for femtoscopy are for K±K± quantum statistics and the Coulomb interaction, and for K0SK0S quantumstatisticsandthefinal-stateinteractionthroughthe

f0(980)/a0(980)thresholdresonances.

One can also consider the case of non-identical kaon pairs, e.g.K0SK± pairs.Besides thenon-resonantchannelswhichmaybe present, e.g. non-resonant elastic scattering or free-streaming of thekaonsfromtheirfreeze-outpositionstothedetector,theother only pair-wise interaction allowed for a K0SK± pair atfreeze out fromthecollisionsystemisa final-stateinteraction(FSI)through the a0(980) resonance. The other pair-wise interactions present for identical-kaon pairs are not presentfor K0SK± pairs because:

a) thereisnoquantumstatisticsenhancementsincethekaonsare notidentical,b)thereisnoCoulombeffectsinceoneofthekaons is uncharged,and c) thereis no strong FSIthrough the f0 reso-

E-mailaddress:alice-publications@cern.ch.

nancesincethekaonpairisinan I=1 isospinstate,asisthea0, whereasthe f0isan I=0 state.

Another featureof the K0SK± FSI through thea0 resonanceis, duetothea0 havingstrangenessS=0 andtheK0S beingalinear combinationoftheK0 andK0,

K0S

= √

1 2

K0

+

K0

,

(1)

onlytheK0K+pairfromK0SK+andtheK0KpairfromK0SKhave S=0 and thus can formthe a0 resonance.This allows the pos- sibility tostudy theK0 and K0 sources separately since they are individually selected by studying K0SK and K0SK+ pairs, respec- tively.An additionalconsequence ofthisfeature isthat only50%

of eitherthe K0SK or K0SK+ detectedpairs will passthrough the a0 resonance.Thisistakenintoaccount intheexpressionforthe modelusedtofitthecorrelationfunctions.

On the other hand, the natural requirement that the source sizes extracted from the K0SK± femtoscopy agree with those ob- tained for the K0SK0S and K±K± systems allows one to study the propertiesofthea0 resonanceitself.Thisisinterestinginitsown rightsincemanystudies discussthepossibilitythat thea0,listed by the Particle Data Group as a diquark light unflavored meson state [6],could be a four-quark state,i.e.a tetraquark, ora “K–K molecule”[7–12].Forexample,theproductioncrosssectionofthe a0resonanceinareactionchannelsuchasK0Ka0 shouldde- pend on whetherthe a0 is composed ofdu or dssu quarks, the formerrequiringtheannihilationofthess pairandthelatterbe- ing a direct transfer of the quarks in the kaons to the a0. The http://dx.doi.org/10.1016/j.physletb.2017.09.009

0370-2693/©2017TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

resultsfromK0SKfemtoscopymightbesensitivetothesetwodif- ferentscenarios.

InthisLetter, resultsfromthefirst studyof K0SK± femtoscopy arepresented.ThishasbeendoneforPb–Pbcollisionsat√

sNN= 2.76 TeVmeasured bytheALICEexperimentattheLHC[13].The physics goals ofthe present K0SK± femtoscopy studyare the fol- lowing:1) showtowhatextent theFSIthroughthea0 resonance describesthecorrelationfunctions,2) studytheK0 andK0 sources toseeiftherearedifferencesinthesourceparameters,and3)test publisheda0 massandcouplingparameters bycomparisonswith publishedidenticalkaonresults[5].

2. Descriptionofexperimentanddataselection

The ALICEexperiment andits performance in the LHC Run1 (2009–2013) are described in Ref. [13] and Ref. [14,15], respec- tively.About22×106Pb–Pbcollisioneventswith0–10% centrality class takenin 2011were used in thisanalysis (the average cen- tralityinthis rangeis 4.9%due toa slighttrigger inefficiency in the 8–10% range). Events were classified according to their cen- tralityusing themeasuredamplitudesin theV0detectors,which consist of two arrays of scintillators located along the beamline andcoveringthe fullazimuth[16].Charged particleswererecon- structed and identified with the central barrel detectors located within a solenoid magnet with a field strength of B=0.5 T.

ChargedparticletrackingwasperformedusingtheTimeProjection Chamber(TPC) [17]andtheInnerTrackingSystem(ITS) [13].The ITSallowedforhighspatialresolutionindeterminingtheprimary (collision) vertex. Tracks were reconstructed and their momenta wereobtainedwiththeTPC. Amomentumresolutionoflessthan 10 MeV/c was typically obtainedfor the chargedtracks ofinter- est in this analysis. The primary vertex was obtained from the ITS,thepositionoftheprimaryvertexbeingconstrainedalongthe beamdirection(the“z-position”)tobewithin±10 cmofthecen- teroftheALICEdetector.Inadditiontothestandardtrackquality selections, the track selections based on the quality of track re- constructionfitandthenumberofdetectedtrackingpoints inthe TPCwereusedtoensurethatonlywell-reconstructedtrackswere takenintheanalysis[14,15].

Particle identification (PID) for reconstructed tracks was car- ried out using both the TPCand the Time-of-Flight(TOF) detec- tor in the pseudorapidity range |

η

|<0.8 [14,15]. For each PID method,a valuewas assignedtoeachtrackdenotingthenumber of standard deviations between the measured track information andcalculatedvalues(Nσ)[5,14,15].ForTPCPID,aparametrized Bethe–Blochformulawasusedtocalculatethespecificenergyloss dE/dxinthedetectorexpectedforaparticlewitha givenmass andmomentum.ForPIDwithTOF,theparticlemasswas usedto calculatetheexpectedtime-of-flightasafunction oftracklength and momentum. This procedure was repeated for four “particle species hypotheses”—electron, pion, kaon and proton—, and, for eachhypothesis,adifferent valuewasobtainedperdetector.

2.1.Kaonselection

Themethodsusedto selectandidentifyindividual K0S andK± particlesarethesameasthoseusedfortheALICEPb–PbK0SK0S and K±K±analyses[5].Thesearenowdescribedbelow.

2.1.1. K0Sselection

The K0S particles were reconstructed from the decay K0S

π

+

π

, with the daughter

π

+ and

π

tracks detected in the TPCandTOFdetectors.Pionswith pT>0.15 GeV/cwereaccepted (sinceforlower pT trackfindingefficiencydropsrapidly)andthe distance of closest approach to the primary vertex(DCA) of the

reconstructed K0S was required to be less than 0.3 cm in all di- rections. The required values for the pions were T P C <3 and T O F <3 for p>0.8 GeV/c. An invariant mass distribu- tion for the

π

+

π

pairs was produced andthe K0S was defined tobe resultingfromapairthat fellintotheinvariant massrange 0.480<mπ+π<0.515 GeV/c2.

2.1.2. K±selection

Charged kaon tracks were also detected using the TPC and TOF detectors, and were accepted if they were within the range 0.14<pT<1.5 GeV/c. In orderto reduce the number ofsecon- daries(forinstancethechargedparticlesproducedinthedetector material, particles from weak decays, etc.) the primary charged kaon tracks were selected based onthe DCA, such that the DCA transverse to the beam direction was less than 2.4 cm and the DCA along the beam direction was lessthan 3.2 cm. If the TOF signal werenot available,therequired valuesforthecharged kaonswere T P C<2 for pT<0.5 GeV/c,andthetrackwas re- jectedforpT>0.5 GeV/c.IftheTOFsignalwerealsoavailableand pT>0.5 GeV/c:T P C<3 andT O F<2 (0.5<pT<0.8 GeV/c), T O F <1.5 (0.8<pT<1.0 GeV/c), T O F <1 (1.0< pT<

1.5 GeV/c).

K0SK± experimental pair purity was estimated from a Monte Carlo(MC)studybasedonHIJING[18] simulationsusingGEANT3 [19] tomodelparticletransport throughthe ALICEdetectors.The puritywas determinedfromthefractionofthereconstructedMC simulated pairs that were identified as actual K0SK± pairs input fromHIJING.Thepairpuritywasestimatedtobe88%forallkine- maticregionsstudiedinthisanalysis.

3. Analysismethods

3.1. Experimentalcorrelationfunctions

ThisanalysisstudiesthemomentumcorrelationsofK0SK±pairs usingthetwo-particlecorrelationfunction,definedas

C

(

k

) =

A

(

k

)/

B

(

k

)

(2)

where A(k)isthemeasured distributionofpairs fromthe same event, B(k) is the reference distribution of pairs from mixed events,andk isthemagnitudeofthemomentumofeach ofthe particlesinthepairrestframe(PRF),

k

=

(

s

m2K0

m2K±

)

2

4m2K0m2K±

4s (3)

where,

s

=

m2K0

+

m2K±

+

2EK0EK±

2

pK0

·

pK± (4) andmK0 (EK0)andmK± (EK±)aretherestmasses(total energies) oftheK0SandK±,respectively.

Thedenominator B(k)was formedbymixingK0S andK±par- ticles from each eventwith particles from tenother events.The vertexesofthemixedeventswereconstrainedtobe within2cm of each other in the z-direction. A centrality constraint on the mixedeventswas foundnot tobe necessaryforthenarrowcen- tralityrange,i.e.0–10%,usedinthisanalysis.Correlationfunctions wereobtainedseparatelyfortwodifferentmagneticfieldorienta- tionsintheexperimentandtheneitheraveragedorfitseparately, dependingonthefittingmethodused(seebelow).

Correlationfunctionsweremeasuredforthreeoverlapping/non- exclusive pair transverse momentum (kT= |pT,1+pT,2|/2) bins:

all kT, kT<0.675 andkT>0.675 GeV/c.The meankT valuesfor thesethree binswere 0.675,0.425 and0.970 GeV/c,respectively.

(3)

Fig. 1.Examples of raw K0SK+correlation functions for the threekT bins with linear fits to the baseline at largek. Statistical uncertainties are shown.

Fig. 1showssamplerawK0SK+correlationfunctionsforthesethree bins for one of the magnetic field orientations. One can see the mainfeatureofthefemtoscopiccorrelationfunction: thesuppres- sionduetothe strongfinal-stateinteractions forsmallk.Inthe higherkregion,theeffectsofthea0 appeartonotbepresentand thuscouldbeusedasareference,i.e.“baseline”, forthea0-based model fitted to C(k) in order to extract the source parameters.

Alsoshowninthefigurearelinearfitstothebaselineforlargek. The effectson C(k)by the a0 resonanceare mostly seen inthe k<0.2 GeV/c region, wherethe widthof thea0 region reflects thesizeofthekaonsource(seeequationsbelow).

Correlationfunctionswerecorrectedformomentumresolution effects using HIJING calculations. HIJING was used to create two correlation functions: one interms of thegenerator-level k and one in terms of the simulated detector-level k. Because HIJING doesnot incorporate final-stateinteractions, weights were calcu- lated using a 9th-order polynomial fit in k to an experimental correlation function and were used when filling the same-event distributions. These weights were calculated using k. Then, the ratioofthe“ideal”correlationfunctiontothe“measured”one(for eachk bin) was multipliedto thedatacorrelation functionsbe- forethe fit procedure.This correction mostly affected thelowest k bins,increasingtheextractedsourceparametersbyseveralper- cent.

3.2. Final-stateinteractionmodel

The K0SK± correlation functions were fit with functions that include a parameterization which incorporates strong FSI. It was assumed that the FSI arises in the K0SK± channels due to the near-thresholdresonance, a0(980). This parameterization was in- troducedbyR.LednickyandisbasedonthemodelbyR.Lednicky andV.L.Lyuboshitz [20,21](see alsoRef. [2]for moredetails on thisparameterization).

Using an equal emission time approximation in the PRF [20], the elastic K0SK± transition is written as a stationary solution k(r)ofthescatteringprobleminthePRF.Thequantityrrep- resentstheemissionseparationofthepairinthePRF,andthe−k subscriptreferstoareversaloftimefromtheemissionprocess.At largedistancesthishastheasymptoticformofa superpositionof aplanewaveandanoutgoingsphericalwave,

k

(

r

) =

eik·r

+

f

(

k

)

e

ikr

r

,

(5)

where f(k) is the s-wave K0K or K0K+ scattering amplitude whose contribution is the s-wave isovector a0 resonance (see Eq. (11) inRef.[2]),

Table 1

Thea0massesandcouplingparameters,allinGeV(takenfromRef.[2]).

Reference ma0 γa0KK¯ γa0π η

Martin[7] 0.974 0.333 0.222

Antonelli[8] 0.985 0.4038 0.3711

Achasov1[9] 0.992 0.5555 0.4401

Achasov2[9] 1.003 0.8365 0.4580

f

(

k

) = γ

a

0KK m2a0

s

i

( γ

a

0KKk

+ γ

a0π ηkπ η

) .

(6)

In Eq.(6),ma0 isthe massof thea0 resonance, and

γ

a

0KK and

γ

a0π η are the couplings of the a0 resonance to the K0K (or K0K+) and

π η

channels, respectively. Also, s=4(m2K0+k2) and kπ η denotes the momentum in the second decay channel (

π η

) (seeTable 1).

The correlation function due to the FSI is then calculated by integratingk(r)intheKoonin–Prattequation[22,23]

C

(

k

) =

d3

rS

(

r

)

k

(

r

)

2

,

(7)

where S(r)isaone-dimensionalGaussiansourcefunctionofthe PRFrelativedistancerwithaGaussianwidthR oftheform

S

(

r

)

er2/(4R2)

.

(8) Equation (7) can be integrated analytically for K0SK± correlations withFSIfortheone-dimensionalcase,withtheresult

C

(

k

) =

1

+ λ α

1

2

f

(

k

)

R

2

+

2Rf

(

k

)

π

R F1

(

2kR

)

If

(

k

)

R F2

(

2kR

) ,

(9)

where F1

(

z

)

π

ez2erfi

(

z

)

2z

;

F2

(

z

)

1

ez2

z

.

(10)

Inthe aboveequations

α

isthefractionofK0SK± pairs thatcome from the K0K or K0K+ system, set to 0.5 assuming symmetry in K0 and K0 production[2], R isthe radiusparameter fromthe sphericalGaussiansourcedistributiongiveninEq.(8),andλisthe correlation strength.Thecorrelation strengthis unityintheideal caseofpurea0-resonantFSI,perfectPID,aperfectGaussiankaon sourceandtheabsenceoflong-livedresonanceswhichdecayinto kaons. Notethat the formofthe FSIterm inEq.(9) differsfrom

(4)

theformoftheFSItermforK0SK0S correlations(Eq. (9) ofRef.[2]) byafactorof1/2 duetothenon-identicalparticlesinK0SK± cor- relationsandthusthe absenceoftherequirementto symmetrize thewavefunctiongiveninEq.(5).

As seen in Eq. (6), the K0K or K0K+ s-wave scattering am- plitude depends on the a0 mass and decay couplings. In the present work, we have taken the values used in Ref. [2] which have been extracted from the analysis of the a0

π η

spectra of several experiments [7–10], shown in Table 1. The extracted a0 massanddecay couplingshave arange ofvalues forthe var- ious references. Except for the Martin reference [7], which ex- tracts the a0 values from the reaction 4.2 GeV/c incident mo- mentum K+p+(1385)

π

η

using a two-channel Breit–

Wigner formula, the other references extract the a0 values from the radiative φ-decay data, i.e. φ

π

0

ηγ

, from the KLOE col- laboration [24]. These latter three referencesapply a model that assumes, aftertakingintoaccount theφ

π

0

ρ

0

π

0

ηγ

back- groundprocess,thattheφdecaystothe

π

0

ηγ

finalstatethrough theintermediate processesφK+K

γ

a0

γ

orφK+Ka0

γ

,i.e.the “chargedkaon loop model”[9].The main difference between these analyses is that the Antonelli reference [8] as- sumesa fixed a0 massin the fitof thismodel tothe

π

0

η

data, whereas the Achasov1 and Achasov2 analyses [9] allow the a0 mass to be a free parameter in the two different fits made to the data. It is assumed in the present analysis that thesedecay couplingswillalsobe validforK0K andK0K+ scatteringdueto isospininvariance. Correlationfunctions were fittedwithall four ofthesecases to see theeffect on theextracted source parame- ters.

3.3.Fittingmethods

Inordertoestimatethesystematicerrorsinthefittingmethod used to extract R and λ using Eq. (9), two different methods, judgedtobeequallyvalid,havebeenusedtohandletheeffectsof thebaseline:1) aseparate linearfit tothe “baselineregion,” fol- lowedby fittingEq.(9)tothecorrelationfunction dividedbythe linearfittoextractthesourceparameters,and2) acombinedfitof Eq.(9)andaquadraticfunctiondescribingthebaselinewherethe source parameters andthe parameters of the quadratic function arefittedsimultaneously.Thesourceparameters areextractedfor eachcasefrombothmethodsandaveraged,thesymmetricsystem- aticerrorforeachcaseduetothefittingmethodbeingone-halfof thedifferencebetweenthetwomethods.Bothfittingmethodswill nowbedescribedinmoredetail.

3.3.1. Linearbaselinemethod

Inthe“linearbaseline method,”forthe allkT,kT<0.675 and kT>0.675 GeV/c bins the a0 regions were taken tobe k<0.3, k<0.2 andk<0.4 GeV/c,respectively.Inthehigherk region itwas assumedthat effects ofthe a0 were not presentandthus canbeusedasareference, i.e.“baseline”, forthea0-basedmodel fittedto C(k), whichwas averaged over the two magnetic field orientationsusedintheexperiment, toextractthesourceparam- eters.ForthethreekTbins,linearfitsweremadeinthek ranges 0.3–0.45, 0.2–0.45 and 0.4–0.6 GeV/c, respectively, and the cor- relation functionswere divided by these fits to remove baseline effectsextendingintothelow-k region.Theserangesweretaken to define the baselines since the measured correlation functions werefound tobe linearhere. Forlargervalues ofk thecorrela- tionfunctionsbecamenon-linear.Thebaseline was studiedusing HIJINGMCcalculationswhichtakeintoaccountthedetectorchar- acteristics as described earlier. The C(k) distributions obtained fromHIJINGdonotshowsuppressionsatlowk asseen inFig. 1

but rathershow linear distributions over the entire ranges ink showninthefigure.HIJINGalsoshowsthebaselinebecomingnon- linear for larger values ofk, asseen in the measurements. The MCgeneratorcodeAMPT[25]wasalsousedtostudythebaseline.

AMPT issimilar to HIJING butalso includes final-state rescatter- ing effects.AMPT calculationsalsoshowedlinearbaselinesinthe k ranges used in the present analysis, becoming non-linear for largerk.Both HIJINGandAMPT qualitatively showthe samedi- rectionofchangesintheslopesofthebaselinevs.kTasseeninthe data,butAMPT moreaccurately describedtheslopevaluesthem- selves, suggestingthat final-staterescattering plays a role in the kT dependenceofthebaselineslope.Thesystematicuncertainties ontheextractedsourceparametersduetotheassumptionoflin- earity inthesek regions were estimatedfromHIJING tobe less than 1%.

Fig. 2 shows examples of K0SK+ and K0SK correlation func- tions dividedby linearfits to thebaseline withEq.(9)using the Achasov2 parameters. One can seethe main feature ofthe fem- toscopic correlation function: the suppression due to the strong final-stateinteractionsforsmallk.Asseen,thea0 FSIparameter- izationgives an excellent representationofthe “signalregion” of thedata,i.e.thesuppressionofthecorrelationfunctionsinthek range0toabout0.15GeV/c.

3.3.2. Quadraticbaselinemethod

Inthe “quadraticbaseline method,” R andλ areextractedas- suming a quadratic baseline function by fitting the product of a quadraticfunction andtheLednicky equation, Eq.(9),tothe raw correlation functions for each of the two magnetic field orienta- tionsusedintheexperiment,suchasshowninFig. 1,i.e.,

Crawf it

(

k

) =

a

(

1

bk

+

ck2

)

C

(

k

)

(11) where C(k) is givenby Eq.(9), anda, b and c are fit parame- ters.Eq.(11) isfit tothe samek ranges asshowninFig. 1,i.e.

0–0.45 GeV/cforallkTandkT<0.675 GeV/c,and0–0.6 GeV/cfor kT>0.675 GeV/c. The fits to the experimental correlation func- tionsarefoundtobeofsimilargoodqualityasseenforthelinear baselinemethodfitsshowninFig. 2.

3.4. Systematicuncertainties

Systematic uncertainties on the extracted source parameters were estimated by varying the ranges of kinematic and PID cut valuesonthedataby±10%and±20%,aswell asfromMCsimu- lations.Themainsystematicuncertainties ontheextractedvalues of R andλ duetovarioussources, notincludingthebaseline fit- tingmethod,are:a)k fittingrange:2%,b)single-particleandpair cuts (e.g. DCAcuts, PID cuts, pair separation cuts): 2%–4% for R and3%–8% for λ,andc)pairpurity:1%onλ.Combiningtheindi- vidualsystematicuncertaintiesinquadrature,thetotalsystematic uncertaintiesontheextractedsourceparameters,notincludingthe baseline fittingmethodcontribution,are inthe ranges3%–5% for Rand4%–8% forλ.

As mentioned earlier, for the two fitting methods, the source parametersareextractedforeachcasefrombothmethodsandav- eraged, the symmetric systematicerror foreach casedue to the fitting methodbeing one-half ofthe difference betweenthe two methods. The baseline fitting method systematic error thus ob- tained is added in quadrature with the systematic errors given above.Itisfoundthatthesizeofthebaselinefittingmethodsys- tematicerrorsareabout50%largerforRandofsimilarmagnitude forλasthosequotedaboveforthenon-fitting-methodsystematic errors.

(5)

Fig. 2.ExamplesofK0SK+ and K0SK correlationfunctionsdividedbylinearfitstothebaselinewiththeLednickyparameterizationusingthe Achasov2[9]parameters.

Statistical(lines)andthelinearsumofstatisticalandsystematicuncertainties(boxes)areshown.

4. Resultsanddiscussion

Fig. 3 shows sample results for the R and λ parameters ex- tracted in the present analysisfrom K0SK± femtoscopyusing the Achasov1parameters. The left columncompares K0SK+ andK0SK resultsfromthequadratic baselinefit method,andtherightcol- umn compares results averaged over K0SK+ and K0SK for the quadraticbaselinefits andthe linearbaseline fits.As itisusually the case in femtoscopicanalyses, the fitted R and λ parameters are correlated. The fitting (statistical) uncertainties are taken to be the extreme values of the 1

σ

fit contours in R vs. λ. Statis- ticaluncertaintiesareplottedforallresults.Itisseeninthefigure that the R and λ values for K0SK have a slight tendency to be larger than those for K0SK+. Such a difference could result from theK–nucleonscatteringcrosssectionbeinglargerthanthatfor K+–nucleon(see Fig. 51.9 of Ref. [6]), possibly resulting inmore final-staterescatteringforthe K.Since thedifferenceis notsig- nificantoncesystematicuncertaintiesaretakenintoaccount,K0SK+ andK0SK areaveraged overinthefinalresults.Thedifferencein theextracted parameters betweenthetwo baseline fittingmeth- odsisalsoseento besmall, andisaccountedforasa systematic error,asdescribedearlier.

TheresultsfortheR andλparametersextractedinthepresent analysis from K0SK± femtoscopy, averaged over the two baseline fitmethods andaveraged over K0SK+ andK0SK,are presented in Table 2andinFigs. 4 and5.Fitresultsareshownforallfourpa- rametersetsgiveninTable 1.Figs. 4 and 5alsoshowcomparisons withidenticalkaonresultsforthesamecollision systemanden- ergyfromALICEfromRef.[5].Statisticalandtotaluncertaintiesare shownforallresults.

AsshowninFig. 4,bothAchasovparametersets,withthelarger a0 massesanddecaycouplings,appeartogive Rvaluesthatagree bestwiththoseobtainedfromidentical-kaonfemtoscopy.TheAn-

tonelli parameter set appears to give slightlylower values.Com- paringthe measured R valuesbetweenK0SK0S andK±K± inFig. 4 theyareseentoagreewitheachotherwithintheuncertainties.In fact,theonlyreasonforthefemtoscopicK0SK±radiitobedifferent fromtheK0SK0SandK±K±oneswouldbeiftheK0SandK± sources weredisplacedwithrespecttoeachother.Thisisnotexpectedbe- causethecollisiondynamicsisgovernedbystronginteractionsfor whichtheisospinsymmetryapplies.

Theresultsforthecorrelationstrengthparametersλareshown in Fig. 5. The λ parameters fromK0SK± and K±K± are corrected forexperimental purity[5].The K0SK0S pairshavea highpurityof

>90%,sothecorresponding correctionwasneglected [5](seethe earlierdiscussiononpurity).Statistical andtotaluncertainties are shownforallresults.

The K0SK± λvalues,withtheexception oftheMartinparame- ters,appeartobeinagreementwiththeλvaluesfortheidentical kaons. All of the λ values are seen to be measured to be about 0.6, i.e. less than the ideal value of unity, which can be due to the contribution ofkaons fromK decay (50 MeV,where isthedecaywidth)andfromotherlong-livedresonances(suchas the D-meson)distortingthespatialkaonsourcedistributionaway fromtheidealGaussianwhichisassumedinthefitfunction[26].

One wouldexpectthat theK0SK± λ valuesagreewiththosefrom theidenticalkaonsiftheFSIfortheK0SK±wentsolelythroughthe a0resonantchannelsincethisanalysisshouldseethesamesource distribution.

In order to obtain a more quantitative comparison of the present results for R and λ with the identical kaon results, the

χ

2/ndf iscalculatedforR andλforeachparameterset,

χ

ω2

/

ndf

=

1 ndf

3 i=1

[ ω

i

(

KS0K±

)ω

i

(

K K

) ]

2

σ

i2 (12)

(6)

Fig. 3.SampleresultsfortheRandλparametersextractedinthepresentanalysisfromK0SK±femtoscopyusingtheAchasov1parameters.TheleftcolumncomparesK0SK+ andK0SKresultsfromthequadraticbaselinefitmethod,andtherightcolumncomparesresultsaveragedoverK0SK+andK0SKforthequadraticbaselinefitsandthelinear baselinefits.Statisticaluncertaintiesareplottedforallresults.

Table 2

FitresultsforRandλextractedinthepresentanalysisfromK0SK± femtoscopyaveragedoverK0SK+andK0SK. Statisticalandsystematicerrorsarealsoshown.

Parameters R(fm) orλ AllkT kT<0.675 GeV/c kT>0.675 GeV/c Achasov2 R 5.17±0.16±0.41 6.71±0.40±0.42 4.75±0.18±0.36

λ 0.587±0.034±0.051 0.651±0.073±0.076 0.600±0.040±0.034 Achasov1 R 4.92±0.15±0.39 6.30±0.40±0.43 4.49±0.18±0.30

λ 0.650±0.038±0.056 0.723±0.087±0.091 0.649±0.048±0.038 Antonelli R 4.66±0.17±0.46 5.74±0.36±0.26 4.07±0.18±0.29

λ 0.624±0.044±0.058 0.703±0.085±0.077 0.613±0.052±0.037 Martin R 3.29±0.12±0.35 4.46±0.25±0.20 2.90±0.11±0.41

λ 0.305±0.020±0.033 0.376±0.041±0.037 0.296±0.021±0.030

where

ω

iseitherRorλ,irunsoverthethreekT values,thenum- berofdegreesoffreedomtakenisndf=3 and

σ

iisthesumofthe statisticalandsystematicuncertainties onthe ithK0SK± extracted parameter(NotethattheallkT binindeedcontainsthekaonpairs that make up the kT<0.675 GeV/c and kT>0.675 GeV/c bins, butinadditionitcontainsanequalnumberofnewpaircombina- tionsbetweenthe kaonsinthe kT<0.675 GeV/c andkT>0.675 GeV/cbins.Soforthepurposesofthissimplecomparison,weap- proximate the all kT bin as being independent.) The linear sum ofthe statisticalandsystematicuncertaintiesisused for

σ

i tobe consistentwiththelinearsumofthestatisticalandsystematicun- certainties plotted on the points in Figs. 4 and 5. The quantity

ω

i(K K)isdeterminedby fittingaquadratictotheidenticalkaon resultsandevaluatingthefitattheaveragekT valuesoftheK0SK± measurements.Table 3summarizestheresultsforeachparameter set andthe extracted p-values. As seen, the Achasov2, Achasov1 andAntonelliparametersetsareconsistentwiththeidenticalkaon resultsforbothR andλ.TheMartinparametersetisseentohave vanishinglysmall p-valuesforboth R andλ and isthus inclear

Table 3

ComparisonsofRandλfromK0SK±withidenticalkaonresults.

Parameters χR2/ndf Rp-value χλ2/ndf λp-value

λ(K0SK±) λ(K K)

Achasov2 0.456 0.713 0.248 0.863 1.04±0.17

Achasov1 0.583 0.626 0.712 0.545 1.14±0.20

Antonelli 1.297 0.273 0.302 0.824 1.09±0.20

Martin 14.0 0.000 22.2 0.000 0.55±0.10

disagreementwiththeidenticalkaonresults,ascaneasilybeseen byexaminingFigs. 4 and 5.

Inordertoquantitativelyestimatethesizeofthenon-resonant channel present,the ratio

λ(KS0K±) λ(K K)

hasbeencalculatedforeach parameters set, where the average is over the three kT values andtheuncertaintyiscalculatedfromtheaverageofthestatisti- cal+systematicuncertaintiesontheK0SK±parameters.Thesevalues are showninthe lastcolumnofTable 3.Disregarding theMartin value,thesmallestvaluethisratiocantakewithin theuncertain-

(7)

Fig. 4.Sourceradiusparameter,R,extractedinthepresentanalysisfromK0SK±femtoscopyaveragedoverK0SK+andK0SKandthetwobaselinefitmethods(redsymbols), alongwithcomparisonswithidenticalkaonresultsfromALICE[5](bluesymbols).Statistical(lines)andthelinearsumofstatisticalandsystematicuncertainties(boxes)are shown.(Forinterpretationofthecolorsinthisfigure,thereaderisreferredtothewebversionofthisarticle.)

Fig. 5.Correlationstrengthparameter,λ,extractedinthepresentanalysisfromK0SK± femtoscopyaveragedoverK0SK+ andK0SK andthetwobaselinefitmethods(red symbols),alongwithcomparisonswithidenticalkaonresultsfromALICE[5](bluesymbols).Statistical(lines)andthelinearsumofstatisticalandsystematicuncertainties (boxes)areshown.(Forinterpretationofthecolorsinthisfigure,thereaderisreferredtothewebversionofthisarticle.)

(8)

ties is 0.87 (from the Achasov2 parameters) which would thus allowatmosta13%non-resonantcontribution.

Theresultsofthisstudypresentedaboveclearlyshowthatthe measuredK0SK± havedominantlyundergone aFSIthrough thea0 resonance.ThisisremarkableconsideringthatwemeasureinPb–

Pb collisions the average separation between the two kaons at freezeout to be ∼5 fm, and dueto the short-rangednature of thestrong interactionof ∼1 fmthis wouldseemto not encour- agea FSIbutratherencouragefree-streamingofthekaonstothe detectorresultingina “flat” correlation function.A dominantFSI is what might be expected ifthe a0 would be a four-quark, i.e.

tetraquark,stateora“K–Kmolecule.”Thereappearstobenocal- culationsintheliteratureforthetetraquarkvs.diquarkproduction cross sections for the interaction KK→a0, but qualitative argu- ments compatible with the a0 being a four–quark state can be madebasedonthepresentmeasurements.Themainargumentin favorofthisisthatthereactionchannelK0Ka0 (K0K+a+0) is strongly favored if the a0 (a+0) is composed of dssu (dssu) quarkssuchthatadirecttransferofthequarksinthekaonstothe a0 (a+0)hastakenplace,sincethisisan“OZIsuperallowed”reac- tion[12].The“OZIrule”canbestatedas“aninhibitionassociated withthecreationor annihilationofquark lines” [12].Thus, a di- quarka0 finalstateislessfavoredaccordingtotheOZIrulesince itwouldrequiretheannihilationofthestrangequarksinthekaon interaction. This would allow for the possibility of a significant non-resonant or free-streaming channel for the kaon interaction thatwouldresult ina λvalue belowthe identical-kaon value by dilutingthea0signal.Asmentionedabove,thecollisiongeometry itself also suppresses the annihilation of the strange quarks due tothelargeseparationbetweenthekaonsatfreezeout.Notethat thisassumesthattheC(k)distributionofanon-resonantchannel wouldbemostly “flat” or“monotonic”inshape andnotshowing astrongresonant-likesignalasseenforthea0 inFig. 1andFig. 2.

Thisassumption isclearly true inthe free-streaming case, which isassumedinEq.(9)in setting

α

=0.5 due tothe non-resonant kaoncombinations.Asimilarargument,namelythatthesuccessof the“chargedkaonloopmodel”indescribingtheradiativeφ-decay datafavorsthea0 asatetraquarkstate,isgiveninRef.[9].

5. Summary

In summary, femtoscopic correlations with K0SK± pairs have beenstudiedforthefirsttime.Thisnewfemtoscopicmethodwas appliedtodatafromcentral Pb–Pbcollisions at√

sNN=2.76 TeV bythe LHCALICEexperiment.Correlations inthe K0SK± pairs are produced by final-state interactions which proceed through the a0(980) resonance.The a0 resonant FSI is seen to give an excel- lentrepresentationoftheshapeofthesignalregioninthepresent study.ThedifferencesbetweenK0K+andK0KfortheextractedR andλvaluesarefoundtobeinsignificantwithintheuncertainties ofthepresentstudy.Thethreelargera0massanddecayparameter setsarefavoredbythecomparisonwiththeidenticalkaonresults.

Thepresentresultsare alsocompatiblewiththeinterpretationof thea0 resonance asatetraquark state. Thiswork should provide aconstraintonmodels that areusedto predictkaon–kaoninter- actions[27,28].Itwillbeinterestingtoapply K0SK± femtoscopyto other collision energies, e.g. the higher LHC energies now avail- able,andbombarding species, e.g. proton–protoncollisions, since the different source sizes encountered in these cases will probe theinteractionoftheK0S withtheK±indifferentsensitivityranges (i.e.seethe RdependenceinEq.(9)).

Acknowledgements

The ALICECollaboration wouldlike to thank all its engineers andtechniciansfortheirinvaluablecontributionstotheconstruc-

tion of the experiment and the CERN accelerator teams for the outstanding performance ofthe LHC complex.The ALICECollab- oration gratefully acknowledges the resources and support pro- videdbyallGridcenters andtheWorldwideLHCComputingGrid (WLCG) collaboration. The ALICE Collaboration acknowledges the followingfunding agenciesfortheir supportinbuildingandrun- ningtheALICEdetector:A.I.AlikhanyanNationalScienceLabora- tory(YerevanPhysicsInstitute)Foundation(ANSL),State Commit- teeofScienceandWorldFederationofScientists(WFS),Armenia;

Austrian AcademyofSciences andNationalstiftungfür Forschung, Technologie und Entwicklung, Austria; Ministry of Communica- tions and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fun- dação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), Na- tional Natural Science Foundation of China (NSFC) and Ministry of Education of China (MOEC), China; Ministry of Science, Edu- cationandSports and Croatian ScienceFoundation, Croatia; Min- istryofEducation,YouthandSportsoftheCzech Republic,Czech Republic; The Danish Council for Independent Research Natu- ral Sciences, the Carlsberg Foundation and Danish National Re- search Foundation (DNRF), Denmark; HelsinkiInstitute of Physics (HIP),Finland;Commissariatàl’EnergieAtomique(CEA)andInsti- tut National de Physique Nucléaire et de Physique des Particules (IN2P3) andCentre Nationalde la Recherche Scientifique(CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung undTechnologie (BMBF)andGSI Helmholtzzentrum für Schweri- onenforschung GmbH, Germany; GeneralSecretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary;DepartmentofAtomicEnergyGovernmentofIndia(DAE) andCouncilofScientificandIndustrialResearch(CSIR),NewDelhi, India; Indonesian Institute of Science, Indonesia; Centro Fermi – MuseoStorico dellaFisicae CentroStudi eRicerche EnricoFermi andIstitutoNazionalediFisicaNucleare(INFN),Italy;Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japan Society for the Promotion of Science (JSPS) KAKENHIandJapaneseMinistryofEducation,Culture, Sports,Sci- enceandTechnology (MEXT), Japan;Consejo Nacional de Ciencia y Tecnología(CONACYT), through Fondo de Cooperación Interna- cional enCienciay Tecnología(FONCICYT)andDirección General deAsuntosdelPersonalAcademico(DGAPA),Mexico;Nederlandse OrganisatievoorWetenschappelijkOnderzoek(NWO),Netherlands;

TheResearchCouncilofNorway,Norway;CommissiononScience andTechnology forSustainable Developmentin theSouth(COM- SATS),Pakistan;PontificiaUniversidadCatólicadelPerú,Peru;Min- istry ofScience and Higher Education andNational Science Cen- tre, Poland; Korea Institute of Science and Technology Informa- tion and National Research Foundation of Korea (NRF), Republic ofKorea;MinistryofEducationandScientificResearch,Instituteof Atomic Physicsand Romanian NationalAgency forScience, Tech- nology and Innovation, Romania; Joint Institute for Nuclear Re- search (JINR), Ministry of Education and Science of the Russian FederationandNationalResearchCentre KurchatovInstitute,Rus- sia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; NationalResearch Foundation of South Africa,South Africa;Centrode AplicacionesTecnológicasyDesar- rolloNuclear(CEADEN),Cubaenergía,Cuba,MinisteriodeCienciae InnovacionandCentrodeInvestigacionesEnergéticas,Medioambi- entalesyTecnológicas(CIEMAT),Spain;SwedishResearchCouncil (VR)andKnut&AliceWallenbergFoundation(KAW),Sweden;Eu- ropean Organization for Nuclear Research, Switzerland; National Science andTechnology Development Agency(NSDTA), Suranaree

Referanser

RELATERTE DOKUMENTER

Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National

Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communica- tions and High Technologies, National

Austrian Academy of Sciences and Österreichische Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies,

Austrian Academy of Sciences and Österreichische Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Conselho Na- cional de Desenvolvimento Científico

Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Insti-

France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Ger- many; General Secretariat for Research and

Ministry of Education and Scientific Research, Institute of Atomic Physics and Romanian National Agency for Science, Technology and Innovation, Romania; Joint Institute

Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communica- tions and High Technologies, National