• No results found

Risk Analysis of Earthquake-Induced Submarine Landslides in Deepwater Sites

N/A
N/A
Protected

Academic year: 2022

Share "Risk Analysis of Earthquake-Induced Submarine Landslides in Deepwater Sites"

Copied!
122
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

ȱ ȱ

RiskȱanalysisȱofȱearthquakeȬinducedȱsubmarineȱ landslidesȱinȱdeepwaterȱsitesȱ

ȱ ȱ ȱ

ThesisȱpresentedȱforȱtheȱdegreeȱofȱPhilosophiaeȱDoctorȱ(PhD)ȱ

ȱ ȱ ȱ

ȱ ȱ

ȱ ȱ ȱ

RafaelȱRodríguezȱOchoaȱ

ȱ ȱ ȱ

ȱ

DepartmentȱofȱGeosciencesȱ FacultyȱofȱMathematicsȱandȱNaturalȱSciencesȱ

UniversityȱofȱOsloȱ OsloȱNorway,ȱJuneȱ2015ȱ

ȱ ȱ

(2)

‹5DIDHO5RGUtJXH]2FKRD

Series of dissertations submitted to the

Faculty of Mathematics and Natural Sciences, University of Oslo No. 1673

,661

$OOULJKWVUHVHUYHG1RSDUWRIWKLVSXEOLFDWLRQPD\EH

UHSURGXFHGRUWUDQVPLWWHGLQDQ\IRUPRUE\DQ\PHDQVZLWKRXWSHUPLVVLRQ

&RYHU+DQQH%DDGVJDDUG8WLJDUG 3ULQWSURGXFWLRQ-RKQ*ULHJ$6%HUJHQ

3URGXFHGLQFRRSHUDWLRQZLWK$NDGHPLND3XEOLVKLQJ

7KHWKHVLVLVSURGXFHGE\$NDGHPLND3XEOLVKLQJPHUHO\LQFRQQHFWLRQZLWKWKH WKHVLVGHIHQFH.LQGO\GLUHFWDOOLQTXLULHVUHJDUGLQJWKHWKHVLVWRWKHFRS\ULJKW KROGHURUWKHXQLWZKLFKJUDQWVWKHGRFWRUDWH

(3)

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ

Paraȱpapáȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ

(4)

(5)

Acknowledgmentsȱ

IȱwantȱtoȱthankȱtheȱConsejoȱNacionalȱdeȱCienciaȱyȱTecnologíaȱ(CONACYT)ȱandȱtheȱ InternationalȱCentreȱforȱGeohazardsȱ(ICG)ȱforȱprovidingȱfundingȱtoȱcarryȱoutȱthisȱPhDȱ programme.ȱ

IȱalsoȱwantȱtoȱthankȱtheȱInstitutoȱMexicanoȱdelȱPetróleoȱ(IMP)ȱforȱencouragingȱmeȱtoȱgetȱ involvedȱinȱthisȱadventureȱandȱforȱprovidingȱtheȱdataȱtoȱdoȱtheȱanalyses,ȱspecialȱthanksȱtoȱ OscarȱValleȱandȱJaimeȱNuñez.ȱ

SpecialȱthanksȱtoȱmyȱmainȱsupervisorȱFarrokhȱNadimȱforȱhisȱguidance,ȱmotivationȱandȱ patienceȱthroughȱtheȱPhDȱstudies,ȱalsoȱtoȱsupervisorsȱKaareȱHøegȱandȱHansȱPetterȱJostad.ȱIȱ wantȱ toȱ thankȱ theȱ Internationalȱ Centreȱ forȱ Geohazardsȱ (ICG)ȱ andȱ theȱ Norwegianȱ GeotechnicalȱInstituteȱ(NGI)ȱforȱprovidingȱtheȱresourcesȱandȱperfectȱenvironmentȱtoȱdevelopȱ thisȱresearch.ȱIȱalsoȱthankȱNGIȱemployees,ȱpostdoctoralȱresearchesȱandȱvisitorsȱforȱsharingȱ theirȱknowledgeȱandȱmakingȱmyȱstayȱinȱOsloȱaȱveryȱpleasantȱone.ȱSpecialȱthanksȱtoȱAndersȱ Solheim,ȱBjørnȱKalsnes,ȱAmirȱKaynia,ȱToreȱJanȱKvalstad,ȱLiminȱZhan,ȱZhongqiangȱLiu,ȱ VictorȱTaboada,ȱDieterȱIssler,ȱKhoaȱHuynh,ȱandȱMaartenȱVanneste.ȱIȱamȱindebtedȱtoȱJoséȱ Cepedaȱforȱhisȱhelpȱduringȱtheȱchallengingȱtimesȱofȱthisȱadventureȱinȱtheȱtechnical,ȱpracticalȱ andȱpersonalȱmatters.ȱ

IȱwantȱtoȱexpressȱmyȱgratitudeȱtoȱtheȱUniversityȱofȱOsloȱ(UiO),ȱDelftȱUniversityȱTechnologyȱ (TUȱDelft),ȱandȱtheȱCenterȱforȱMarineȱEnvironmentalȱSciencesȱ(marum)ȱatȱUniversityȱofȱ Bremen,ȱforȱprovidingȱtheȱsourcesȱtoȱbuildȱupȱmyȱPhDȱstudies.ȱSpecialȱthanksȱtoȱMichaelȱ HicksȱandȱPatrickȱArnoldȱforȱtheirȱtechnicalȱandȱpracticalȱassistanceȱduringȱmyȱstayȱatȱtheȱ GeoȬEngineeringȱSectionȱatȱTUȱDelftȱasȱvisitingȱPhDȱstudent.ȱ

IȱwantȱtoȱthankȱJamesȱHanceȱforȱsharingȱhisȱseafloorȱslopeȱfailureȱdatabase,ȱandȱRobertȱ Gilbertȱforȱhisȱassistanceȱtoȱobtainȱtheȱdatabaseȱthatȱwasȱusedȱtoȱcarryȱoutȱrunoutȱbackȱ analyses,ȱandȱforȱsharingȱinterestingȱchatsȱatȱlunchȱtimeȱduringȱhisȱsabbaticalȱyearȱatȱNGI.ȱ

Myȱlovingȱthanksȱtoȱmyȱfather,ȱRafaelȱRodríguezȱLozanoȱ(†),ȱandȱmyȱmother,ȱTeresaȱOchoaȱ Vazquez,ȱforȱtheirȱloveȱandȱendlessȱsupport.ȱ

SpecialȱandȱlovingȱthanksȱtoȱmyȱwifeȱandȱnonȬofficialȱ“platinumȱsponsor”ȱCarmen,ȱforȱherȱ continuousȱloveȱandȱsupportȱinȱmyȱlife;ȱalsoȱtoȱtheȱnewȱkingȱatȱhome,ȱwhoȱmakesȱourȱlifeȱ fullȱofȱjoyȱandȱhappinessȱwithȱhisȱlaughsȱandȱscreams,ȱourȱsonȱAkselȱRafael.ȱ

(6)
(7)

Summaryȱ

Despiteȱtheȱrecentȱtrendsȱtoȱlookȱforȱalternativeȱsourcesȱofȱenergyȱasȱsubstitutesȱtoȱ theȱtraditionalȱhydrocarbonȱfuels,ȱstillȱvastȱamountȱofȱoilȱandȱgasȱsourcesȱareȱcomingȱfromȱ offshoreȱreservoirsȱtoȱfeedȱtheȱincreasingȱneedȱofȱenergyȱinȱtheȱworld.ȱTheȱenergyȱsectorȱisȱ stillȱactivelyȱdevelopingȱoffshoreȱfieldsȱtoȱdevelopȱhydrocarbonȱreservoirsȱthatȱareȱlocatedȱ beneathȱtheȱseafloor,ȱandȱthereȱisȱanȱincreasingȱinterestȱinȱtheȱquestȱforȱhydrocarbonsȱinȱ deepwaterȱsites.ȱTheseȱsitesȱareȱexposedȱtoȱrisksȱfromȱvariousȱtypesȱofȱgeohazards,ȱtheȱmostȱ importantȱofȱwhichȱisȱtheȱriskȱposedȱbyȱpotentialȱinstabilityȱofȱsubmarineȱslopesȱlocatedȱ alongȱtheȱcontinentalȱslope.ȱ

TheȱresearchȱpresentedȱinȱthisȱPhDȱthesisȱexploredȱtheȱstabilityȱofȱsubmarineȱslopesȱinȱ deepwaterȱsitesȱfromȱtheȱgeotechnicalȱpointȱofȱview.ȱSinceȱoneȱofȱtheȱmainȱcausesȱofȱtheȱ failureȱofȱsubmarineȱslopesȱisȱseismicȱactivity,ȱspecialȱconsiderationȱwasȱgivenȱtoȱtheȱ analysisȱofȱtheȱdynamicȱresponseȱofȱsubmarineȱslopesȱunderȱearthquakeȱloading.ȱTheȱ dynamicȱresponseȱofȱclayȱslopesȱisȱaȱfunctionȱofȱtheȱundrainedȱshearȱstrength,ȱmassȱdensityȱ andȱstiffnessȱofȱtheȱsediments.ȱMuchȱofȱtheȱworkȱpresentedȱinȱthisȱthesisȱfocusedȱonȱtheȱ characterizationȱofȱtheȱundrainedȱsoilȱshearȱstrengthȱbefore,ȱduringȱandȱafterȱtheȱearthquakeȱ event.ȱUnderstandingȱtheȱevolutionȱofȱtheȱsoilȱshearȱstrengthȱsubjectedȱtoȱsevereȱgroundȱ shakingȱisȱtheȱkeyȱtoȱunderstandingȱtheȱevolutionȱofȱtheȱslopeȱstabilityȱinȱtimeȱandȱspace.ȱ Additionally,ȱtheȱcombinationȱofȱseismicȱloadingȱandȱsoilȱinterfacesȱ(preconditioningȱfactor)ȱ inȱtheȱsoilȱprofile,ȱwereȱanalysedȱtoȱexploreȱtheȱinitiationȱprocessȱofȱslopeȱfailure.ȱSeveralȱ recentȱstudiesȱimplyȱthatȱsoilȱinterfacesȱsuchȱasȱweakȱlayersȱplayedȱaȱkeyȱroleȱinȱtheȱfailureȱ initiationȱprocessȱofȱwellȬknownȱcasesȱsuchȱasȱtheȱStoreggaȱandȱGrandȱBanksȱsubmarineȱ slides,ȱamongȱothers.ȱ

Theȱclassicalȱdeterministicȱapproachȱtoȱslopeȱstabilityȱassessmentȱwasȱcomplementedȱwithȱaȱ probabilisticȱapproachȱtoȱestimateȱtheȱhazardȱandȱriskȱassociatedȱtoȱtheȱfailureȱofȱsubmarineȱ slopes.ȱSpecialȱemphasisȱwasȱgivenȱtoȱtheȱslopeȱfailureȱfrequencyȱmodelȱbyȱdevelopingȱaȱ procedureȱtoȱaccountȱforȱtheȱuncertaintiesȱinȱearthquakeȱcharacteristicsȱandȱslopeȱdynamicȱ response.ȱFurthermore,ȱtheȱtransformationȱofȱtheȱfailedȱmassȱfromȱslumpȱtoȱmassȱgravityȱ flow,ȱwithȱspecialȱattentionȱtoȱtheȱestimationȱofȱtheȱrunoutȱdistance,ȱmudflowȱfrontȱvelocity,ȱ andȱthicknessȱofȱtheȱfailedȱmassȱonȱitsȱwayȱdownȱalongȱtheȱcontinentalȱslopeȱwasȱexploredȱ byȱmeansȱofȱnumericalȱsimulations.ȱTheȱnumericalȱsimulationsȱthatȱmodelledȱtheȱmechanicsȱ ofȱtheȱdebrisȱflowȱwereȱcomplementedȱwithȱtheȱMonteȱCarloȱsimulationȱmethodȱtoȱaccountȱ forȱtheȱuncertaintiesȱinȱtheȱinputȱparametersȱofȱtheȱmodel,ȱandȱestimatingȱtheȱprobabilityȱofȱ mudflowȱimpactingȱtheȱcriticalȱseabedȱfacilities.ȱThisȱcalculatedȱprobabilityȱofȱmudflowȱ reachingȱtheȱfacility,ȱtogetherȱwithȱtheȱdevelopmentȱofȱtheȱslopeȱfailureȱfrequencyȱmodel,ȱ providedȱtheȱbasisȱforȱtheȱearthquakeȬinducedȱslopeȱfailureȱhazardȱanalysis.ȱ

Theȱriskȱanalysisȱwasȱdoneȱbyȱassessingȱtheȱdirectȱconsequencesȱofȱslopeȱfailure.ȱTheȱdirectȱ consequencesȱ wereȱ quantifiedȱ byȱ developingȱ vulnerabilityȱ curvesȱ forȱ theȱ offshoreȱ installationsȱatȱrisk,ȱtheȱexpectedȱmudflowȱfrontȱvelocityȱandȱthicknessȱwhenȱimpactingȱ offshoreȱstructures,ȱandȱtheȱestimatedȱimpactȱforcesȱversusȱlateralȱcapacityȱofȱfoundations.ȱ

(8)

TheȱPhDȱresearchȱutilizedȱinformationȱfromȱtheȱLakachȱproject,ȱwhichȱisȱtheȱfirstȱdeepwaterȱ siteȱtoȱbeȱdevelopedȱinȱMexico.ȱThisȱsiteȱisȱlocatedȱinȱtheȱGulfȱofȱMexico,ȱcloseȱtoȱtheȱ Veracruzȱstate,ȱonȱtheȱcontinentalȱslopeȱwithȱaȱwaterȱdepthȱofȱ1,200ȱm.ȱThisȱdeepwaterȱsiteȱ projectȱisȱfacingȱtheȱthreatȱofȱpotentialȱsubmarineȱslopeȱfailuresȱatȱtheȱborderȱofȱtheȱ continentalȱshelfȱandȱtheȱcontinentalȱslope,ȱinȱwaterȱdepthȱofȱaboutȱ500ȱm.ȱTheseȱslopeȱ failureȱtreatsȱwereȱinvestigatedȱduringȱthisȱPhDȱprogramme.ȱ

TheȱPhDȱresearchȱgeneratedȱinȱtotalȱ9ȱresearchȱproducts:ȱ3ȱpeerȬreviewedȱjournalȱpapers,ȱ1ȱ conferenceȱpaper,ȱ3ȱsymposiumȱpapers,ȱ1ȱAGUȱ(AmericanȱGeophysicalȱUnion)ȱabstract,ȱandȱ 1ȱtechnicalȱreport.ȱTheȱ3ȱpeerȬreviewedȱjournalȱpapersȱareȱlistedȱinȱtheȱListȱofȱJournalȱPapersȱ section,ȱandȱtheȱremainingȱresearchȱproductsȱareȱlistedȱinȱtheȱAppendicesȱsection.ȱ

Inȱgeneral,ȱ3ȱpapersȱandȱtheȱtechnicalȱreportȱdealȱwithȱtheȱmechanicsȱofȱtheȱslopeȱstabilityȱ andȱdebrisȱflowȱdynamicsȱfromȱaȱdeterministicȱpointȱofȱview;ȱ1ȱpaperȱandȱtheȱAGUȱabstractȱ complementȱtheȱdeterministicȱapproachȱwithȱtheȱfrequencyȱmodelȱtoȱperformȱslopeȱfailureȱ hazardȱ analysis;ȱ3ȱ papersȱcomplementȱtheȱ slopeȱ failureȱ hazardȱanalysisȱwithȱ theirȱ correspondingȱconsequencesȱtoȱassessȱtheȱriskȱassociatedȱwithȱslopeȱfailure.ȱ

(9)

ListȱofȱJournalȱPapersȱ

RodríguezȬOchoaȱR,ȱNadimȱF,ȱCepedaȱJMȱOffshoreȱrisk:ȱEarthquakeȬinducedȱslopeȱfailureȱinȱtheȱ GulfȱofȱMexico.ȱCanadianȱGeotechnicalȱJournalȱ(submittedȱforȱpublication).ȱ

RodríguezȬOchoaȱR,ȱNadimȱF,ȱCepedaȱJM,ȱHicksȱMA,ȱLiuȱZȱ(2015)ȱHazardȱanalysisȱofȱseismicȱ submarineȱslopeȱ instability.ȱ Georisk:ȱ Assessmentȱ andȱ Managementȱ ofȱ Riskȱ forȱ EngineeredȱSystemsȱandȱGeohazards:1Ȭ20.ȱdoi:10.1080/17499518.2015.1051546ȱ

RodríguezȬOchoaȱR,ȱNadimȱF,ȱHicksȱMAȱ(2015)ȱInfluenceȱofȱweakȱlayersȱonȱseismicȱstabilityȱofȱ

submarineȱ slopes.ȱ Marȱ Petȱ Geolȱ 65ȱ (0):247Ȭ268.ȱ

doi:http://dx.doi.org/10.1016/j.marpetgeo.2015.04.007ȱ

(10)
(11)

TableȱofȱContentsȱ

1. INTRODUCTIONȱ...ȱ1ȱ 1.1ȱ Motivationȱ...ȱ1ȱ 1.2ȱ Objectivesȱ...ȱ2ȱ 1.3ȱ ThesisȱStructureȱ...ȱ3ȱ 2. SEISMICȱSLOPEȱSTABILITYȱASSESSMENTȱ...ȱ5ȱ 2.1ȱ SiteȱCharacterizationȱ...ȱ5ȱ 2.1.1ȱ GeologicalȱSettingȱ...ȱ5ȱ 2.1.2ȱ GeotechnicalȱSettingȱ...ȱ6ȱ 2.1.3ȱ SeismicȱSettingȱ...ȱ6ȱ 2.2ȱ ContrastsȱinȱGeotechnicalȱSoilȱPropertiesȱ...ȱ7ȱ 2.2.1ȱ OneȱSoilȱBoundaryȱ...ȱ7ȱ 2.2.2ȱ TwoȱSoilȱBoundariesȱ...ȱ8ȱ 2.3ȱ EvolutionȱofȱSeismicȱSlopeȱStabilityȱ...ȱ8ȱ 2.3.1ȱ PreȬSeismicȱStabilityȱ...ȱ9ȱ 2.3.2ȱ CoȬSeismicȱStabilityȱ...ȱ9ȱ 2.3.3ȱ PostȬSeismicȱStabilityȱ...ȱ11ȱ 3. HAZARDȱANDȱRISKȱANALYSISȱOFȱEARTHQUAKEȬINDUCEDȱSLOPEȱFAILUREȱ...ȱ13ȱ 3.1ȱ ProbabilityȱofȱEarthquakeȬInducedȱSlopeȱFailureȱ(AnalyticalȱApproach)ȱ...ȱ13ȱ 3.1.1ȱ ProbabilisticȱSeismicȱHazardȱAnalysisȱ(PSHA)ȱ...ȱ13ȱ 3.1.2ȱ GroundȱResponseȱAnalysisȱ...ȱ13ȱ 3.1.3ȱ AdvancedȱLaboratoryȱTestsȱ...ȱ18ȱ 3.1.4ȱ FragilityȱCurveȱApproachȱ...ȱ19ȱ 3.1.4.1ȱ CoȬseismicȱandȱPostȬSeismicȱFragilityȱCurvesȱofȱSlopeȱFailureȱ...ȱ20ȱ 3.1.4.2ȱ ExpectedȱValueȱMathematicalȱOperatorȱ...ȱ20ȱ 3.1.4.3ȱ AnnualȱFailureȱProbabilityȱ(AFP)ȱ...ȱ22ȱ 3.1.4.4ȱ ComparisonȱwithȱGeologicalȱEvidenceȱ...ȱ23ȱ 3.2ȱ ProbabilityȱofȱDebrisȱFlowȱImpactȱonȱSeabedȱStructuresȱ...ȱ24ȱ 3.2.1ȱ RunoutȱNumericalȱSimulationsȱ...ȱ25ȱ 3.2.2ȱ AccountingȱofȱInputȱUncertaintiesȱusingȱMonteȱCarloȱSimulationȱ...ȱ27ȱ 3.2.3ȱ ProbabilisticȱRunoutȱDistanceȱEstimationȱ...ȱ28ȱ 3.3ȱ ConsequencesȱofȱEarthquakeȬInducedȱSlopeȱFailureȱ...ȱ30ȱ

(12)

3.4ȱ RiskȱQuantificationȱ...ȱ32ȱ 4. MAINȱFINDINGSȱ...ȱ34ȱ 5. CONCLUSIONSȱANDȱRECOMMENDATIONSȱFORȱFUTUREȱWORKȱ...ȱ36ȱ REFERENCESȱ...ȱ40

PAPERȱIȱ ȱ ȱȱȱȱȱIȱ

PAPERȱIIȱ ȱ ȱȱȱȱIIȱ

PAPERȱIIIȱ ȱ ȱȱIIIȱ

APPENDICESȱ

Appendixȱ1.ȱPaperȱNo.4ȱ(ConferenceȱPaperȱno.ȱ1):ȱ ȱ ȱȱȱȱIȱ

“SensitivityȱAnalysesȱforȱSubmarineȱSlopesȱunderȱSeismicȱLoading”ȱ Appendixȱ2.ȱPaperȱNo.5ȱ(SymposiumȱPaperȱno.ȱ1):ȱ ȱ ȱȱȱIIȱ

“CuttingȱEdgeȱProceduresȱtoȱAssessȱtheȱEarthquakeȬInducedȱ SubmarineȱSlopeȱFailureȱRiskȱinȱDeepwaterȱSites”ȱ(Spanish)ȱ

Appendixȱ3.ȱPaperȱNo.6ȱ(SymposiumȱPaperȱno.ȱ2):ȱ ȱ ȱȱIIIȱ

“RiskȱAnalysisȱofȱEarthquakeȬInducedȱSubmarineȱSlopeȱFailure”ȱ Appendixȱ4.ȱPaperȱNo.7ȱ(SymposiumȱPaperȱno.ȱ3):ȱ ȱ ȱȱIVȱ

“CorrectionȱFactorsȱforȱ1ȬDȱRunoutȱAnalysesȱofȱSelectedȱSubmarineȱ Slides”ȱ

Appendixȱ5.ȱConferenceȱAbstract:ȱ ȱ ȱȱȱȱVȱ

“RecurrenceȱPeriodsȱofȱEarthquakeȬInducedȱSubmarineȱLandslides”ȱ

Appendixȱ6.ȱReportȱNo.1:ȱ ȱ ȱȱVIȱ

“SeismicȱStabilityȱAssessmentȱofȱSubmarineȱSlopes”ȱ

(13)

Chapterȱ1ȱ

1. INTRODUCTION

1.1ȱ Motivationȱ

Amongȱtheȱvarietyȱofȱgeohazardsȱinȱdeepwaterȱsites,ȱtheȱfailureȱofȱsubmarineȱslopesȱ onȱtheȱcontinentalȱshelfȱandȱcontinentalȱslopeȱisȱoneȱofȱtheȱmostȱsignificantȱhazardsȱ(Parkerȱ etȱal.ȱ2008)ȱthatȱmayȱimpactȱtheȱmarineȱenvironment,ȱtheȱeconomicȱsector,ȱandȱthreatenȱ humanȱlivesȱinȱcoastalȱareas.ȱTheȱmostȱfrequentȱtriggerȱofȱsubmarineȱslopeȱfailuresȱisȱlinkedȱ toȱseismicȱactivityȱbyȱitselfȱ(Hanceȱ2003),ȱorȱinȱcombinationȱwithȱpreconditioningȱfactors,ȱ alsoȱknownȱasȱslowȱtriggers,ȱsuchȱasȱsoilȱboundaryȱinterfacesȱ(e.g.ȱweakȱlayers)ȱ(Locatȱetȱal.ȱ 2013;ȱL’Heureuxȱetȱal.ȱ2012;ȱSolheimȱetȱal.ȱ2005b).ȱ

TheȱoilȱandȱgasȱindustryȱinȱMexicoȱhasȱdecidedȱtoȱstartȱexploitingȱhydrocarbonsȱinȱ deepwaterȱenvironments.ȱItȱisȱexpectedȱthatȱriskȱassessmentȱforȱsubmarineȱslidesȱwillȱassistȱ theȱMexicanȱoilȱindustryȱinȱtheȱdecisionȱmakingȱprocessȱconcerningȱtheȱdevelopmentȱofȱoilȱ andȱgasȱoffshoreȱfieldsȱinȱdeepwaterȱsitesȱinȱtheȱMexicanȱpartȱofȱtheȱGulfȱofȱMexico.ȱOnȱtheȱ MexicanȱpartȱofȱtheȱGulfȱofȱMexico,ȱtheȱseismicȱactivityȱisȱanȱimportantȱtriggerȱforȱ submarineȱslidesȱthatȱneedsȱtoȱbeȱevaluatedȱ(Geomatrixȱ2006).ȱ

AfterȱintenseȱgeophysicalȱexplorationsȱforȱpotentialȱhydrocarbonȱreservoirsȱinȱtheȱGulfȱofȱ Mexico,ȱaȱnaturalȱgasȱreservoirȱnearȱtheȱVeracruzȱstateȱwasȱidentifiedȱthatȱtheȱnationalȱoilȱ companyȱPEMEXȱdecidedȱtoȱdevelop.ȱTherefore,ȱimportantȱresourcesȱwereȱdesignatedȱtoȱ initiateȱtheȱdevelopmentȱofȱtheȱfirstȱdeepwaterȱprojectȱinȱMexico,ȱandȱPEMEXȱtogetherȱwithȱ theȱMexicanȱPetroleumȱInstituteȱ(IMP),ȱandȱtheȱMexicanȱNationalȱCouncilȱforȱScienceȱandȱ Technologyȱ(CONACYT)ȱinitiatedȱresearchȱandȱtrainingȱprogramsȱtoȱfaceȱtheȱnewȱchallengeȱ ofȱdevelopingȱhydrocarbonȱfieldsȱinȱdeepwaterȱsites.ȱ

TheȱfirstȱdeepwaterȱnaturalȱgasȱfieldȱtoȱbeȱdevelopedȱisȱnamedȱLakach,ȱandȱhasȱaȱwaterȱ depthȱofȱaboutȱ1,200ȱm.ȱPEMEXȱdesignatedȱFugroȱtoȱperformȱtheȱgeological,ȱgeophysicalȱ andȱgeotechnicalȱexplorationȱwithȱtheȱaimȱtoȱcharacterizeȱtheȱsiteȱforȱfutureȱdevelopment.ȱ TheȱreportsȱgeneratedȱbyȱFugro,ȱtogetherȱwithȱpreviousȱseismicȱhazardȱstudiesȱinȱtheȱregionȱ performedȱbyȱGeomatrixȱ(2006),ȱformedȱtheȱbasisȱforȱcarryingȱoutȱriskȱanalysisȱofȱsubmarineȱ landslidesȱtriggeredȱbyȱearthquakesȱinȱtheȱGulfȱofȱMexico.ȱ

TheȱworkȱdescribedȱinȱthisȱdoctoralȱthesisȱisȱpartȱofȱtheȱresearchȱinitiatedȱbyȱtheȱMexicanȱ PetroleumȱInstituteȱ(IMP),ȱtogetherȱwithȱtheȱMexicanȱNationalȱCouncilȱforȱScienceȱandȱ Technologyȱ(CONACYT)ȱtoȱaddressȱtheȱchallengesȱmentionedȱabove.ȱTheȱresearchȱwasȱ carriedȱoutȱatȱtheȱDepartmentȱofȱGeosciencesȱofȱUniversityȱofȱOsloȱ(UiO),ȱandȱtheȱ NorwegianȱGeotechnicalȱInstituteȱ(NGI).ȱ

(14)

1.2ȱ Objectivesȱ

Theȱgeneralȱobjectiveȱofȱtheȱresearchȱwasȱtoȱquantifyȱtheȱriskȱassociatedȱwithȱ earthquakeȬtriggeredȱsubmarineȱslidesȱatȱtheȱLakachȱdeepwaterȱsiteȱusingȱtheȱavailableȱ geological,ȱgeophysical,ȱgeotechnicalȱandȱseismicȱdata.ȱ

Thisȱrequiredȱstudyingȱtheȱresponseȱofȱclayȱslopesȱunderȱearthquakeȱloading,ȱasȱwellȱasȱtheȱ initiationȱprocessȱofȱsubmarineȱslopeȱfailures.ȱMoreover,ȱaȱfrequencyȱmodelȱofȱsubmarineȱ slopeȱfailuresȱinȱtheȱregionȱhadȱtoȱbeȱestablishedȱtoȱassessȱtheȱhazardȱandȱperformȱaȱriskȱ analysis.ȱ

TheȱquantificationȱofȱtheȱconsequencesȱrelatedȱtoȱtheȱearthquakeȬinducedȱlandslideȱinȱtheȱ Lakachȱfieldȱisȱpartȱofȱtheȱriskȱassessment.ȱTherefore,ȱanotherȱobjectiveȱofȱtheȱresearchȱwasȱ theȱestimationȱofȱrunoutȱdistances,ȱfrontȱvelocitiesȱandȱimpactȱforcesȱofȱdebrisȱflowsȱagainstȱ seabedȱstructures.ȱTheȱaboveȱprojectȬorientedȱobjectivesȱwereȱcombinedȱwithȱresearchȬ orientedȱobjectivesȱtoȱfillȱtheȱgapsȱinȱtheȱcurrentȱstateȱofȱknowledge,ȱbyȱaccomplishingȱtheȱ followingȱgoals.ȱ

x IdentifyȱtheȱstateȬofȬtheȬartȱinȱtheȱearthquakeȬinducedȱsubmarineȱslideȱriskȱanalysisȱ byȱcarryingȱoutȱliteratureȱreviewȱfromȱrelevantȱinformationȱsources.ȱ

x Detectȱareasȱtoȱimproveȱandȱdevelopȱtheȱbodyȱofȱresearchȱinȱexistence.ȱTheȱareasȱthatȱ wereȱidentifiedȱwithȱpotentialȱtoȱimproveȱtheȱstateȱofȱknowledgeȱareȱlistedȱbelow:ȱ

1. Quantifyȱtheȱinfluenceȱofȱcontrastingȱsoilȱboundariesȱinȱtheȱsoilȱprofileȱtoȱ induceȱslopeȱfailure.ȱ

2. Studyȱtheȱevolutionȱofȱtheȱslopeȱstabilityȱbefore,ȱduringȱandȱafterȱanȱ earthquakeȱevent.ȱ

3. Developȱalternativeȱproceduresȱtoȱquantifyȱtheȱreductionȱofȱtheȱundrainedȱ shearȱstrengthȱdueȱtoȱcyclicȱdegradationȱandȱundrainedȱcreep.ȱ

4. Suggestȱaȱnewȱapproachȱtoȱquantifyȱtheȱseismicȱslopeȱfailureȱfrequency,ȱwithȱ specialȱemphasisȱinȱtheȱestimationȱofȱtheȱannualȱfailureȱprobabilityȱ(AFP).ȱ 5. Developȱvulnerabilityȱcurvesȱforȱoffshoreȱstructuresȱexposedȱtoȱdebrisȱflowȱ

impact,ȱaimingȱtoȱquantifyȱtheȱconsequencesȱduringȱtheȱriskȱanalysis.ȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ

(15)

1.3ȱ ThesisȱStructureȱ

ȱ Chapterȱ2ȱpresentsȱtheȱcentralȱfeaturesȱofȱtheȱseismicȱslopeȱstabilityȱassessmentȱinȱ thisȱresearch.ȱItȱprovidesȱtheȱgeological,ȱgeotechnicalȱandȱseismicȱdescriptionȱofȱtheȱLakachȱ site,ȱwithȱspecialȱattentionȱinȱtheȱcharacterizationȱofȱtheȱcontinentalȱshelfȱandȱcontinentalȱ slope.ȱItȱalsoȱstressesȱtheȱinfluenceȱofȱsoilȱboundaryȱinterfacesȱ(preconditioningȱfactor),ȱ togetherȱwithȱtheȱseismicȱactivity,ȱinȱtheȱslopeȱfailureȱinitiationȱprocess.ȱFinally,ȱchapterȱ2ȱ highlightsȱtheȱimportanceȱofȱassessingȱtheȱstabilityȱevolutionȱofȱsubmarineȱslopesȱsubjectedȱ toȱseismicȱloadingȱwithȱtheȱaimȱtoȱimproveȱtheȱcurrentȱslopeȱfailureȱpredictionȱcapacity.ȱThisȱ assessmentȱinvolvesȱtheȱestimationȱofȱtheȱundrainedȱshearȱstrengthȱsu,ȱbeforeȱ(preȬseismic),ȱ duringȱ(coȬseismic),ȱandȱafterȱ(postȬseismic)ȱtheȱearthquakeȱevent.ȱ

Journalȱpaperȱno.ȱ1ȱexploresȱinȱdetailȱtheȱtopicsȱpresentedȱinȱchapterȱ2.ȱMoreover,ȱconferenceȱ paperȱno.ȱ1,ȱenclosedȱinȱAppendixȱ1,ȱstudiesȱtheȱinfluenceȱofȱtheȱthicknessȱofȱsoilȱcolumnsȱ andȱtheȱstiffnessȱofȱhalfȬspacesȱinȱtheȱdynamicȱresponseȱofȱclayȱslopes.ȱReportȱno.ȱ1,ȱenclosedȱ inȱAppendixȱ6,ȱexaminesȱtheȱbasicȱelementsȱofȱseismicȱstabilityȱassessmentȱofȱsubmarineȱ slopes.ȱ

Chapterȱ3ȱpresentsȱtheȱprobabilisticȱapproachȱadoptedȱinȱthisȱstudyȱforȱearthquakeȬinducedȱ slopeȱfailure,ȱwithȱspecialȱemphasisȱinȱtheȱslopeȱfailureȱfrequencyȱmodel,ȱmudflowȱrunoutȱ distance,ȱandȱtheȱconsequencesȱofȱmudflowȱimpactȱonȱoffshoreȱstructures.ȱ

Inȱsectionȱ3.1ȱtheȱprobabilityȱofȱearthquakeȬinducedȱslopeȱfailureȱisȱanalysedȱfromȱanȱ analyticalȱpointȱofȱview.ȱItȱdisplaysȱtheȱkeyȱelementsȱofȱtheȱprobabilisticȱapproachȱthatȱwereȱ appliedȱinȱthisȱresearchȱtoȱestimateȱtheȱannualȱfailureȱprobabilityȱ(AFP):ȱ(1)ȱProbabilisticȱ SeismicȱHazardȱAnalysisȱ(PSHA);ȱ(2)ȱGroundȱResponseȱAnalysis;ȱ(3)ȱAdvancedȱLaboratoryȱ Tests;ȱandȱ(4)ȱFragilityȱCurveȱApproach.ȱTheȱFragilityȱCurveȱApproachȱthatȱwasȱdevelopedȱ duringȱthisȱPhDȱprogrammeȱprovidesȱanȱalternativeȱmethodȱtoȱestimateȱtheȱAFPȱparameter.ȱ Furtherȱinformationȱaboutȱthisȱapproachȱisȱpresentedȱinȱjournalȱpaperȱno.ȱ2.ȱAmericanȱ GeophysicalȱUnionȱ(AGU)ȱconferenceȱabstract,ȱenclosedȱinȱAppendixȱ5,ȱexploresȱtheȱ interpretationȱofȱtheȱFragilityȱCurveȱApproachȱresults.ȱ

Sectionȱ3.2ȱconsidersȱtheȱprobabilityȱofȱdebrisȱflowȱimpactȱonȱseabedȱstructures,ȱassumingȱ thatȱtheȱslopeȱfailureȱwillȱevolveȱintoȱaȱmassȱgravityȱflow.ȱTheȱpresentedȱmethodologyȱreliesȱ onȱnumericalȱsimulationsȱofȱdebrisȱflowsȱtoȱpredictȱrunoutȱdistances,ȱfrontȱvelocities,ȱandȱ thicknessȱofȱtheȱdebrisȱflowȱinȱtheȱtimeȱandȱspaceȱdomains.ȱItȱalsoȱshowsȱtheȱimplementationȱ ofȱtheȱMonteȱCarloȱsimulationȱmethodȱinȱtheȱnumericalȱsimulationsȱtoȱaccountȱforȱtheȱ uncertaintiesȱinȱtheȱinputȱparametersȱofȱtheȱnumericalȱmodel.ȱTheȱapplicationȱofȱtheȱMonteȱ Carloȱmethodȱinȱtheȱnumericalȱsimulationsȱallowsȱtheȱgenerationȱofȱprobabilityȱdistributionȱ functionsȱofȱrunoutȱdistance,ȱmudflowȱfrontȱvelocity,ȱandȱmudflowȱthicknessȱwithȱtheȱaimȱ toȱ estimateȱ theȱ probabilityȱ ofȱ debrisȱ flowȱ impactȱ onȱ seabedȱ structuresȱ andȱ theirȱ consequences.ȱSymposiumȱpaperȱno.ȱ3,ȱenclosedȱinȱAppendixȱ4,ȱexploresȱtheȱmodelȱ uncertaintyȱofȱtheȱcomputerȱcodeȱBINGȱusedȱinȱtheȱnumericalȱanalyses.ȱ

Sectionȱ3.3ȱpresentsȱtheȱestimationȱofȱtheȱdirectȱconsequencesȱofȱslopeȱfailureȱinȱtheȱLakachȱ project,ȱbyȱdevelopingȱvulnerabilityȱcurvesȱofȱtheȱelementsȱatȱriskȱ(ManifoldȱSouthȱandȱ

(16)

ManifoldȱNorth).ȱSectionȱ3.4ȱmakesȱtheȱintegrationȱofȱresultsȱfromȱsectionȱ3.1ȱtoȱsectionȱ3.3ȱ toȱquantifyȱtheȱriskȱinȱtheȱLakachȱprojectȱbyȱusingȱtheȱclassicalȱdefinitionȱofȱriskȱ(i.e.ȱRiskȱ=ȱ HazardȱuȱConsequences).ȱJournalȱpaperȱno.ȱ3ȱexaminesȱtheȱriskȱanalysisȱprocedureȱforȱ Lakachȱsiteȱinȱdetail.ȱSymposiumȱpapersȱno.ȱ1ȱandȱ2,ȱenclosedȱrespectivelyȱinȱAppendixȱ2ȱ andȱAppendixȱ3,ȱalsoȱexploreȱtheȱseismicȱslopeȱfailureȱriskȱanalysisȱprocedures.ȱ

Chapterȱ4ȱpresentsȱtheȱmainȱfindingsȱofȱthisȱresearchȱprogramme,ȱandȱchapterȱ5ȱtheȱ conclusionsȱandȱrecommendationsȱforȱfutureȱwork.ȱ

ȱ

ȱ ȱ

(17)

Chapterȱ2ȱ

2.ȱ SEISMICȱSLOPEȱSTABILITYȱASSESSMENTȱ

2.1SiteȱCharacterizationȱ 2.1.1ȱ GeologicalȱSettingȱ

Theȱareaȱunderȱinvestigationȱextendsȱonȱbothȱsidesȱofȱtheȱcontinentalȱshelfȱbreakȱonȱ theȱsouthernȱmarginȱofȱtheȱGulfȱofȱMexicoȱ(Fig.ȱ1).ȱAȱrelativelyȱwideȱcontinentalȱshelfȱwithȱ gentleȱslopeȱextendingȱintoȱdeepwaterȱcharacterizesȱtheȱcontinentalȱmargin.ȱTheȱsedimentsȱ formȱaȱmixtureȱofȱsiliciclasticȱandȱcarbonateȱcomponents.ȱTheȱdominantȱregionalȱgeologicalȱ processesȱincludeȱnormalȱdepositionȱofȱsediments,ȱslopeȱfailuresȱandȱdepositionalȱprocessesȱ associatedȱtoȱmassȱtransportation,ȱfaulting,ȱandȱoceanographicȱprocessesȱsuchȱasȱwavesȱandȱ currents.ȱ Secondaryȱ geologicalȱ processesȱmayȱ includeȱlowȱfrequencyȱ volcanismȱandȱ earthquakeȱeventsȱ(FugroȱGeoConsultingȱ2009).ȱ

Waterȱdepthȱincreasesȱfromȱ76ȱmȱonȱtheȱcontinentalȱshelf,ȱinȱtheȱsouthernȱpartȱofȱtheȱstudyȱ area,ȱtoȱaboutȱ1,490ȱmȱinȱtheȱnorthernȱportionȱofȱdeepwater.ȱSeafloorȱgradientsȱareȱaboutȱ1ȱ degreeȱorȱlessȱonȱtheȱcontinentalȱshelf,ȱaboutȱ3ȱdegreesȱonȱtheȱcontinentalȱslope,ȱandȱmayȱ locallyȱexceedȱ24ȱdegreesȱinȱgeologicalȱfeaturesȱwithȱsteepȱsidesȱonȱtheȱseabed.ȱTheȱ morphologicalȱfeaturesȱofȱtheȱseabedȱincludeȱlowȱreliefȱfaultingȱandȱfaultȱscarps,ȱandȱaȱ seafloorȱfromȱ ȈhummockyȈȱtoȱwavyȱtypeȱrelatedȱtoȱburiedȱmassȱtransportȱdepositsȱinȱ Pleistoceneȱperiodȱ(FugroȱGeoConsultingȱ2009).ȱ

ȱ Figureȱ1.ȱGeologicalȱmodelȱofȱSiteȱ1,ȱandȱslopeȱunderȱinvestigationȱinȱtheȱGulfȱofȱMexicoȱ

(18)

2.1.2ȱ GeotechnicalȱSettingȱ

Theȱseabedȱsoilsȱonȱtheȱcontinentalȱslopeȱconsistȱofȱcalcareousȱclaysȱrangingȱinȱ consistenceȱfromȱveryȱsoftȱtoȱhardȱwithȱdepth.ȱMostȱofȱtheseȱsoilsȱareȱstratifiedȱandȱ interbeddedȱwithȱ debrisȱ flowȱ depositsȱ overlayingȱmassȱtransportȱ sediments.ȱ Inȱtheȱ continentalȱshelf,ȱtheȱseabedȱandȱshallowȱsoilsȱconsistȱofȱveryȱsoftȱclays,ȱandȱinȱtheȱ overconsolidatedȱsoilȱoutcropȱareaȱtheȱsoilsȱareȱmainlyȱcalcareousȱsandsȱwithȱcarbonateȱ skeletalȱmaterialsȱandȱcementedȱcarbonateȱaggregatesȱ(FugroȱGeoConsultingȱ2009).ȱ

Inȱgeneral,ȱtheȱsoilsȱinȱtheȱareaȱcanȱbeȱcharacterisedȱinȱthreeȱsoilȱunits.ȱTheȱsoilsȱfromȱUnitȱ1ȱ consistȱofȱshallowȱsoils,ȱmostlyȱstratifiedȱunconsolidated,ȱwhichȱareȱyoungerȱthanȱtheȱ erosiveȱsurfaceȱidentifiedȱinȱtheȱCPTȱdataȱ(theȱshallowȱhorizon).ȱTheȱvariabilityȱinȱtheȱ thicknessȱofȱthisȱunitȱnearȱtheȱprominentȱsedimentȱevacuationȱrouteȱisȱattributedȱinȱpartȱtoȱ theȱlossȱofȱsedimentsȱbyȱevacuationȱeventsȱdueȱtoȱslopeȱfailuresȱduringȱtheȱPleistoceneȱandȱ Holocene.ȱTheȱsoilsȱfromȱUnitȱ2ȱconsistȱofȱstratifiedȱsoilsȱcontainingȱdebrisȱflowȱdeposits,ȱ andȱareȱlocatedȱfromȱtheȱshallowȱhorizonȱtoȱtheȱtopȱregionalȱmassȱtransportȱdepositsȱ(theȱ deepȱhorizon).ȱUnitȱ3ȱsoilsȱconsistȱmostlyȱofȱmassȱtransportȱdeposits,ȱandȱareȱlocatedȱfromȱ theȱdeepȱhorizonȱtoȱ200ȱmȱbelowȱtheȱseabedȱ(FugroȱGeoConsultingȱ2009).ȱ

Inȱsituȱandȱlaboratoryȱtestsȱofȱsedimentsȱfromȱtheȱsiteȱidentifyȱthemȱasȱcohesiveȱmaterialsȱ classifiedȱasȱhighȱplasticityȱclays,ȱcalcareousȱsoilsȱwithȱcarbonateȱcontentȱbetweenȱ11ȱtoȱ23%.ȱ Theȱpredominantȱclayȱmineralȱisȱmontmorilloniteȱfollowedȱbyȱillite,ȱandȱtheȱtotalȱofȱclayȱ componentȱisȱaboutȱ60ȱpercentȱofȱtheȱfinesȱ(FugroȱChanceȱdeȱMéxicoȱ2009).ȱ

Laboratoryȱsoilȱsensitivityȱvariesȱfromȱ3ȱtoȱ5ȱupȱtoȱ20ȱmȱbelowȱseafloor,ȱandȱfromȱ1.5ȱtoȱ3ȱ beneathȱ20ȱm.ȱTheȱestimatedȱOCR’sȱindicateȱthatȱtheȱcohesiveȱsoilsȱinȱgeneralȱfluctuateȱfromȱ normallyȱconsolidatedȱtoȱslightlyȱoverconsolidateȱ(FugroȱChanceȱdeȱMéxicoȱ2009).ȱ

2.1.3ȱ SeismicȱSettingȱ

TheȱBayȱofȱCampecheȱisȱlocatedȱinȱaȱregionȱofȱmoderateȱtoȱhighȱseismicȱactivity.ȱItȱisȱ aȱrelativelyȱpassiveȱtectonicȱarea,ȱbutȱitȱisȱlocatedȱaȱfewȱhundredȱkilometresȱnorthȱofȱtheȱ activeȱtripleȱjunctionȱamongȱplateȱboundariesȱofȱNorthȱAmericaȱplate,ȱCaribbeanȱplateȱandȱ Cocosȱplate.ȱMostȱseismicȱactivityȱinȱtheȱregionȱisȱrelatedȱtoȱsubductionȱmarginsȱalongȱ convergentȱCocosȱplateȱ(subducted)ȱandȱNorthȱAmericaȱplate,ȱasȱwellȱasȱtheȱslidingȱprocessȱ inȱtheȱtransformȱplateȱboundariesȱbetweenȱtheȱNorthȱAmericaȱplateȱandȱtheȱCaribbeanȱplateȱ (Fig.ȱ2)ȱ(Geomatrixȱ2006).ȱ

TheȱTransȬMexicanȱVolcanicȱBeltȱisȱrelatedȱtoȱtheȱnorthernȱsectionȱofȱtheȱsubductionȱzoneȱ whereȱtheȱNorthȱAmericanȱplateȱisȱsubductingȱtheȱCocosȱplateȱalongȱtheȱMesoamericanȱ trench.ȱThisȱmostlyȱcalcareousȬalkalineȱactiveȱvolcanicȱarcȱhasȱanȱEastȬWestȱdirectionȱalongȱ centralȱMexico,ȱfromȱtheȱPacificȱOceanȱtoȱtheȱGulfȱofȱMexicoȱ(SuarezȱandȱSinghȱ1986;ȱNixonȱ 1982).ȱTheȱsouthȬeasternȱendȱofȱthisȱvolcanicȱregionȱthatȱisȱcloseȱtoȱtheȱBayȱofȱCampeche,ȱisȱ TuxtlaȱVolcanicȱComplex,ȱwhichȱhasȱhadȱvolcanicȱeruptions.ȱTheȱTransȬMexicanȱVolcanicȱ Beltȱisȱcharacterizedȱbyȱnormalȱfaults,ȱonȱtheȱQuaternaryȱperiod,ȱwithȱwestȬeastȱdirectionȱ andȱtheȱdevelopmentȱofȱhorstȱandȱgrabenȱgeologicalȱstructuresȱ(Geomatrixȱ2006).ȱ

ȱ

(19)

ȱ Figureȱ2.ȱHistoricȱseismicityȱinȱMexicoȱ(modifiedȱafterȱUnitedȱStatesȱGeologicalȱSurveyȱ 2014).ȱTheȱmapȱshowsȱtheȱepicentresȱofȱearthquakeȱeventsȱofȱmagnitudeȱequalȱtoȱorȱlargerȱ thanȱMȱ6ȱfromȱ1900ȱtoȱ2012.ȱTheȱsubductionȱzoneȱfromȱtheȱPacificȱOcean,ȱactiveȱvolcanoes,ȱ andȱtheȱtransformȱzoneȱfromȱtheȱCaribbeanȱSeaȱareȱimportantȱsourcesȱofȱseismicȱactivityȱ nearȱtheȱSiteȱ1.ȱ

2.2ȱ ContrastsȱinȱGeotechnicalȱSoilȱPropertiesȱ

Theȱinitiationȱprocessȱofȱsubmarineȱslopeȱfailuresȱ inȱ activeȱmarginsȱisȱ oftenȱ associatedȱwithȱtheȱcombinationȱofȱseismicȱactivityȱandȱpreconditioningȱfactorsȱlikeȱtheȱ formationȱofȱsoilȱlayerȱinterfacesȱbetweenȱcontrastingȱsoilȱgeotechnicalȱpropertiesȱthatȱformȱ potentialȱslidingȱfailureȱsurfacesȱ(L’Heureuxȱetȱal.ȱ2012;ȱLocatȱandȱLeeȱ2009;ȱBrynȱetȱal.ȱ 2005a;ȱBrynȱetȱal.ȱ2005b;ȱSolheimȱetȱal.ȱ2005a;ȱNorwegianȱGeotechnicalȱInstituteȱ1997).ȱTheseȱ soilȱlayerȱinterfacesȱcanȱbeȱfoundȱinȱtheȱsoilȱprofileȱformingȱone,ȱtwoȱorȱmoreȱsoilȱboundariesȱ inȱtheȱsoilȱmass.ȱ

2.2.1ȱ OneȱSoilȱBoundaryȱ

Theȱjournalȱpapersȱno.ȱ2ȱandȱno.ȱ3ȱproposedȱrespectivelyȱaȱhazardȱanalysisȱandȱaȱriskȱ analysis,ȱrelatedȱtoȱtheȱstabilityȱofȱaȱsubmarineȱslopeȱdealingȱwithȱoneȱboundaryȱbetweenȱ twoȱsoilȱunitsȱwithȱcontrastingȱgeotechnicalȱproperties.ȱTheȱsoilȱboundary,ȱwhichȱmayȱ induceȱaȱshallowȱslide,ȱisȱlocatedȱaboutȱ8ȱmȱdepthȱfromȱtheȱseafloor.ȱ

Thisȱtypeȱofȱsoilȱinterfaceȱisȱcommonȱinȱtheȱmarineȱenvironment,ȱandȱitȱisȱformedȱdueȱtoȱtheȱ interactionȱofȱnormallyȱconsolidatedȱsoilsȱ(NC)ȱoverlyingȱoverconsolidatedȱsoilsȱ(OC),ȱ

(20)

modelledȱusingȱanȱinfiniteȱslopeȱmodelȱ(Nadimȱetȱal.ȱ2003).ȱTheseȱboundariesȱbetweenȱ“old”ȱ andȱ“young”ȱsoilȱlayersȱareȱformedȱdueȱtoȱtheȱdepositionȱofȱsoilȱsedimentsȱoverȱslideȱ surfacesȱleadingȱtoȱtheȱformationȱofȱoverconsolidatedȱsoilsȱbeneathȱthem.ȱ

2.2.2ȱ TwoȱSoilȱBoundariesȱ

Aȱsoilȱlayerȱwithȱcontrastingȱgeotechnicalȱpropertiesȱcomparedȱtoȱtheȱneighbouringȱ soilȱlayers,ȱusuallyȱwithȱlowerȱshearȱstrengthȱandȱstiffness,ȱlocatedȱintoȱtheȱsoilȱprofileȱcanȱbeȱ identifiedȱasȱaȱweakȱlayerȱ(Locatȱetȱal.ȱ2013).ȱWeakȱlayersȱareȱgettingȱmoreȱattentionȱinȱtheȱ geoȬsciencesȱandȱgeoȬengineeringȱcommunitiesȱdueȱtoȱtheirȱcontributionȱinȱtheȱinitiationȱ processȱofȱslopeȱfailuresȱonȱlandȱandȱoffshoreȱenvironmentsȱ(Locatȱetȱal.ȱ2013;ȱL’Heureuxȱetȱ al.ȱ2012;ȱPicarelliȱetȱal.ȱ2012;ȱUrgelesȱetȱal.ȱ2007;ȱCamerlenghiȱetȱal.ȱ2007).ȱHowever,ȱdespiteȱ theirȱintuitivelyȱrelevantȱroleȱinȱtheȱinitiationȱprocessȱofȱslopeȱfailures,ȱtheȱfirstȱattemptȱtoȱsetȱ aȱdefinitionȱofȱ“weakȱlayer”ȱfromȱaȱgeotechnicalȱpointȱofȱviewȱwasȱdoneȱrecentlyȱbyȱLocatȱetȱ al.ȱ(2013).ȱ

Theȱjournalȱpaperȱno.ȱ1ȱquantifiesȱtheȱeffectȱofȱaȱweakȱlayer,ȱlocatedȱatȱ25ȱmȱdepthȱfromȱtheȱ seafloor,ȱinȱtheȱstabilityȱofȱaȱsubmarineȱslope.ȱPaperȱno.ȱ1ȱshowsȱthroughȱnumericalȱanalysesȱ theȱnegativeȱeffectȱofȱweakȱlayersȱonȱtheȱstabilityȱofȱsubmarineȱslopesȱbefore,ȱduring,ȱandȱ afterȱanȱearthquakeȱevent.ȱ

2.3ȱ EvolutionȱofȱSeismicȱSlopeȱStabilityȱ

Whenȱdealingȱwithȱtheȱstabilityȱofȱsubmarineȱslopes,ȱitȱisȱimportantȱtoȱassessȱtheȱspatialȱ andȱtemporalȱstability,ȱespeciallyȱwhenȱoneȱwantsȱtoȱgoȱfurtherȱinȱtheȱstabilityȱanalysisȱ accountingȱforȱtheȱhazardȱandȱriskȱassociatedȱtoȱtheȱslopeȱfailure.ȱJournalȱpapersȱno.ȱ1,ȱ2ȱandȱ 3ȱaccountȱforȱtheȱslopeȱstabilityȱinȱtheȱspaceȱandȱtimeȱdimensionsȱbyȱanalysingȱtheȱslopeȱ stabilityȱbeforeȱ(preȬseismic),ȱduringȱ(coȬseismic),ȱanȱafterȱ(postȬseismic)ȱanȱearthquakeȱ eventȱ(Fig.ȱ3).ȱInȱgeneral,ȱtheȱslopeȱstabilityȱapproachȱthatȱwasȱappliedȱisȱaȱcombinationȱofȱ numericalȱmodellingȱandȱadvanceȱlaboratoryȱtesting.ȱThisȱapproachȱhasȱshownȱtoȱbeȱanȱ efficientȱtechniqueȱtoȱovercomeȱtheȱcurrentȱlimitationsȱinȱtheȱnumericalȱmodelsȱtoȱpredictȱ theȱdegradationȱofȱundrainedȱshearȱstrengthȱdueȱtoȱtheȱgenerationȱofȱexcessȱporeȱpressureȱ andȱstrainȱsofteningȱduringȱcyclicȱloadingȱ(Nadimȱetȱal.ȱ2014;ȱAndersenȱetȱal.ȱ2012).ȱ

(21)

ȱ

Figureȱ3.ȱEvolutionȱofȱseismicȱslopeȱstability.ȱTheȱcurvesȱshowȱtheȱquantificationȱofȱdifferentȱ statesȱofȱstabilityȱofȱaȱsubmarineȱslopeȱinȱtheȱGulfȱofȱMexicoȱthroughoutȱtheȱdifferentȱseismicȱ phases:ȱBeforeȱEQȱ(preȬseismic),ȱDuringȱEQȱ(coȬseismic),ȱAfterȱEQȱ(postȬseismic);ȱandȱassessȱ theȱinfluenceȱofȱaȱweakȱlayerȱonȱitsȱstability.ȱ

ȱ

2.3.1ȱ PreȬSeismicȱStabilityȱ

Theȱstabilityȱofȱsubmarineȱslopesȱisȱanalysedȱbeforeȱanȱearthquakeȱeventȱbasedȱonȱ traditionalȱnumericalȱmethodsȱlikeȱtheȱlimitȱequilibriumȱmethodȱ(LEM)ȱorȱtheȱfiniteȱelementȱ methodȱ(FEM)ȱandȱusingȱtheȱsoilȱpropertiesȱunderȱmonotonicȱloadingȱsuchȱasȱtheȱundrainedȱ shearȱstrengthȱsu.ȱTheȱstabilityȱstatusȱofȱtheȱslopeȱisȱtypicallyȱquantifiedȱbasedȱonȱtheȱfactorȱ ofȱsafetyȱ(FS),ȱwhichȱisȱtheȱratioȱbetweenȱtheȱresistanceȱforcesȱandȱtheȱdrivingȱforces.ȱTheȱ preȬseismicȱfactorȱofȱsafetyȱisȱconsideredȱaȱreferenceȱmeasureȱofȱtheȱinitialȱstabilityȱofȱtheȱ slope.ȱ

2.3.2ȱ CoȬSeismicȱStabilityȱ

Atȱthisȱstageȱtheȱstabilityȱofȱtheȱsubmarineȱslopeȱisȱanalysedȱjustȱafterȱtheȱearthquakeȱ eventȱhasȱfinished,ȱandȱaccountsȱforȱtheȱdegradationȱofȱtheȱsoilȱundrainedȱshearȱstrengthȱ dueȱtoȱtheȱdisturbanceȱofȱtheȱsoilȱstructure,ȱexcessȱporeȱpressureȱgenerationȱandȱstrainȱ softeningȱeffects.ȱTheȱdegradationȱofȱtheȱundrainedȱshearȱstrengthȱwasȱquantifiedȱbasedȱonȱ 1ȬDȱandȱ2ȬDȱresponseȱanalysesȱinȱcombinationȱwithȱlaboratoryȱtests.ȱTheȱnumericalȱcodesȱ AMPLEȱ(Nadimȱ1985)ȱandȱPLAXISȱ2Dȱ(Brinkgreveȱ2011)ȱwereȱusedȱtoȱperformȱgroundȱ responseȱanalysesȱinȱoneȱandȱtwoȱdimensionsȱrespectively.ȱInȱjournalȱpaperȱno.ȱ2,ȱtheȱ Andersenȱetȱal.ȱ(2012)ȱapproachȱwasȱusedȱinȱconjunctionȱwithȱavailableȱmonotonicȱsimpleȱ directȱshearȱtestȱresults,ȱfromȱsampledȱsoilsȱatȱtheȱsite,ȱtoȱestimateȱtheȱsoilȱshearȱstrengthȱ degradationȱ afterȱ earthquakeȱ loading.ȱ Alternatively,ȱ inȱ journalȱ paperȱ no.ȱ 1ȱ Failureȱ

(22)

4).ȱThisȱapproachȱwasȱproposedȱwhenȱtheȱcomputedȱpermanentȱearthquakeȬinducedȱshearȱ strainsȱareȱsmallerȱthanȱtheȱshearȱstrainȱatȱtheȱpeakȱstressȱinȱtheȱstressȬstrainȱcurves.ȱTheȱ stressȬstrainȱcurvesȱcanȱbeȱobtainedȱfromȱsimpleȱdirectȱshearȱtestsȱorȱequivalentȱsoilȱ resistanceȱtestsȱ(FugroȱChanceȱdeȱMéxicoȱ2009).ȱ

Theȱdynamicȱresponseȱanalysesȱshowedȱaȱconcentrationȱofȱlargerȱdisplacementsȱinȱtheȱsoftȱ sideȱofȱtheȱsoilȱinterfacesȱthanȱinȱtheȱrestȱofȱtheȱsoilȱcolumn.ȱThisȱisȱcongruentȱwithȱtheȱ propagationȱofȱshearȱwavesȱtheory.ȱWhenȱincidentȱwavesȱtravelingȱfromȱtheȱbedrockȱ(halfȱ space)ȱtoȱtheȱseafloorȱfindȱinȱtheirȱwayȱrelevantȱsoilȱinterfacesȱ[i.e.ȱchangeȱfromȱmaterialȱ1ȱ (hardȱsoil)ȱtoȱmaterialȱ2ȱ(softȱsoil)]ȱtheȱdisplacementȱamplitudeȱofȱtheȱtransmittedȱwaveȱwillȱ beȱlargerȱthanȱtheȱincidentȱwave.ȱTheȱdifferenceȱinȱdisplacementȱamplitudeȱisȱaȱfunctionȱofȱ theȱcontrastȱinȱstiffnessȱ(Gmax)ȱandȱdensityȱ(U)ȱofȱtheȱtwoȱsoilȱlayers,ȱandȱcanȱbeȱquantifiedȱ basedȱonȱtheȱimpedanceȱratioȱcoefficientȱ(Dz),ȱwhereȱtheȱsmallerȱtheȱcoefficientȱtheȱlargerȱtheȱ contrastȱ(Kramerȱ1996).ȱ

IfȱtheȱclayȱlayersȱinȱtheȱsubmarineȱslopeȱexhibitȱsignificantȱstrainȬsofteningȱbehaviourȱduringȱ theȱearthquakeȱloading,ȱitȱmayȱbeȱpossibleȱthatȱslopeȱfailureȱoccursȱduringȱtheȱearthquakeȱ event.ȱThisȱtypeȱofȱslopeȱfailureȱwasȱdescribedȱbyȱBiscontinȱetȱal.ȱ(2004)ȱinȱScenarioȱ1,ȱwhichȱ isȱoneȱofȱtheȱthreeȱproposedȱslopeȱfailureȱscenariosȱbasedȱonȱgroundȱresponseȱanalysesȱusingȱ effectiveȱanalysisȱSIMPLEȱDSSȱconstitutiveȱmodel.ȱ

ȱ Figureȱ4.ȱFailureȱInteractionȱDiagramsȱ(FID’s),ȱbasedȱonȱcyclicȱtriaxialȱtestsȱwereȱproposedȱtoȱ quantifyȱtheȱshearȱstrengthȱdegradation.ȱThisȱapproachȱwasȱsuggestedȱwhenȱtheȱpermanentȱ earthquakeȬinducedȱshearȱstrainsȱareȱsmallerȱthanȱtheȱshearȱstrainȱatȱtheȱpeakȱstressȱinȱtheȱ stressȬstrainȱcurvesȱ(modifiedȱafterȱFugroȱChanceȱdeȱMéxicoȱ2009).ȱ

(23)

2.3.3ȱ PostȬSeismicȱStabilityȱ

TheȱpostȬseismicȱslopeȱstabilityȱaccountsȱforȱtheȱadditionalȱreductionȱofȱshearȱ strengthȱinȱtheȱsoilȱlayersȱthatȱwereȱsubjectedȱtoȱlargeȱdeformationsȱ(i.e.ȱearthquakeȬinducedȱ shearȱstrainȱlargerȱthanȱshearȱstrainȱatȱtheȱpeakȱstressȱofȱstressȬstrainȱcurves).ȱThisȱadditionalȱ soilȱstrengthȱreductionȱisȱbasedȱonȱundrainedȱcreepȱ(i.e.ȱongoingȱdeformationȱbeforeȱexcessȱ poreȱpressureȱdissipationȱunderȱconstantȱload)ȱandȱaffectsȱmainlyȱtheȱsoilȱlayersȱwithȱ remainingȱshearȱstrengthȱvalueȱcloseȱenoughȱtoȱtheȱactingȱgravityȱforcesȱonȱtheȱclayȱslope.ȱ Moreover,ȱAndersenȱetȱal.ȱ(2012)ȱshowedȱexperimentallyȱthatȱtheȱcyclicȱeffectȱbeforeȱ undrainedȱcreepȱcouldȱleadȱtoȱfailureȱatȱtheȱsameȱloadȱlevelȱwhereȱsoilȱsamplesȱthatȱwereȱ notȱsubjectedȱtoȱcyclicȱloadingȱbeforeȱperformingȱtheȱundrainedȱcreepȱtestȱdidȱnotȱfail.ȱ

Currently,ȱtheȱshearȱstrengthȱreductionȱdueȱtoȱundrainedȱcreepȱcanȱbeȱestimatedȱbasedȱonȱ Andersenȱetȱal.ȱ(2012)ȱapproach,ȱwhoȱproposedȱanȱadditionalȱreductionȱofȱ15Ȭ25%ȱofȱtheȱcoȬ seismicȱshearȱstrengthȱtoȱaccountȱforȱtheȱfittingȱbetweenȱtheȱmonotonicȱandȱcyclicȱcurves,ȱasȱ wellȱasȱtheȱ(negative)ȱshearȱrateȱeffectȱdueȱtoȱundrainedȱcreep.ȱ

AccordingȱtoȱHavelȱ(2004),ȱfailureȱcouldȱhappenȱunderȱdistortionȱcreepȱifȱtheȱsoilȱreachesȱtheȱ secondaryȱcreepȱphase.ȱTheȱlimitȱbetweenȱtheȱprimaryȱandȱsecondaryȱphasesȱofȱcreepȱcanȱbeȱ estimatedȱusingȱtheȱshearȱstressȱratioȱW/WfȱproposedȱbyȱMeschyanȱ(1995)ȱbasedȱonȱdeviatoricȱ creepȱresultsȱinȱclay.ȱAccordingȱtoȱMeschyanȱtestȱresults,ȱtheȱlimitȱbetweenȱtheȱdevelopmentȱ ofȱtheȱprimaryȱandȱsecondaryȱphasesȱofȱcreepȱisȱbetweenȱ0.4ȱandȱ0.55ȱofȱtheȱshearȱstressȱratioȱ W/Wf,ȱwhereȱWȱisȱtheȱmobilisedȱshearȱstressȱandȱWfȱisȱtheȱclayȱshearȱstrength.ȱ

Inȱjournalȱpaperȱno.ȱ1,ȱaȱnewȱinterpretationȱofȱcreepȱtestsȱperformedȱonȱDirectȱSimpleȱShearȱ Apparatusȱwasȱproposedȱtoȱquantifyȱtheȱadditionalȱdegradationȱofȱshearȱstrengthȱdueȱtoȱ undrainedȱcreep,ȱwhenȱstrainȱsofteningȱisȱnotȱexpectedȱinȱtheȱclayȱlayers.ȱTheȱproposedȱ interpretation,ȱopenȱtoȱdiscussion,ȱexploitsȱtheȱapparentlyȱdecreasingȱtendencyȱofȱtheȱshearȱ stressȱwithȱcreepȱtimeȱtoȱforecastȱundrainedȱshearȱstrengthȱasȱaȱfunctionȱofȱtheȱcreepȱtime,ȱ byȱfollowingȱtheȱfailureȱcurveȱ(i.e.,ȱredȱcurveȱJȱ=ȱ15%)ȱ(FugroȱChanceȱdeȱMéxicoȱ2009).ȱ

Journalȱpaperȱno.ȱ2ȱshowedȱthat,ȱtheȱshorterȱtheȱreturnȱperiodȱofȱtheȱearthquake,ȱtheȱgreaterȱ theȱdifferenceȱbetweenȱtheȱcoȬseismicȱandȱtheȱpostȬseismicȱconditionalȱfailureȱprobabilitiesȱ (Tableȱ1).ȱThisȱimpliesȱthatȱtheȱrelativeȱprobabilityȱofȱslopeȱfailureȱbasedȱonȱundrainedȱcreepȱ increasesȱinȱlowȱmagnitudeȱearthquakesȱ(frequentȱmotions),ȱwhichȱisȱconsistentȱwithȱtheȱ hypothesisȱofȱsomeȱresearchersȱwhoȱsuggestȱthatȱundrainedȱcreepȱisȱtheȱmainȱreasonȱforȱ underwaterȱslopeȱfailures.ȱThisȱtypeȱofȱslopeȱfailureȱwasȱdescribedȱbyȱBiscontinȱetȱal.ȱ(2004)ȱ inȱScenarioȱ3,ȱwhichȱisȱoneȱofȱtheȱthreeȱproposedȱslopeȱfailureȱscenariosȱbasedȱonȱgroundȱ responseȱanalysesȱusingȱeffectiveȱanalysisȱSIMPLEȱDSSȱconstitutiveȱmodel.ȱ

Itȱisȱbelievedȱthatȱtheȱfailureȱofȱsubmarineȱslopesȱdueȱtoȱundrainedȱcreepȱmayȱtakeȱdays,ȱ weeks,ȱmonthsȱorȱevenȱseveralȱyearsȱafterȱtheȱstrikeȱofȱanȱearthquake.ȱ

ȱ ȱ ȱ

(24)

Tableȱ1.ȱConditionalȱprobabilityȱofȱslopeȱfailure.ȱ

ReturnȱPeriodȱ Earthquakeȱ (years)ȱ

PeakȱGroundȱ Accelerationȱ(g)ȱ

CoȬSeismicȱ Conditionalȱ Failureȱ Probabilityȱ

PostȬSeismicȱ Conditionalȱ Failureȱ Probabilityȱ

Conditionalȱ RelativeȱIncreaseȱ inȱFailureȱ ProbabilityȱDueȱ toȱUndrainedȱ Creepȱ(times)ȱ

1,000ȱ 0.155ȱ 0.01ȱ 0.08ȱ 8.00ȱ

5,000ȱ 0.280ȱ 0.11ȱ 0.23ȱ 2.09ȱ

10,000ȱ 0.355ȱ 0.22ȱ 0.32ȱ 1.45ȱ

100,000ȱ 0.730ȱ 0.48ȱ 0.53ȱ 1.10ȱ

ȱ

ȱ ȱ

(25)

Chapterȱ3ȱ

3.ȱ HAZARDȱANDȱRISKȱANALYSISȱOFȱEARTHQUAKEȬ INDUCEDȱSLOPEȱFAILUREȱ

3.1ȱ ProbabilityȱofȱEarthquakeȬInducedȱSlopeȱFailureȱ(AnalyticalȱApproach)ȱ Toȱestimateȱtheȱriskȱassociatedȱwithȱtheȱfailureȱofȱsubmarineȱslopes,ȱitȱisȱimperativeȱ toȱquantifyȱtheȱhazardȱandȱtheȱconsequences.ȱHazardȱanalysisȱconcerningȱearthquake–

triggeredȱsubmarineȱslopeȱfailureȱisȱnotȱaȱtrivialȱproblemȱdueȱtoȱtheȱlackȱofȱinformationȱtoȱ establishȱtheȱfrequencyȱmodel.ȱThisȱsectionȱpresentsȱtheȱkeyȱelementsȱofȱtheȱproposedȱslopeȱ failureȱFragilityȱCurveȱprocedureȱdevelopedȱinȱjournalȱpaperȱno.ȱ2,ȱtoȱperformȱhazardȱ analysesȱrelatedȱtoȱtheȱfailureȱofȱsubmarineȱslopesȱinducedȱbyȱseismicȱactivity.ȱ

3.1.1ȱ ProbabilisticȱSeismicȱHazardȱAnalysisȱ(PSHA)ȱ

Amongȱtheȱdiverseȱcausesȱofȱslopeȱfailuresȱinȱoffshoreȱenvironments,ȱearthquakesȱareȱ recognizedȱasȱoneȱofȱtheȱmainȱtriggersȱofȱsubmarineȱslopeȱfailuresȱinȱactiveȱmarginsȱ(Urlaubȱ 2013;ȱHanceȱ2003;ȱLocatȱandȱLeeȱ2002;ȱMorgensternȱ1967).ȱTherefore,ȱitȱisȱimperativeȱtoȱ studyȱtheȱfrequencyȱofȱtheseȱnaturalȱeventsȱinȱrelevantȱareasȱforȱtheȱhumanȱinterests.ȱSeismicȱ activityȱisȱlinkedȱtoȱplateȱtectonicsȱandȱvolcanoȱprocesses,ȱasȱwellȱasȱintraplateȱdeformations.ȱ OneȱofȱtheȱmajorȱuncertaintiesȱinȱassessingȱearthquakeȬinducedȱsubmarineȱslopeȱfailuresȱisȱ relatedȱtoȱtheȱprobabilityȱofȱanȱearthquakeȱeventȱbyȱitself.ȱ

Predictionȱofȱearthquakesȱisȱonlyȱpossibleȱinȱaȱstatisticalȱsense,ȱalthoughȱthereȱareȱseveralȱ linesȱofȱresearchȱattemptingȱtoȱmakeȱearthquakeȱpredictions.ȱAnȱanalysisȱprocedureȱthatȱȱisȱ widelyȱusedȱtoȱdealȱwithȱtheȱearthquakeȱuncertaintyȱisȱtheȱProbabilisticȱSeismicȱHazardȱ Analysisȱ(PSHA)ȱoriginallyȱproposedȱbyȱCornellȱ(1968).ȱThisȱtypeȱofȱprobabilisticȱanalysisȱ accountsȱforȱallȱtheȱseismicȱsourcesȱrelevantȱforȱtheȱsiteȱofȱinterest,ȱasȱwellȱasȱtheȱattenuationȱ ofȱtheȱgroundȱmovementsȱfromȱtheȱseismicȱsourceȱtoȱtheȱsite.ȱTheȱbasicȱformulationȱisȱmeantȱ toȱquantifyȱtheȱprobabilityȱofȱaȱgivenȱgroundȱmotionȱparameter,ȱusuallyȱtheȱpeakȱgroundȱ accelerationȱ(PGA),ȱexceedingȱaȱspecifiedȱvalueȱatȱtheȱsiteȱofȱinterest.ȱUsually,ȱoutcomesȱ fromȱaȱPSHAȱcanȱbeȱrepresentedȱinȱaȱplotȱidentifiedȱasȱseismicȱhazardȱcurveȱ(Fig.ȱ7).ȱ Additionally,ȱseismicȱresponseȱspectraȱareȱdevelopedȱwithȱequalȱprobabilityȱofȱexceedanceȱ atȱallȱfrequenciesȱ(soȬcalledȱuniformȱhazardȱspectra),ȱasȱwellȱasȱrepresentativeȱaccelerationȱ timeȱhistoriesȱofȱtheȱexpectedȱgroundȱmotionsȱforȱseveralȱreturnȱperiodsȱ(Geomatrixȱ2006).ȱ 3.1.2ȱ GroundȱResponseȱAnalysisȱ

Groundȱresponseȱanalysesȱareȱusedȱtoȱpredictȱtheȱresponseȱofȱsoilȱsedimentsȱunderȱ cyclicȱloadingȱtoȱforecastȱadverseȱeffectsȱsuchȱasȱslopeȱfailures,ȱsoilȱliquefactionȱandȱ structuralȱdamageȱleadingȱtoȱfatalitiesȱorȱlossȱofȱproperty.ȱBecauseȱofȱtheȱcomplexȱnatureȱofȱ theȱmechanismȱofȱfaultȱbreak,ȱasȱwellȱasȱtheȱcomplexȱmechanismȱofȱenergyȱtransmissionȱ betweenȱ theȱ sourceȱandȱtheȱ site,ȱ groundȱresponseȱanalysesȱ areȱmainlyȱfocusedȱonȱ determiningȱtheȱresponseȱofȱtheȱsoilȱdepositȱtoȱtheȱmotionȱofȱtheȱbedrockȱimmediatelyȱ beneathȱit.ȱWithȱtime,ȱaȱnumberȱofȱtechniquesȱhaveȱbeenȱdevelopedȱforȱgroundȱresponseȱ

(26)

analysis.ȱTheseȱtechniquesȱareȱoftenȱgroupedȱaccordingȱtoȱtheȱdimensionalityȱofȱtheȱ problemsȱtheyȱcanȱaddressȱ(Kramerȱ1996).ȱ

Groundȱresponseȱanalysesȱrequireȱsoilȱconstitutiveȱmodelsȱthatȱimitateȱkeyȱfeaturesȱofȱtheȱ cyclicȱsoilȱbehaviourȱinȱorderȱtoȱsimulateȱtheȱresponseȱofȱsedimentsȱunderȱearthquakeȱ loading.ȱInȱgeneral,ȱthereȱareȱthreeȱbroadȱclassesȱofȱsoilȱmodels:ȱEquivalentȱLinearȱModels,ȱ CyclicȱNonlinearȱModelsȱandȱAdvancedȱConstitutiveȱModels.ȱEquivalentȱlinearȱmodelsȱareȱ theȱsimplestȱandȱmostȱcommonlyȱusedȱbutȱhaveȱaȱlimitedȱabilityȱtoȱrepresentȱmanyȱaspectsȱ ofȱsoilȱbehaviourȱunderȱcyclicȱloadingȱconditions.ȱAtȱtheȱotherȱendȱofȱtheȱspectrum,ȱ advancedȱconstitutiveȱmodelsȱcanȱrepresentȱmanyȱdetailsȱofȱdynamicȱsoilȱbehaviour,ȱbutȱ theirȱcomplexityȱandȱdifficultyȱofȱcalibrationȱcurrentlyȱmakeȱthemȱimpracticalȱforȱmanyȱ commonȱgeotechnicalȱearthquakeȱengineeringȱproblemsȱ(Kramerȱ1996).ȱ

Basedȱonȱtheȱprobabilisticȱseismicȱhazardȱanalysisȱ(PSHA)ȱcarriedȱoutȱbyȱGeomatrixȱ(2006)ȱ nearȱtheȱslopeȱunderȱinvestigationȱ(Fig.ȱ5),ȱGeomatrixȱrecommendedȱfourȱrepresentativeȱ accelerationȱtimeȱhistoriesȱforȱsiteȱeffectȱanalysesȱ(Tableȱ2).ȱAccordingȱtoȱtheȱtargetȱresponseȱ spectrumȱrecommendedȱbyȱGeomatrixȱ(Fig.ȱ6),ȱtheȱmotionsȱwereȱscaledȱinȱtheȱfrequencyȱ usingȱequivalentȱlinearȱdynamicȱsoftwareȱSHAKEȬNȱ(Selnesȱ1987).ȱTheȱdigitalȱaccelerationȱ recordsȱofȱMotionsȱ1,ȱ2ȱandȱ4ȱwereȱdownloadedȱfromȱPEERȱ(PacificȱEarthquakeȱEngineeringȱ ResearchȱCenter)ȱwebsite,ȱ(UniversityȱofȱCaliforniaȱ2010)ȱhavingȱtwoȱcomponentsȱeachȱ motion.ȱTheȱmotionȱ3ȱwithȱitsȱtwoȱhorizontalȱcomponentsȱwasȱdownloadedȱfromȱCOSMOSȱ (ConsortiumȱofȱOrganizationsȱforȱStrongȱMotionȱObservationȱSystems)ȱwebsite,ȱ(COSMOSȱ 1999).ȱTheȱfourȱmotions,ȱeachȱwithȱ2ȱhorizontalȱcomponentsȱ(inȱtotalȱ8ȱdigitalȱrecords),ȱwereȱ baselineȱcorrectedȱusingȱtheȱsoftwareȱSeismoSignalȱv.ȱ5.1.0ȱ(Seismosoft_Ltdȱ2013).ȱ

ȱ Figureȱ5.ȱTectonicȱstructure,ȱCampecheȱBay,ȱMexicoȱ(modifiedȱafterȱGeomatrixȱ2006).ȱ

(27)

Tableȱ2.ȱRecommendedȱmotionsȱbyȱGeomatrixȱforȱsiteȱeffectȱanalyses.ȱ ȱ

Motionȱ ȱ

EQ/Stationȱ

ȱ Dateȱ

ȱ

Componentȱ ȱ

Magnitudeȱ Focalȱ Distanceȱ (km)ȱ ȱ

MammothȱLakes,ȱ California/BishopȬ ParadiseȱLodgeȱ

Mayȱ27th,ȱ 1980ȱ

N70Eȱ ȱ

6.0ȱ

ȱ S20Wȱ 44ȱ

ȱ 2ȱ

ImperialȱValley,ȱ California/Superstitionȱ Mountainȱ

Octȱ15th,ȱ 1979ȱ

N45Eȱ ȱ

6.5ȱ

ȱ S45Eȱ 25ȱ

ȱ 3ȱ

Nisqually,ȱ

Washington/Mt.ȱErie,ȱ UW.ERWȱStationȱ

Februaryȱ 28th,ȱ2001ȱ

N0Eȱ ȱ

6.8ȱ

ȱ N90Eȱ 150ȱ

ȱ 4ȱ

Denali,ȱAlaska/UAȱ StationȱK2Ȭ06ȱ

Novemberȱ 3er,ȱ2002ȱ

N0Eȱ ȱ

7.9ȱ

ȱ N90Eȱ 270ȱ

ȱ ȱ ȱ

ȱ Figureȱ6.ȱRecommendedȱresponseȱspectraȱforȱtheȱsite.ȱ

Basedȱonȱtheȱhistoricalȱseismicityȱofȱtheȱsite,ȱitȱwasȱestimatedȱthatȱtheȱrelevantȱreturnȱperiodsȱ forȱtheseȱanalysesȱmayȱcorrespondȱtoȱearthquakeȱeventsȱofȱ1,000,ȱ5,000ȱandȱ10,000ȱyearsȱ returnȱperiod.ȱHowever,ȱanȱadditionalȱ100,000ȱyearsȱearthquakeȱeventȱwasȱalsoȱanalysedȱtoȱ exploreȱtheȱslopeȱresponseȱunderȱlargeȱmagnitudeȱearthquakesȱ(Figs.ȱ6ȱandȱ7).ȱ

(28)

ȱ

Figureȱ7.ȱSeismicȱhazardȱcurveȱforȱsiteȱN,ȱcloserȱpointȱtoȱtheȱslopeȱunderȱinvestigation,ȱwithȱ relevantȱreturnȱperiodsȱ1000,ȱ5000,ȱ10,000ȱandȱ100,000ȱyears.ȱ

TheȱdynamicȱanalysesȱwereȱcarriedȱoutȱusingȱtheȱsoftwareȱAMPLE,ȱcodeȱdevelopedȱbyȱ Nadimȱ(1985).ȱTheȱAMPLEȱslopeȱmodelȱassumesȱanȱinfiniteȱslopeȱwithȱtheȱpropagationȱofȱ shearȱwavesȱperpendicularȱtoȱtheȱslope.ȱTheȱconstitutiveȱmodelȱthatȱwasȱusedȱtoȱrunȱtheȱ analysesȱwasȱtheȱHyperbolicȱ(nonȬlinear,ȱfailureȬseekingȱmodel),ȱwhichȱneedsȱasȱinputȱtheȱ soilȱshearȱstrengthȱWstrengthȱandȱtheȱmaximumȱshearȱstiffnessȱGmax.ȱTheȱmainȱoutputȱfromȱtheȱ dynamicȱanalysesȱisȱtheȱaccumulationȱofȱshearȱstrainsȱinȱtheȱdownslopeȱdirectionȱofȱtheȱ slopeȱtoȱassessȱtheȱshearȱstrengthȱreduction.ȱToȱaccountȱforȱtheȱuncertaintiesȱinȱtheȱdynamicȱ responseȱofȱtheȱsubmarineȱslope,ȱdynamicȱresponseȱanalysesȱforȱvariousȱcombinationsȱofȱ representativeȱearthquakeȱgroundȱmotionsȱandȱdynamicȱsoilȱpropertiesȱwereȱcarriedȱoutȱ usingȱtheȱMonteȱCarloȱsimulationȱmethod.ȱ

Theȱshearȱstrengthȱofȱsoil,ȱWstrength,ȱisȱnotȱanȱinvariantȱparameterȱandȱdependsȱonȱseveralȱ factors.ȱDeterminationȱofȱtheȱappropriateȱvalueȱofȱWstrengthȱisȱcomplexȱbecauseȱtheȱdifferentȱ conditionsȱofȱloadingȱduringȱanȱearthquakeȱeventȱinduceȱoutcomesȱinȱoppositeȱdirectionsȱ (rapidȱrateȱofȱloadingȱincreasesȱtheȱshearȱstrength,ȱwhileȱexcessȱporeȱpressuresȱgeneratedȱbyȱ cyclicȱloadingȱdecreaseȱtheȱsoilȱstrength)ȱandȱtheirȱcombinedȱeffectȱonȱtheȱsoilȱstrengthȱ occasionallyȱgivesȱsurprisingȱresults.ȱ

(29)

AfterȱanalysingȱtheȱrandomȱvariablesȱinvolvedȱinȱtheȱdynamicȱanalysisȱusingȱAMPLE,ȱtheȱ variablesȱpresentedȱinȱTableȱ3ȱwereȱidentifiedȱasȱtheȱmostȱrelevantȱforȱthisȱanalysis.ȱTheȱ probabilityȱdistributionȱfunctionsȱandȱassumedȱrangeȱofȱvariationȱforȱeachȱrandomȱvariableȱ wereȱestablishedȱafterȱanȱexploratoryȱanalysis.ȱ

Theȱvariablesȱtakingȱintoȱaccountȱinȱthisȱanalysisȱareȱmeantȱtoȱquantifyȱtheȱuncertaintiesȱinȱ theȱresponseȱofȱtheȱsoilȱcolumn.ȱ

Tableȱ3.ȱRandomȱvariablesȱforȱtheȱdynamicȱresponseȱanalysis.ȱ

No.ȱ Variableȱ AssumedȱRangeȱ P.ȱDistributionȱ

Functionȱ

1ȱ suȱstaticȱFactorȱ 0.85Ȭ1.25ȱ Lognormalȱȱ

(mean=1.05;ȱ mu=0.0246)ȱ ȱ

ȱ ȱ ȱ ȱ 2ȱ

ȱ ȱ ȱ ȱ ȱ

Peakȱgroundȱ acceleration,ȱ PGAȱ

Forȱ1,000ȱyearsȱreturnȱperiod:ȱ Range:ȱ0.140Ȭ0.171gȱ

(10%ȱupperȱandȱlowerȱfromȱtheȱmean)ȱ

Normalȱ (mean=0.155g)ȱ

Forȱ5,000ȱyearsȱreturnȱperiod:ȱ Range:ȱ0.238Ȭ0.322gȱ

(15%ȱupperȱandȱlowerȱfromȱtheȱmean)ȱ

Normalȱ (mean=0.280g)ȱ ȱ

Forȱ10,000ȱyearsȱreturnȱperiod:ȱ Range:ȱ0.266Ȭ0.444gȱ

(25%ȱupperȱandȱlowerȱfromȱtheȱmean)ȱ

Normalȱ (mean=0.355g)ȱ

Forȱ100,000ȱyearsȱreturnȱperiod:ȱ (30%ȱupperȱandȱlowerȱtheȱmean)ȱ Range:ȱ0.511Ȭ0.949gȱ

Normalȱ (mean=0.730g)ȱ ȱ

3ȱ Controlȱ Motionȱ

4ȱmotions,ȱ2ȱcomponentsȱeachȱfromȱ1ȱtoȱ8ȱ (MammothȱLakes,ȱM6.0;ȱImperialȱValley,ȱM6.5;ȱ Nisqually,ȱM6.8;ȱDenali,ȱAlaska,ȱM7.9)ȱ

DiscreteȱUniformȱ Distributionȱ ȱ

ȱ ȱ ȱ ȱ ȱ 4ȱ

ȱ ȱ ȱ ȱ

StrainȱRateȱ Factorȱ f(groundȱ response)ȱ ȱ

su,hȬsr/su,staticȱ

Rangeȱofȱpredominantȱfrequenciesȱofȱoriginalȱ controlȱmotions:ȱ0.35Ȭ13ȱHz.ȱ

Recommendedȱtargetȱresponseȱspectraȱhaveȱ maxȱspectralȱaccelerationȱatȱT=0.15sec,ȱf=6.7ȱHz.ȱ Fundamentalȱfrequencyȱofȱtheȱ200mȱsoilȱprofile:ȱ 0.35ȱHz,ȱT=2.9ȱsec.ȱ

ȱ

Rangeȱofȱshearȱstrainȱrateȱatȱlargeȱstrainsȱinȱtheȱ firstȱ20mȱbelowȱseafloorȱafterȱanalysingȱtheȱ responseȱofȱtheȱsoilȱprofileȱwithȱtwoȱrelevantȱ motions:ȱ

500Ȭ2500ȱ%/hrȱ ȱ

Equivalentȱstrainȱrateȱfactorsȱaccordingȱtoȱ Andersenȱetȱal.ȱ(2012):ȱ

1.2Ȭ1.5ȱ

ȱ ȱ ȱ ȱ ȱ

Continuousȱȱ Uniformȱȱ Distributionȱ (mean=1.35)ȱ ȱ

ȱ

(30)

Forȱtheȱ10,000ȱandȱ100,000ȱearthquakeȱevents,ȱ100ȱrealizationsȱwereȱselectedȱforȱeachȱ randomȱvariableȱusingȱtheȱLatinȱHyperȱCubeȱstratifiedȱsamplingȱtechniqueȱ(McKayȱetȱal.ȱ 2000)ȱtoȱguaranteeȱaȱgoodȱrepresentationȱofȱtheȱdistributionȱfunctionȱwithȱjustȱ100ȱ realizations.ȱForȱtheȱ1,000ȱandȱ5,000ȱearthquakeȱevents,ȱupȱtoȱ500ȱrealizationsȱforȱeachȱ randomȱvariableȱwereȱgeneratedȱdueȱtoȱtheȱlowȱconditionalȱprobabilityȱofȱfailureȱforȱtheseȱ returnȱperiods.ȱTheȱcombinationȱofȱrandomȱvariablesȱwereȱsetȱupȱbasedȱonȱtheȱorderȱgivenȱ byȱtheȱcalculatedȱrealizationsȱforȱeachȱrandomȱvariableȱusingȱMATLABȱ(MathWorksȱ2012)ȱ versionȱ8.ȱ

3.1.3ȱ AdvancedȱLaboratoryȱTestsȱ

Basedȱonȱlaboratoryȱtests,ȱNadimȱetȱal.ȱ(2007)ȱmadeȱaȱcompilationȱofȱtheȱmainȱaspectsȱ ofȱaȱtypicalȱsoilȱelementȱwithinȱaȱsubmarineȱslopeȱtoȱaddressȱtheȱstrengthȱbehaviourȱofȱclaysȱ inȱsubmarineȱslopesȱunderȱearthquakeȱloading.ȱTheȱfollowingȱfactorsȱwereȱinvestigated:ȱ

x RapidȱRateȱofȱLoading.ȱItȱwasȱconfirmedȱthatȱtheȱundrainedȱshearȱstrengthȱincreasesȱ asȱtheȱrateȱofȱloadingȱincreases.ȱ

x Permanentȱ(static)ȱShearȱStress.ȱItȱwasȱobservedȱthatȱtheȱeffectȱofȱaȱconsolidationȱ shearȱstressȱWcȱ(i.e.,ȱgravityȱforcesȱinȱslope)ȱincreasesȱtheȱstrengthȱofȱtheȱsoilȱwhenȱ shearingȱdownhill,ȱbutȱreducesȱtheȱavailableȱshearȱ strengthȱforȱtheȱslopeȱbyȱ decreasingȱtheȱdifferenceȱbetweenȱtheȱpermanentȱshearȱstressȱWcȱandȱtheȱsoilȱshearȱ strengthȱsu

x PostȬearthquakeȱstaticȱshearȱstrengthȱandȱcreepȱdeformationsȱafterȱtheȱearthquake.ȱItȱ wasȱshownȱthatȱtheȱcyclicȱshearȱstrainsȱinducedȱbyȱtheȱearthquakeȱtendȱtoȱreduceȱtheȱ shearȱstrength.ȱIfȱtheȱearthquakeȬinducedȱcyclicȱshearȱstrainsȱareȱlarge,ȱtheȱslopeȱ couldȱundergoȱfurtherȱcreepȱdisplacementsȱafterȱtheȱearthquakeȱandȱexperienceȱaȱ significantȱreductionȱofȱstaticȱshearȱstrength.ȱ

ȱ

TheȱreductionȱinȱtheȱpostȬearthquakeȱundrainedȱshearȱstrengthȱwasȱspecifiedȱpartlyȱbasedȱ onȱtheȱapproachȱsuggestedȱbyȱAndersenȱetȱal.ȱ(2012),ȱusingȱtheȱresultsȱofȱlaboratoryȱtestingȱ carriedȱoutȱbyȱFugroȱChanceȱdeȱMéxicoȱ(2009)ȱinȱsoilȱsamplesȱobtainedȱfromȱtheȱsite,ȱnearȱ theȱlocationȱofȱtheȱslopeȱunderȱinvestigation.ȱ

Andersen’sȱapproachȱspecifiesȱthatȱtheȱstabilityȱofȱaȱslopeȱsubjectedȱtoȱearthquakeȱloadingȱ mayȱbeȱanalysedȱbyȱfirstȱrunningȱaȱdynamicȱanalysis,ȱtoȱdetermineȱtheȱpermanentȱshearȱ strainȱdueȱtoȱearthquake.ȱThen,ȱtheȱpostȬcyclicȱshearȱstrengthȱmayȱbeȱestimatedȱasȱtheȱshearȱ stressȱonȱtheȱmonotonicȱstressȬstrainȱcurve,ȱcorrespondingȱtoȱtheȱcalculatedȱpermanentȱshearȱ strainȱ(Fig.ȱ8).ȱThisȱshearȱstrengthȱshouldȱbeȱreducedȱbyȱ15Ȭ25%ȱtoȱaccountȱforȱtheȱfollowingȱ twoȱeffects:ȱ

x UndrainedȱcreepȱoccurringȱbeforeȱsignificantȱdissipationȱofȱtheȱearthquakeȬinducedȱ excessȱporeȱwaterȱpressure.ȱConsideringȱtheȱeffectȱtimeȱtoȱfailureȱonȱtheȱshearȱ strengthȱduringȱundrainedȱcreep.ȱ

x TheȱpostȬcyclicȱstressȬstrainȱcurveȱstandsȱsomewhatȱbelowȱtheȱvirginȱmonotonicȱ stressȬstrainȱcurve.ȱ

(31)

ȱ Figureȱ8.ȱStressȬstrainȱbehaviourȱinȱmonotonic,ȱcyclicȱandȱpostȬcyclicȱmonotonicȱdirectȱ simpleȱshearȱtestsȱ(DSS)ȱwithȱWave=Wc=20.8ȱkPa=0.16ȱVvcȇȱ(afterȱAndersenȱetȱal.ȱ2012).ȱ

ȱ

Inȱthisȱresearch,ȱtheȱeffectȱofȱundrainedȱcreepȱinȱtheȱclayȱlayersȱisȱconsideredȱusingȱavailableȱ creepȱtestsȱperformedȱonȱsoilȱsamplesȱfromȱtheȱsite.ȱ

ȱ

3.1.4ȱ FragilityȱCurveȱApproachȱ

ThisȱapproachȱisȱaȱmodificationȱofȱtheȱmethodologyȱdevelopedȱbyȱNadimȱ(2012),ȱ duringȱprojectsȱlinkedȱtoȱriskȱanalysesȱinȱseveralȱoffshoreȱgeohazardsȱstudiesȱforȱtheȱoilȱandȱ gasȱindustry.ȱ

Thisȱprocedureȱhasȱ10ȱstepsȱandȱmakesȱuseȱofȱseveralȱmathematicalȱtechniquesȱlikeȱMonteȱ Carloȱsimulation,ȱFORMȱandȱBayesianȱUpdating,ȱinȱorderȱtoȱestimateȱtheȱunconditionalȱ annualȱfailureȱprobabilityȱ(UAFP).ȱTheȱFragilityȱCurveȱprocedureȱattemptsȱtoȱdealȱwithȱkeyȱ uncertaintiesȱassociatedȱwithȱtheȱestimationȱofȱtheȱUAFPȱparameter.ȱItȱalsoȱallowsȱtoȱ estimateȱtheȱUAFPȱduringȱtheȱseismicȱactivityȱ(coȬseismic)ȱandȱafterȱtheȱseismicȱactivityȱ (postȬseismic),ȱprovidingȱadditionalȱinformationȱtoȱdecisionȱmakers,ȱinȱorderȱtoȱmitigateȱtheȱ riskȱassociatedȱwithȱearthquakeȬinducedȱsubmarineȱlandslides.ȱ

ȱ

(32)

3.1.4.1ȱCoȬseismicȱandȱPostȬSeismicȱFragilityȱCurvesȱofȱSlopeȱFailureȱ

TheȱcoȬseismicȱandȱpostȬseismicȱfragilityȱcurvesȱofȱslopeȱfailureȱwereȱdevelopedȱbyȱ fittingȱcumulativeȱdistributionȱfunctionsȱ(CDF’s)ȱtoȱtheȱestimatedȱconditionalȱprobabilitiesȱofȱ slopeȱfailure,ȱduringȱandȱafterȱtheȱearthquakeȱeventȱrespectively.ȱTheȱtermȱȈfragilityȱcurveȈȱ wasȱborrowedȱfromȱtheȱearthquakeȱengineeringȱfield,ȱwhereȱitȱisȱwidelyȱuseȱtoȱassessȱtheȱ probabilityȱofȱstructuralȱfailureȱbasedȱonȱtheȱamplitudeȱofȱaȱgivenȱmotionȱparameterȱ(e.g.ȱ peakȱgroundȱacceleration,ȱPGA).ȱ

Forȱtheȱslopeȱunderȱanalysis,ȱlognormalȱprobabilityȱdistributionsȱwereȱproposedȱtoȱmatchȱ theȱconditionalȱfailureȱprobabilities,ȱwhichȱledȱtoȱtheȱcreationȱofȱtheȱslopeȱfailureȱfragilityȱ curves.ȱ Theȱ momentsȱofȱ theȱ lognormalȱfunctionȱrepresentingȱ theȱcoȬseismicȱhazardȱ conditionȱareȱM=ȱ0.8737gȱandȱStd=ȱ0.6948g,ȱandȱtheȱmomentsȱofȱtheȱlognormalȱfunctionȱ representingȱtheȱpostȬseismicȱconditionȱareȱM=ȱ0.8280gȱandȱStd=ȱ0.8523gȱ(Fig.ȱ9).ȱ

ȱ Figureȱ9.ȱLognormalȱcumulativeȱdistributionȱfunctionsȱproposedȱtoȱmatchȱtheȱcalculatedȱ conditionalȱfailureȱprobabilityȱpointsȱforȱcoȬseismicȱandȱpostȬseismicȱsceneries,ȱleadingȱtoȱ theȱcreationȱofȱtheȱcoȬseismicȱandȱpostȬseismicȱfragilityȱcurves.ȱ

3.1.4.2ȱExpectedȱValueȱMathematicalȱOperatorȱ

AȱkeyȱelementȱtoȱcarryȱoutȱhazardȱanalysesȱusingȱtheȱFragilityȱCurveȱapproachȱ involvesȱtheȱuseȱofȱtheȱexpectedȱvalueȱmathematicalȱoperator.ȱTheȱunconditionalȱannualȱ failureȱprobabilityȱ(UAFP)ȱcanȱbeȱestimatedȱbyȱapplyingȱtheȱexpectedȱvalueȱoperatorȱtoȱtheȱ annualȱfailureȱprobabilityȱ(AFP)ȱrandomȱvariable.ȱTheȱexpectedȱvalueȱofȱaȱrandomȱvariableȱ isȱtheȱintegralȱofȱtheȱrandomȱvariableȱwithȱrespectȱtoȱitsȱprobabilityȱmeasure.ȱTheȱfollowingȱ probabilityȱfunctionsȱwereȱusedȱtoȱestimateȱtheȱexpectedȱvalueȱofȱtheȱAFP:ȱ

(33)

a)ȱSlopeȱfailureȱfragilityȱfunction,ȱnormalizedȱwithȱrespectȱtoȱtheȱreturnȱperiod,ȱwhichȱ evaluatesȱtheȱpossibleȱvalueȱtheȱrandomȱvariableȱcanȱassume;ȱȱ

b)ȱDerivativeȱofȱtheȱseismicȱhazardȱfunction,ȱwhichȱevaluatesȱtheȱprobabilityȱofȱoccurrenceȱ ofȱthatȱvalue.ȱ

Thus,ȱtheȱUAFPȱisȱtheȱprobabilityȬweightedȱaverageȱofȱtheȱAFPȱrandomȱvariable.ȱEq.ȱ(1)ȱ showsȱtheȱmathematicalȱformulation.ȱ

ܷܣܨܲ ൌ ݂ሺܵ݁݅ݏ݉݅ܿܪܽݖܽݎ݀ܨݑ݊ܿݐ݅݋݊ǡ ܨݎ݈ܽ݃݅݅ݐݕܨݑ݊ܿݐ݅݋݊ሻ=ȱ

ܷܣܨܲ ൌ ܧሾܣܨܲሿ ൌ න ݂ሺݔሻ ή ሺܲ௙ȁ௫ f

Ȁܶݔሻ ή ݀ܺ ൌ න ݂ሺݔሻ ή ܣܨܲ௙ȁ௫ f

ή ݀ܺ

ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ(1)ȱ where:ȱ

UAFPȱ=ȱUnconditionalȱannualȱfailureȱprobabilityȱ AFPȱ=ȱAnnualȱfailureȱprobabilityȱrandomȱvariableȱ

Eȱ[AFP]ȱ=ȱExpectedȱvalueȱofȱtheȱAFPȱ(probabilityȱweightedȱaverageȱofȱtheȱannualȱfailure)ȱ f(x)ȱ=ȱProbabilityȱdensityȱfunctionȱfittingȱtheȱseismicȱhazardȱcurveȱ

Pf_xȱ=ȱSlopeȱfailureȱfragilityȱfunctionȱ

Txȱ=ȱReturnȱperiodȱcorrespondingȱtoȱtheȱpeakȱgroundȱaccelerationȱxȱinȱf(x)ȱ

AFPȱf_xȱ=ȱAnnualȱfailureȱprobabilityȱcorrespondingȱtoȱtheȱpeakȱgroundȱaccelerationȱxȱ(Pf_xȱ

normalizedȱwithȱrespectȱtoȱTx

Xȱ=ȱRandomȱvariableȱrepresentingȱtheȱpeakȱgroundȱaccelerationȱ(PGA)ȱinȱtheȱbedrockȱ xȱ=ȱValuesȱthatȱtakeȱtheȱrandomȱvariableȱXȱ

Inȱthisȱstudy,ȱaȱgeneralizedȱparetoȱ(GP)ȱprobabilityȱfunctionȱwasȱproposedȱtoȱfitȱtheȱseismicȱ hazardȱcurveȱrecommendedȱforȱtheȱsiteȱ(Fig.ȱ10).ȱTheȱGPȱprobabilityȱfunctionȱthatȱbestȱfitsȱ theȱseismicȱhazardȱcurveȱhasȱparametersȱkȱ=ȱ0.345,ȱVȱ=ȱ0.0049,ȱTȱ=ȱ0.ȱ

(34)

ȱ

Figureȱ10.ȱGeneralizedȱparetoȱdistributionȱfunctionȱusedȱtoȱfitȱtheȱrecommendedȱseismicȱ hazardȱcurveȱlocatedȱnearȱtheȱslopeȱunderȱinvestigation,ȱidentifiedȱasȱsiteȱn.ȱ

3.1.4.3ȱAnnualȱFailureȱProbabilityȱ(AFP)ȱ

Fig.ȱ11ȱshowsȱtheȱintegrationȱofȱtheȱpreviousȱprobabilityȱfunctionsȱfromȱ0ȱtoȱ1g,ȱ accordingȱtoȱEq.ȱ(1),ȱtoȱestimateȱtheȱcoȬseismicȱandȱpostȬseismicȱunconditionalȱannualȱ probabilityȱofȱslopeȱfailure;ȱthatȱrangeȱwasȱanalysedȱdueȱtoȱitsȱlargeȱcontributionȱtoȱtheȱ UAFP.ȱTableȱ4ȱshowsȱtheȱresultsȱofȱtheȱintegration.ȱ

ȱ

(35)

Figureȱ11.ȱIntegrationȱofȱtheȱslopeȱfailureȱfragilityȱfunctionsȱandȱtheȱseismicȱhazardȱfunction,ȱ accordingȱtoȱEq.ȱ(1),ȱtoȱestimateȱtheȱcoȬseismicȱandȱpostȬseismicȱunconditionalȱannualȱfailureȱ probabilities.ȱDottedȱlinesȱcorrespondsȱtoȱcoȬseismicȱconditionsȱandȱcontinuousȱlinesȱ correspondsȱtoȱpostȬseismicȱconditions.ȱ

FromȱFig.ȱ11,ȱtheȱannualȱfailureȱprobabilityȱcurvesȱ(yellowȱcurves)ȱshowȱthat,ȱtheȱlargestȱ contributionȱtoȱtheȱcoȬseismicȱUAFPȱ(dottedȱyellowȱcurve)ȱisȱbetweenȱ0.2gȱandȱ0.3g.ȱ Accordingȱtoȱtheȱseismicȱhazardȱcurveȱ(Fig.ȱ10),ȱitȱcorrespondsȱtoȱearthquakesȱwithȱreturnȱ periodsȱbetweenȱ2,500ȱandȱ6,666ȱyears.ȱOnȱtheȱotherȱhand,ȱtheȱlargestȱcontributionȱtoȱtheȱ postȬseismicȱUAFPȱ(continuousȱyellowȱcurve)ȱisȱbetweenȱ0.1gȱandȱ0.15g,ȱitȱcorrespondsȱtoȱ earthquakesȱwithȱreturnȱperiodsȱbetweenȱ500ȱandȱ1000ȱyears.ȱHowever,ȱtheȱproductȱofȱtheȱ functionsȱ(redȱcurves)ȱshiftsȱtheȱpeakȱcontributionsȱtoȱtheȱleftȱcorrespondingȱtoȱearthquakesȱ withȱlowerȱreturnȱperiods,ȱsinceȱearthquakesȱwithȱlowerȱreturnȱperiodsȱhaveȱlargerȱ probabilityȱofȱoccurrenceȱthanȱearthquakesȱwithȱlargerȱreturnȱperiods.ȱ

Tableȱ4.ȱUnconditionalȱannualȱprobabilityȱofȱslopeȱfailureȱforȱtheȱsiteȱinȱtheȱGulfȱofȱMexico.ȱ

Probabilityȱ distributionȱ fittingȱtheȱ seismicȱhazardȱ functionȱ

Probabilityȱ distributionȱ fittingȱcoȬseismicȱ fragilityȱfunctionȱ

CoȬSeismicȱ Unconditionalȱ AnnualȱFailureȱ Probabilityȱ (UAFPco

Probabilityȱ distributionȱ fittingȱpostȬ seismicȱfragilityȱ functionȱ

PostȬSeismicȱ Unconditionalȱ AnnualȱFailureȱ Probabilityȱ (UAFPpost Generalizedȱ

Paretoȱ

Lognormalȱ 7˜10Ȭ5ȱ Lognormalȱ 1.2˜10Ȭ3ȱ ȱ

TheȱresultsȱshowȱthatȱtheȱUAFPpostȱincreasesȱbyȱ17ȱtimesȱwithȱrespectȱtoȱtheȱUAFPco.ȱThisȱ suggestsȱthat,ȱundrainedȱcreepȱdevelopedȱinȱtheȱclayȱlayersȱofȱtheȱslopeȱafterȱtheȱearthquakeȱ eventȱplaysȱanȱimportantȱroleȱinȱtheȱslopeȱstability.ȱHowever,ȱthisȱinformationȱmustȱbeȱ complementedȱwithȱgeologicalȱevidenceȱfromȱtheȱsiteȱtoȱdecreaseȱuncertaintiesȱ(Gilbertȱetȱal.ȱ 2014).ȱInȱtheȱnextȱsection,ȱgeologicalȱinformationȱfromȱtheȱsiteȱisȱanalysedȱtoȱcrosscheckȱwithȱ theȱnumericalȱsimulations.ȱ

3.1.4.4ȱComparisonȱwithȱGeologicalȱEvidenceȱ

ToȱobtainȱaȱsoundȱestimateȱofȱtheȱUAFP,ȱanalyticalȱsimulationsȱmustȱbeȱcomparedȱwithȱ theȱgeologicalȱevidence.ȱTheȱgeologicalȱevidenceȱofȱsubmarineȱslopeȱfailuresȱatȱtheȱsiteȱisȱ basedȱonȱtheȱworkȱcarriedȱoutȱbyȱFugroȱGeoConsultingȱ(2009)ȱduringȱtheȱgeologicalȱandȱ geotechnicalȱinvestigationȱinȱtheȱarea.ȱSomeȱrelevantȱconclusionsȱareȱpointedȱoutȱbelow:ȱ

ȱ

x SedimentȱAccumulationȱRatesȱȱ

InȱtheȱareaȱwhereȱtheȱsubmarineȱslopeȱisȱlocatedȱinȱtheȱGulfȱofȱMexico,ȱtheȱcontinentalȱshelfȱ isȱnarrowerȱcomparatively,ȱandȱthisȱfactorȱmayȱfacilitateȱtheȱtransportȱofȱinnerȱshelfȱ sedimentsȱtoȱtheȱcontinentalȱslope.ȱTheȱrateȱofȱaccumulationȱofȱHoloceneȱsoilsȱshowsȱaȱ decreaseȱwithȱincreasingȱwaterȱdepthȱandȱdistanceȱfromȱtheȱedgeȱofȱtheȱcontinentalȱ platform.ȱTheȱrateȱofȱsedimentȱaccumulationȱalsoȱshowsȱlocalȱvariationsȱrelatedȱtoȱsoilȱlossȱ dueȱtoȱslopeȱfailureȱandȱslopeȱmassȱtransportȱprocesses.ȱ

(36)

Thisȱtrendȱinȱtheȱlayerȱthicknessesȱisȱalsoȱobservedȱinȱtheȱunderlyingȱsedimentsȱofȱ Pleistoceneȱandȱolderȱsediments,ȱandȱisȱdirectlyȱrelatedȱtoȱtheȱtrendȱinȱwhichȱtheȱrateȱofȱ clasticȱsedimentationȱdecreasesȱasȱtheȱdistanceȱfromȱonȱlandȱgeoȬsources,ȱsuchȱasȱriverȱ outlets,ȱincreases.ȱTherefore,ȱtheȱmoreȱdistalȱportionsȱofȱtheȱareaȱreceiveȱlessȱsedimentȱthanȱ theȱmoreȱproximalȱareas.ȱ

ȱ

Basedȱonȱtheȱdatingȱresults,ȱtheȱUpperȱHoloceneȱdepositionalȱratesȱdecreaseȱfromȱ136ȱcmȱ/ȱ kyȱ(DCȱȬ15)ȱinȱtheȱupperȱpartȱofȱtheȱcontinentalȱslopeȱtoȱ57.7ȱcmȱ/ȱkyȱ(DCȬȱ09)ȱonȱtheȱlowerȱ partȱofȱtheȱcontinentalȱslopeȱ(FugroȱGeoConsultingȱ2009).ȱ

x HistoryȱofȱSlopeȱFailureȱinȱtheȱContinentalȱSlopeȱ

Theȱresultsȱofȱtheȱsedimentological,ȱbiostratigraphyȱandȱradiocarbonȱanalysesȱonȱselectedȱ samplesȱextractedȱbyȱpistonȱcoresȱshowedȱthatȱslopeȱfailuresȱandȱmassȱtransportȱprocessesȱ inȱtheȱLateȱPleistoceneȱ[i.e.,ȱ2.588ȱmyȱB.P.ȱ(millionȱyearsȱbeforeȱpresent)ȱtoȱ11,700ȱyrsȱB.P.]ȱ wereȱmuchȱgreaterȱinȱextentȱthanȱanyȱrecentȱactivity.ȱEvidenceȱofȱslopeȱfailureȱfromȱtheȱ EarlyȱtoȱMiddleȱHoloceneȱ(approximatelyȱoverȱ4,000ȱyearsȱago)ȱhasȱbeenȱdocumentedȱbyȱtheȱ existenceȱofȱaȱhiatusȱinȱsedimentȱdatingȱprofilesȱwithinȱseveralȱpistonȱcoresȱtakenȱfromȱ deepwater.ȱHowever,ȱthisȱmostȱrecentȱactivityȱdoesȱnotȱinvolveȱanȱareaȱasȱlargeȱasȱtheȱ continentalȱslope,ȱcomparedȱtoȱslopeȱfailuresȱandȱmassȱtransportȱepisodesȱthatȱoccurredȱ duringȱtheȱPleistoceneȱperiod.ȱ

AccordingȱtoȱFugroȱGeoConsultingȱ(2009),ȱoneȱhasȱnotȱfoundȱevidenceȱofȱmostȱrecentȱslopeȱ failuresȱandȱerosiveȱflowsȱofȱmassȱtransportȱatȱlargeȱscale.ȱHowever,ȱtheȱexistenceȱofȱshallowȱ waterȱforaminiferaȱandȱmuddyȱturbiditesȱinȱthreeȱsoilȱcoresȱwithinȱtheȱtransitionalȱslope,ȱ belowȱtheȱcontinentalȱshelfȱborder,ȱindicatesȱthatȱlocalȱslopeȱfailuresȱmayȱhaveȱoccurredȱinȱ relativelyȱrestrictedȱextentȱinȱtheȱareasȱofȱgreaterȱslopeȱgradientȱaboutȱ1,370ȱyearsȱago.ȱ Thatȱestimationȱcorrespondsȱapproximatelyȱtoȱanȱannualȱprobabilityȱofȱslopeȱfailureȱofȱ 1/1,370ȱyearsȱ|ȱ7.3ȉ10Ȭ4.ȱThisȱvalueȱisȱcloseȱtoȱtheȱestimatedȱUAFPpostȱofȱ1.2˜10Ȭ3,ȱcalculatedȱbyȱ numericalȱsimulationsȱforȱtheȱslopeȱunderȱinvestigation,ȱwhichȱisȱlocatedȱbelowȱtheȱ continentalȱshelfȱborder.ȱ

TheȱUAFPpostȱratioȱbetweenȱtheȱanalyticalȱapproachȱandȱtheȱgeologicalȱevidenceȱisȱequalȱtoȱ 1.6,ȱwhereȱatȱthisȱpointȱtheȱanalyticalȱapproachȱseemsȱtoȱbeȱoverconservative.ȱHowever,ȱtheȱ geologicalȱevidenceȱisȱsubjectedȱtoȱtheȱdatingȱmethodȱlimitationsȱandȱtheȱshortageȱofȱ samplesȱtestedȱatȱtheȱshelfȱbreakȱtoȱconfirmȱthisȱvalue.ȱTherefore,ȱatȱthisȱpoint,ȱtheȱanalyticalȱ approachȱandȱtheȱgeologicalȱevidenceȱcouldȱbeȱusedȱasȱhighȱandȱlowȱestimatesȱofȱtheȱ

UAFPpostȱrespectively.ȱ

ȱ

3.2ȱ ProbabilityȱofȱDebrisȱFlowȱImpactȱonȱSeabedȱStructuresȱ

Aȱfailedȱsubmarineȱslopeȱmayȱevolveȱfromȱaȱslideȱtoȱaȱsedimentȱgravityȱflow.ȱ Sedimentȱgravityȱflowsȱmayȱtravelȱlargeȱdistancesȱdependingȱonȱtheȱvolumeȱofȱreleasedȱ mass,ȱslopeȱgeometryȱandȱotherȱfactorsȱlikeȱinteractionȱprocessesȱbetweenȱtheȱsoilȱparticlesȱ andȱtheȱgravityȱflowȱfluid,ȱasȱwellȱasȱtheȱsedimentȱgravityȱflowȱandȱtheȱenvironmentȱfluid.ȱ

(37)

Fig.ȱ12ȱshowsȱtheȱmainȱtypesȱofȱsubmarineȱmassȱmovementsȱbasedȱonȱtheȱdisturbanceȱofȱ internalȱmassȱstructureȱandȱtravelȱdistanceȱofȱdisplacedȱsedimentsȱproposedȱbyȱMiddletonȱ&ȱ Hamptonȱinȱ1973ȱ(Covaultȱ2011).ȱ

ȱ Figureȱ12.ȱ(aȬc)ȱTypesȱofȱsubmarineȱmassȱmovementsȱbasedȱonȱtheȱdegreeȱofȱinternalȱ structureȱdisturbance.ȱ(d)ȱEvolutionȱofȱaȱfailedȱsubmarineȱmassȱalongȱtheȱcontinentalȱslopeȱ (afterȱCovaultȱ2011).ȱ

Journalȱpaperȱno.ȱ3ȱassessesȱtheȱprobabilityȱofȱdebrisȱflowȱimpactingȱtwoȱmanifoldsȱthatȱareȱ requiredȱtoȱdevelopȱaȱnaturalȱgasȱfieldȱinȱtheȱsouthȱpartȱofȱtheȱGulfȱofȱMexico.ȱTheȱapproachȱ thatȱwasȱusedȱtoȱquantifyȱtheȱprobabilityȱofȱimpactȱonȱthoseȱoffshoreȱstructuresȱisȱbasedȱonȱ runoutȱdistanceȱnumericalȱsimulationsȱthatȱattemptȱtoȱmimicȱtheȱbasicȱfeaturesȱofȱmudflowsȱ movingȱdownwardsȱbyȱgravityȱinȱaȱwaterȱenvironment.ȱThisȱapproachȱaccountsȱforȱtheȱ uncertaintiesȱlinkedȱtoȱtheȱinputȱparametersȱneededȱtoȱrunȱtheȱnumericalȱsimulationsȱbyȱ meansȱofȱusingȱtheȱMonteȱCarloȱmethod.ȱTheȱsimulationȱresultsȱareȱusedȱtoȱdevelopȱ probabilityȱdistributionȱfunctionsȱofȱtheȱrunout,ȱwhichȱareȱinȱturnȱusedȱtoȱevaluateȱtheȱ probabilityȱofȱtheȱmudflowȱreachingȱaȱgivenȱlocation.ȱ

3.2.1ȱ RunoutȱNumericalȱSimulationsȱ

Numericalȱmodellingȱofȱsubmarineȱmassȱmovementsȱisȱoftenȱusedȱtoȱestimateȱ gravityȱmassȱflowȱrunoutȱdistances,ȱvelocities,ȱandȱtheȱfinalȱshapeȱofȱtheȱsedimentsȱinȱ offshoreȱgeohazardsȱstudies.ȱSinceȱtheȱpioneeringȱworkȱbyȱEdgersȱandȱKarlsrudȱ(1981),ȱthereȱ haveȱbeenȱimportantȱdevelopmentsȱinȱthisȱfield.ȱ

Inȱjournalȱpaperȱno.ȱ3,ȱtheȱcodeȱBINGȱdevelopedȱbyȱImranȱetȱal.ȱ(2001a)ȱwasȱusedȱtoȱperformȱ theȱrunoutȱnumericalȱsimulations.ȱBINGȱisȱaȱ1ȬDȱnumericalȱmodelȱintendedȱtoȱsimulateȱtheȱ downslopeȱspreadingȱofȱaȱfiniteȬsourceȱsubaqueousȱdebrisȱflow.ȱTheȱmodelȱconsidersȱthreeȱ typesȱofȱfluidȱrheology:ȱBingham,ȱHerschelȬBulkleyȱandȱBilinear;ȱandȱisȱableȱtoȱcomputeȱ runoutȱdistance,ȱdownȬslopeȱvelocityȱandȱthicknessȱofȱtheȱdeposit.ȱ

Referanser

RELATERTE DOKUMENTER

Metals and metalloids from ammunition residues in shooting ranges and landfills may leach into the soil and surrounding watercourses and may pose a threat to exposed wildlife

Fig. In the first two frames the shock wave is located inside the particle cloud. 1 in the last two frames. For a given particle volume fraction, the reflected shock wave is stronger

(phenylethynyl)pyridine hydrochloride) and the metabotropic glutamate 2/3 receptor agonist DCG-IV ((2S,2’R,3’R)-2-(2’,3’-dicarboxycyclopropyl)glycine) cause full protection against

Figure 4-6: A) Steady-state pore-water pressure distributions for soils with different air-entry values and an infiltration rate equal to q a =1e-06 m/s. B) Determination of the

Earthquakes in dry lower crust driven by stress pulses generated in the 247. seismogenic zone have a number of important consequences, many of which are

Due to the risk of submarine landslides hitting one or several anchor groups by eroding the sediment basin plate anchors installed in the seabed is considered instead of the

Early warning system, forensic analysis techniques, landslides prevention, climate change risk, fault tree analysis, success event tree.. Introduction

Test Sand S2 gives some confirmation of this effect; considering either the average value of the four load steps of test Sand S2 or each of the four data points (translated to