• No results found

Pseudomonas gallaeciensis sp. nov., isolated from crude-oil-contaminated intertidal sand samples after the Prestige oil spill.

N/A
N/A
Protected

Academic year: 2022

Share "Pseudomonas gallaeciensis sp. nov., isolated from crude-oil-contaminated intertidal sand samples after the Prestige oil spill."

Copied!
8
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

ContentslistsavailableatScienceDirect

Systematic and Applied Microbiology

jo u r n al h om e p a g e :w w w . e l s e v i e r . d e / s y a p m

Pseudomonas gallaeciensis sp. nov., isolated from

crude-oil-contaminated intertidal sand samples after the Prestige oil spill

Magdalena Mulet

a

, David Sánchez

a

, Ana C. Rodríguez

a

, Balbina Nogales

a,b

, Rafael Bosch

a,b

, Antonio Busquets

a

, Margarita Gomila

a

, Jorge Lalucat

a,b

, Elena García-Valdés

a,b,∗

aMicrobiologia,DepartamentdeBiologia,EdificiGuillemColom,UniversitatdelesIllesBalears,CampusUIB,07122PalmadeMallorca,Spain

bInstitutMediterranid’EstudisAvanc¸ats(IMEDEA,CSIC-UIB),CampusUIB,07122PalmadeMallorca,Spain

a r t i c l e i n f o

Articlehistory:

Received5July2017

Receivedinrevisedform26March2018 Accepted30March2018

Keywords:

Pseudomonas

Pseudomonaspertucinogenagroup Contaminatedsand

Oilspill Genome

a b s t r a c t

StrainsV113T,V92andV120havebeenisolatedfromsandsamplestakenattheAtlanticintertidalshore inGalicia,Spain,afterthePrestigeoilspill.Apreliminaryanalysisofthe16SrRNAandthepartialrpoD genesequencesindicatedthatthesestrainsbelongedtothePseudomonasgenus,buttheyweredistinct fromanyknownPseudomonasspecies.Theywereextensivelycharacterizedbyapolyphasictaxonomic approachandphylogeneticdatathatconfirmedthatthesestrainsbelongedtothePseudomonaspertu- cinogenagroup.Phylogeneticanalysisof16SrRNA,gyrBandrpoDgenesequencesshowedthatthethree strainswere99%similarandwerecloselyrelatedtomembersoftheP.pertucinogenagroup,withlessthan 94%similaritytostrainsofestablishedspecies;Pseudomonaspachastrellaewastheclosestrelative.The AverageNucleotideIndexbasedonblastvalueswas89.0%betweenV113TandtheP.pachastrellaetype strain,belowtheacceptedspecieslevel(95%).Thepredominantcellularfattyacidcontentsandwhole cellproteinprofilesdeterminedbyMALDI-TOFmassspectrometryalsodifferentiatedthestudiedstrains fromknownPseudomonasspecies.WethereforeconcludethatstrainsV113T,V92andV120representa novelspeciesofPseudomonas,forwhichthenamePseudomonasgallaeciensisisproposed;thetypestrain isV113T(=CCUG67583T=LMG29038T).

©2018ElsevierGmbH.Allrightsreserved.

Introduction

ThegenusPseudomonasrepresentsagroupofGram-negative bacteriawithintheGammaproteobacteriathatarenon-sporeform- ingrodsthataremotilebypolarflagella[29].Thebacteriaofthe genusPseudomonas are ubiquitous, metabolically versatile, and importantfortherecyclingofelementsintheenvironment.The genuswasfirstdescribedbyMigula(1894)andcurrentlycomprises alargenumberofspecies,andnewspeciesaredescribedcontin- uously.Atthetimeofthismanuscript’scomposition,167species withvalidnameshavebeendescribed(http://www.bacterio.cict.

fr/p/pseudomonas.html)[8,30].

Corresponding authorat: Microbiologia, Departamentde Biologia, Edifici GuillemColom.UniversitatdelesIllesBalears,Crtra.ValldemosaKm7.5,Campus UIB,07122PalmadeMallorca,Spain.

E-mailaddress:elena.garciavaldes@uib.es(E.García-Valdés).

ThecharacterizationofPseudomonastype strainsbymultilo- cussequenceanalysis(MLSA),concatenatingthesequencesofthe 16SrDNA,gyrB,rpoDandrpoBgenes,permittedtheestablishment oftwomainlineages,PseudomonasfluorescensandPseudomonas aeruginosa,whichweredividedintoseveralgroups(G)andsub- groups(SG)[25,27].Inrecentyears,thePseudomonaspertucinogena Ghasexperiencedasignificantincreaseinthenumberofnewly describedspeciescomparedwiththeothergroups.In2004,this group wasrepresented only by P. pertucinogena[16]; today, it contains 16 species,thefollowing of whichhave beenrecently described:Pseudomonasaestusnigri[34,11],Pseudomonassalegens [3], Pseudomonassalina [39], Pseudomonasoceani [36,10], Pseu- domonas populi [4] and ‘Pseudomonassaudimassiliensis’ not yet validated[6].

Proteobacteriahaveplayedakeyroleinthebacterialcommunity inthecontaminatedintertidalsandafterthePrestigeoilspill[1,2].

Thecharacterizationofthebacterialspeciespresentinthishabitat iscrucialtohaveacomprehensiveknowledgeofthemicroorgan- isms presentin this environment. Thispaperis focusedonthe https://doi.org/10.1016/j.syapm.2018.03.008

0723-2020/©2018ElsevierGmbH.Allrightsreserved.

(2)

genusPseudomonasandaputativenewspeciesinthegenus.Dur- ingastudyofthePseudomonasdiversityincrude-oilcontaminated intertidalsandsamplesafterthePrestigeoilspill(Galicia,Spain)in September2004,severalisolateswereconsideredrepresentatives ofpossiblenewspecies.Theseresultswereconfirmedbytheanal- ysisofpartialsequencesofsigma70subunitofRNApolymerase, encodedbytherpoDgene[26].Threeofthesestrains,V113T,V92 andV120,havebeencharacterizedtaxonomicallyinthepresent study.AnewPseudomonasspeciesisproposedintheP.pertucino- genaG,withthestrainV113Tasthetypestrain.

Materialsandmethods

Bacterialstrainsandgrowthconditions

StrainsV113TandV120havebeenisolatedfrom“BocadoRio”

beach(425011.52N,9611.52W)fromburiedweatheredfuel.

StrainV92wasisolatedfromanunpollutedsandsamplefrom“Praia deSeda” beach(424629.27N,9727.08W). Thestrainswere isolatedaftergrowthin mineralbasalmedium (MMB)[5] with naphthalene(V92andV113T)orhexadecane(V120)asenergyand carbonsources[26].Alistofthebacterialstrainsstudiedasrepre- sentativesofcloselyrelatedspeciesoftheP.pertucinogenagroup isprovided inTableS1[13,18,20,21,31,37,38].Allbacteriawere culturedat30ConLuria-Bertanimedium(LB)for24–48h.

DNAextraction,PCRamplification,DNAsequencingconditions

TheDNAextraction,PCRamplification,primersused,purifica- tionof theamplifiedproductsand DNA sequencingconditions, as well as the sequence analysis procedures, were previously described[28].

Primer sequences corresponding to enterobacterial repetitive intergenic consensus (ERIC) elements (ERIC 1R: 5-ATGTAAGCTCCTGGGGATTCAC-3 and ERIC2: 5- AAGTAAGTGACTGGGGTGAGCG-3) [35] and BOX elements (BoxA1R:5-CTACGGCAAGGCGACGCTGACG-3)[17]wereusedfor DNAfingerprinting.

Phylogeneticanalysis

Individualtreesbasedonthepartialsequencesofthe16SrRNA (1300nucleotides)and gyrB(801 nucleotides)geneshavebeen includedintheanalysis,togetherwiththerpoD(737nucleotides) gene sequence. An analysis of these three concatenated gene sequenceswas alsoperformed witha total of 2838nt [25].An update (until 2018) of the type strains of all species in the P.

pertucinogenaphylogeneticgroup,asdefinedby Muletandcol- laborators[27],wasincludedandcomparedinthepresentstudy (TableS1).TheJukes–Cantor(JC)[14],maximumlikelihood(ML) [9]andmaximumparsimony(MP)[22]algorithmswereusedfor thecomparisons.

Genomesequencingandanalysis

GenomicDNAwasisolatedfromstrainV113T,usingtheWizard GenomicDNAPurificationkit(Promega)accordingtothemanufac- turerinstructions.TheIlluminaHiSeq2000obtainedpaired-end libraryreadsweredenovoassembledusingtheNewblerAssem- bler v2.7 program (Roche). The draft genome was annotated usingtheNCBIProkaryoticGenomeAnnotationPipeline(PGAP).

TheWhole GenomeShotgunprojectfor strain V113T hasbeen deposited in DDBJ/ENA/GenBank under the accession number LMAZ00000000.Theversiondescribedinthispaperisthefirstver- sion,LMAZ01000000.Analysisandcomparisonofthefunctional annotationwasdoneusingtheKyotoEncyclopediaofgenesand

Genomes(KEGG AutomaticAnnotationServer[KAAS])[24].The presenceofplasmidshasbeenassessedmanuallyandalsowith thePlasmidFinderinsilicowebtool[7].

TherelatednessofthenovelspeciesPseudomonasgallaeciensis V113Tgenometowholegenomeshotgunsequencesofallspecies typestrainsintheP.pertucinogenaGavailableinpublicdatabases wasdeterminedbasedonthetetranucleotidefrequencycorrelation coefficients(TETRA),averagenucleotideidentity(ANI)usingthe BLASTNalgorithm(ANIb),andtheMUMMERultra-rapidaligning tool(ANIm)aswellasgenome-to-genomedistance(GGDC)meth- ods.ANIbandANImwerecalculatedusingtheJSpeciessoftware toolavailableatthewebpagehttp://www.imedea.uib.es/jspecies.

Therecommendedspeciescut-offwas95%fortheANIbandANIm indices[32].GGDCwascalculatedusingthewebservicehttp://

ggdc.dsmz.de [23] and using therecommended BLAST method.

TheGGDCresultsshownarebasedontherecommendedformula 2whichisindependentofthegenomelengthandisthusrobust againsttheuseofincompletedraftgenomes.

Cellmorphologyandphysiologicaltests

Cellsize,morphologyandflagellarinsertionweredetermined bytransmissionelectronmicroscopyofcellsfromtheexponential growthphaseinLB.AHitachimodelH600electronmicroscopewas usedat75kV.Thesampleswerenegativelystainedwithphospho- tungsticacid(1%,pH7.0)aspreviouslydescribed[19].

The production of fluorescent pigments was tested onKing Bmedium (PseudomonasagarF, Difco), and pyocyanin produc- tionwastestedonKingAmedium(PseudomonasagarP,Difco).

ThestrainsV113T,V92andV120werecharacterizedphenotypi- callyusingAPI20NEstrips(bioMérieux),BiologGN2andGENIII MicroPlates(Biolog,Hayward,CA).Growthtemperatures(4,6,10, 15,18,25,30,37and42C)weredeterminedinLBmediumand growthinthepresenceofNaCl(0–15%w/v)andpHranges(4–11) wereobservedinNutrientBroth(Merck).

Chemotaxonomicanalysis

Thechemotaxonomicdataobtainedwithmatrix-assistedlaser desorption/ionisation time-of-flightmass spectrometry(MALDI- TOFMS)forstrainsV113T,V92andV120andtheircloselyrelated species type strains were obtained at the Scientific-Technical Services(UniversityofBalearicIslands,Spain)andanalysedaspre- viouslydescribed[34].

Wholecellfattyacidmethylesters(FAME)analysiswasper- formed at theSpanish Type Culture Collection, CECT, Valencia, Spain (http://cect.org/identificaciones) under high standardized conditions.Fattyacidswereextracted,preparedandanalysedas describedinRef.[34].

Resultsanddiscussion Phylogeneticanalysis

A preliminary analysis of the partialsequences of therpoD genecomparedamongallofthePseudomonastypestrainsrevealed thatstrainsV113T,V92andV120couldberepresentativesofa newspecies[26].Acompletephylogeneticanalysishasnowbeen accomplished.

Inallindividualandconcatenatedgenesequencetreesstud- ied,strainsV113T,V92andV120werelocatedinthesamebranch, independentfromtheothertype strainsin theP.pertucinogena group,withPseudomonaspachastrellaeCCUG46540Tbeingtheclos- esttypestraintothegroup(Figs.1and2).Highbootstrapvalues supportedthefollowingJCtreebranches:concatenatedandrpoD gene Trees100%, 16SrRNA geneTree 90%,and gyrB geneTree

(3)

Fig.1. Phylogenetictreebasedon16SrRNAgeneofPseudomonasgallaeciensisandphylogeneticallyclosemembersofPseudomonas.Distancematriceswerecalculatedby theJukes–Cantormethod.Dendrogramsweregeneratedbytheneighbour-joiningmethod.P.aeruginosaATCC10145Twasusedastheoutgroup.Thebarindicatessequence divergence.Percentagebootstrapvalueshigherthan50%(from1000replicates)areindicatedatthenodes.Filledcirclesindicatethatthecorrespondingnodeswerealso obtainedinthetreesgeneratedwiththemaximumlikelihoodandmaximumparsimonymethods.GenBankaccessionnumbersaregiveninparentheses.Accessionnumbers indicatedinboldareforsequencesdeterminedinthisstudy.

72%(rpoDandgyrBgeneTreedatanotshown).Thethreestrains were99%similarintheconcatenatednucleotidesequences,andat leastninedifferentnucleotidesweredetectedintheirconcatenated sequences.Theanalysisoftheconcatenatedsequencesshowedthat theclosesttypestraintostrainsV113T,V92andV120wasP.pachas- trellaeCCUG46540T(93.9,94.0and93.8%similarity,respectively).

Similarresultswithhighbootstrap values wereobtainedwhen MLandMPalgorithmswereused.Commonnodebranchesofthe threetreesareindicatedinFig.2.Theintragroupaveragesimilar- ityvaluecalculatedformembersoftheP.pertucinogenagroupwas 85.0±3.6%(TableS2).The94%similaritybetweenstrainV113Tand P.pachastrellaeaffiliatedthisstrainwiththeP.pertucinogenagroup;

however,thissimilarityislower than97%,thethresholdestab- lishedtodiscriminateamongspeciesinthegenusPseudomonasby MLSAofthreeconcatenatedgenesequences[25].StrainsV113T, V92andV120couldnotbeaffiliatedwithanyPseudomonasspecies previouslydescribedandshouldbeconsideredrepresentativesof anewspecies.

Phenotypiccharacteristics

Strain V113T was a Gram-negative, rod shaped bacterium (0.9–2.0␮mlongand0.6␮mwide)thatwasmotilebymeansof a singlepolarflagellum (Fig. S1). StrainsV113T, V92and V120 werepositiveforcatalaseandoxidaseactivities.Afterincubation for48hat30ConLBplates,colonieswereround,convex,beige incolour,brightandwithentiremargins(1–4mmofdiameter).

StrainsV113T,V92andV120wereabletogrowinLBmediumat 6–37C.Nogrowthwasdetectedat4C or42C. Theoptimum growthwasbetween25–30C. GrowthwasobservedonNutri- entBrothin thepresenceof 2–13%NaCl(w/v),optimum 4-8%, andthebacteriatoleratedapHrangingfrom5to10(optimum 6)(Table1).StrainsV113T,V92andV120andalltheotherstrains

intheP.pertucinogenagroupfailedtoproduceeitherfluorescent pigmentsorpyocyaninwhenculturedfor24–48hat30ConKing BorKingAmedium.Thedifferentialphenotypiccharacteristicsin theAPI20NE,BiologGN2andGENIIItestsareindicatedinTable1.

StrainsV113T,V92andV120sharedtheabilitytoassimilatecapric acid,adipicacid,malicacid;positiveforutilizationofl-alanine, l-glutamic acid, glucuronamide, methyl pyruvate, l-lactic acid, Tween40,␤-hydroxy-d,l-butyricacid,acetoaceticacid,propionic acid,aceticacid,Tween80,sebacicacid,l-asparagineandpositive forthesensitivityof1%sodiumlactate,fusidicacid,d-serine,trole- andomycin,rifamycinSV,lincomycin,guanidineHCl,niaproof4, vancomycin,tetrazoliumviolet,tetrazoliumblue,lithiumchloride, potassiumtellurite, aztreonam,sodiumbutyrate.Other14tests werevariable,indicatingahighintraspeciesdiversity.Therestof testswerenegativeorweak.Incontrast,P.pachastrellaewasunable tousel-alaninamide,d-alanineandl-proline.P.aestusnigriwas unabletoassimilateglucose,arabinoseandmalicacid,andnegative forl-arabinose,cis-aconiticacid,l-alaninamideandd-alanine.

P.oceanicouldbedifferentiatedfromalltypestrainsanalyzedin thisstudybytheabilitytousel-fucose,gelatin,l-phehylalanineand

␣-ketovalericacidandwasnegativefortheutilizationofD-lactic acid.RegardingtheoxidationtestsperformedwithBiologGN2and GENIII,thetypestrainsoftheP.pertucinogenagroupandV113T,V92 andV120showedalimitedabilitytousecarbonsources,withneg- ativeorweakresultsforalargenumberofsubstratesaspreviously published[15,33,34].

Chemotaxonomicanalysis

Theprotein profiles obtainedshowedthat thethree strains, V113T,V92andV120,werecloselyrelated(100%similarity).TheP.

pachastrellaetypestrainwasthecloseststrain(95%similarity),and thesimilaritiestotheotherstrainsintheP.pertucinogenagroup

(4)

Fig.2.Phylogenetictreebasedonconcatenatedsequencesofthe16SrRNA,gyrBandrpoDgenesofPseudomonasgallaeciensisandphylogeneticallyclosemembersof Pseudomonas.DistancematriceswerecalculatedbytheJukes–Cantormethod.Dendrogramsweregeneratedbytheneighbour-joiningmethod.Pseudomonasaeruginosa ATCC10145Twasusedastheoutgroup.Thebarindicatessequencedivergence.Percentagebootstrapvalueshigherthan50%(from1000replicates)areindicatedatthe nodes.Filledcirclesindicatethatthecorrespondingnodeswerealsoobtainedinthetreesgeneratedwiththemaximum-likelihoodandmaximumparsimonymethods.

GenBankaccessionnumbersaregiveninparenthesesinthefollowingorder:16SrRNA,gyrBandrpoDgenes.Accessionnumbersindicatedinboldareforsequences determinedinthisstudy.

Table1

DifferentialphenotypiccharacteristicsofPseudomonasgallaeciensisfromrelatedPseudomonastypestrains.Strains:P.gallaeciensis(1.V113T,2.V92,3.V120),4.P.pachastrellae CCUG46540T,5.P.aestusnigriCECT8317T,6.P.oceaniDSM100277T.

Characteristics 1 2 3 4 5 6

Temperature(C) 6–37 10–37 6–37 7–41 6–37 4–41

NaCl(%)(w/v) 2–13 2–12 2–12 0–10a 2–10b 0–10c

pH 5–10 6–10 5–9 ND 6–10b 6–10c

Reductionofnitrate(API20NEtest) +

Growthon(API20NEtest)

Glucose w + + + +

Arabinose w w w + W

Malicacid + + + + W

Trisodiumcitrate + + + +

BiologGENIIItest

l-Fucose +

Minocycline w +

Gelatin +

BiologGN2test

␣-Cyclodextrin w + orwc

l-Arabinose + w w + orwc

cis-Aconiticacid + w + + orwc

␣-Ketovalericacid +c

d-Lacticacid + + + + + c

l-Alaninamide + w + +c

d-Alanine + w + +c

l-Phenylalanine +c

l-Proline + w + + +c

Putrescine w w +c

Positive(+),negative(−),weak(w)andnotdetermined(ND).Unlessotherwiseindicateddatawereobtainedinthisstudy.a,b,cdatatakenfromaRomanenkoetal.[33],

bSanchezetal.[34]andcWangandSun[36].Oxidaseandcatalasetestswerepositiveforallstrains.

(5)

Table2

Cellularfattyacidcomposition(%)ofPseudomonasgallaeciensis,anditsclosest relatedspeciestypestrainsofthegenusPseudomonas.

Fattyacid(%) 1 2 3 4 5 6

C12:0 9.3 8.7 10.1 10.1 8.9 8.5

C14:0 1.1 0.9 1.2 1.6 0.9 1.3

C16:0 14.8 12.8 14.6 16.9 16.2 20.5

C18:0 1.0 0.9 0.8 0.6 0.7 1.1

C10:03-OH 5.0 4.4 5.7 3.9 5.3 4.9

C12:03-OH 4.2 4.1 4.8 5.1 4.7 3.8

C17:0cyclo 0.0 0.0 0.0 0.0 1.3 0.8

Summedfeatures3 29.3 26.7 32.3 34.5 25.3 24.4 Summedfeatures8 33.4 35.1 30.0 26.9 34.5 30.9 Allstrainswereculturedontryptonesoyagar(TSA)andincubatedat28Cfor48h.

Strains:P.gallaeciensis(1.V113T;2.V92;3.V120),4,P.pachastrellaeCCUG46540T, 5.P.aestusnigriCECT8317T,6.P.oceaniDSM100277T.DataforP.aestusnigriCECT 8317TwerefromSanchezetal.[34].Summedfeaturerepresentsgroupsoftwoor morefattyacidsthatcouldnotbeseparatedbytheMicrobialIdentificationSys- tem.SummedFeature3,C16:1␻7cand/orC16:1␻6c;Summedfeature8,C18:1␻7c and/orC18:1␻6c.

werelowerthan80%.IntheMALDI-TOFMSanalysis,V113T,V92 andV120showedthreecommonm/zpeaks(supermassvalues) thatwerenotpresentinP.pachastrellae,theclosesttypestrain:

4808m/z,6901m/zand9617m/z(Fig. S2).Thesedatafurther supportedtheconclusionthatthesestrainsrepresentedadistinct species that was separated from all other species of the Pseu- domonasgenus,evenatthelevelofexpressionofthemostabundant cellularproteins.

Fatty acid profiles were similar in strains V113T, V92 and V120 (Table 2). Strains V113T, V92 and V120 exhibited very similarprofiles, and summed feature8 (C18:1 ω6c and/orC18:1

ω7c, 35.1–30.0%), summed feature 3 (C16:1 ω7c and/or C16:1 ω6c, 32.3–26.7%), C16:0 (14.8–12.8%), C12:0 (10.4–8.7%),C10:0 3- OH(5.7–4.4%)andC12:03-OH(4.8–4.1%)werethemostabundant fattyacids.ThefattyacidprofilesofstrainsV113T,V92andV120 weresimilar to those of species of theP. pertucinogenagroup, andtheyhadthethreefattyacidstypicallypresentinthegenus Pseudomonas,which areC10:0 3-OH, C12:0 2-OH andC12:0 3-OH, accordingtoPalleroni[29].

TotalDNAfingerprinting

TotalDNAfingerprintingbyERICandBOXPCRsshowedthatiso- latesV113T,V92andV120wererepresentativesofthreedifferent strains(Fig.S3).ThethreeP.gallaeciensisstrainshadsixidentical bandsintheERIC-PCR(425bp,525bp,1150bp,1200bp,1350bp and approximately2500bp);strain V113T had three additional bands(750bp,925bpandapproximately1900bp)andV120had fiveadditionalbands(475bp,600bp,850bp,1300bpand1900bp).

IntheBOX-PCR,strainV113Thadtwoadditionalbands(425bpand 830bp),V92hadthree(400bp,600bpand800bp)andV120had four(200bp,475bp,775bpand1100bp).TheDNAprofileswere alsodifferentfromthoseofthetypestrainsofP.pachastrellaeand P.aestusnigri.

GeneraltaxonomicgenomefeaturesofstrainV113T

Thedraftgenomewasassembledin18scaffolds(71contigs) withan average of 75× coverage. No plasmids weredetected.

Themaincharacteristicsofthewhole-genomesequenceofstrain V113T aredepictedinTable3.Allgenomerelatednessvaluesof strainV113TcalculatedbythealgorithmsANIb,ANImandGGDC againstthespeciestypestrainsoftheP.pertucinogenagroupwere clearlybelowtheestablishedcut-offforeach(ANIb:95%,ANIm:

95%,GGDC:70%),confirmingthatstrainV113Trepresentsanovel genomicspeciesinthegroup.TheresultsareshowninTableS3.

Table3

GenomiccharacteristicsofPseudomonasgallaeciensisV113Tsp.nov.

Characteristics V113T

GeneBankID LMAZ00000000

Genomesize(bp) 4,246,542

No.scaffolds/contigs 18/71

N50scaffold/contigsize 509,657/154,985

Largestcontigsize 1,749,682

Q40PlusBases(%) 4,232,689

Q39MinusBases(%) 502

GC-content(%) 61,2%

Totalgenes 3905

Protein-codinggenes(CDS) 3806

No.hypotethicalproteins 1321

RNAgenes(clusters) 1

tRNAs 46

Pseudogenesa 49

Mobilome:

Integrases 2

Transposases 11

aThenumberoftotalPseudogenesindicatedincludesgeneswithambiguous residues,frameshiftedgenes,incompletegenes,geneswithinternalstopsorother multipleproblems.

Insightsfromthegenomesequence

Threethousandeight-hundredandsixofthe3,905totalgenes werepredictedasprotein-codinggenes(CDS)in thegenomeof strainV113T.Genomeanalysisallowedthepredictionofseveral relevantmetabolictraits.Nitrogencouldbeassimilatedbyreduc- ingnitratetonitriteandammonia,andsulfateandsulfurreduced tosulfide for biosynthesis. Ferricenterobactin was detectedas siderophoreforironadquisition.Sugarsmightbemetabolizedby theglycolyticorthepentosephosphatepathways.

Thestrainswereisolatedfromahighlypollutedareaaftera crude-oilspill.Therefore,thepresenceofgenesforthebiodegra- dationofaromaticandlinealhydrocarbonswasstudied.Acomplete setof16 geneswitha regulatoryprotein oftheFisfamily was detectedforthedegradationpathwayofmonoaromatics,relatedto thecatabolismoftoluene,benzeneandphenol.Amulticomponent phenolhydroxylase(P0,P1,P2,P3,P4andP5)predictedtopro- ducecatecholor4-methylcatechol,whichmightbemetacleaved bycatechol2,3-dioxigenasetoproducepyruvateandacetyl–CoA.

Thissetofgeneswas97-100%identicaltothecorrespondinggenes oftheclose-relatedspeciesP.aestusnigriandP.pachastrellaetype strains[11,12].Acompletesetofgenesrelatedtoalkanedegra- dationpathwayweredetected.Thealkane1-monooxygenaseand therubredoxinconductingtothecorrespondingfattyacidwere 98%identicaltothehomologousproteinsinP.pachastrellae.

Genesrelatedwiththeinteractionwiththeenvironment,like thoserelatedtosecretionsystems,biofilmformationormotility werestudied in detail. Types IIand VI secretionsystems were detected,butnoevidenceofTypesI,III,IVorVwasfound.Addition- ally,systemsrelatedtoquorumsensingpathways(BarA/Uvry/CsrA system),tobiofilmformation(GacA/Rsmpathway)and involved inalginatebiosynthesishavebeenfound.Genesrelatedtoefflux pumpsasmexH,mexIandoprMinvolvedinbetalactamresistance havebeenfoundandalsothemultidrugresistanceeffluxpumpmtd genes.Togetherwithflagellation,genesfortwitchingmotilityand swarmingwerepresent.

Themobilomerepresentsoneofthemaincontributorstobac- terial intraspeciesvariability. The prophage contributiontothe bacterialgenome is highly variable. A clusterof 28 genes, six- teenbacteriophagestructuralproteins,and12hypoteticalproteins relatedtophageswerefoundinscaffold3(ASB5811015to11150).

Additionally,11transposases and2integraseswerefoundscat- teredinthechromosome.

(6)

Table4

ProtologueforPseudomonasgallaeciensissp.nov.

Taxonumber TA00074

Speciesname Pseudomonasgallaeciensis

Genusname Pseudomonas

Specificepithet gallaeciensis

Speciesstatus sp.nov.

Speciesetymology N.L.fem.adj.gallaeciensis,pertainingtoGalicia,Spain,wherethetypestrainwasisolated

Designationofthetypestrain V113

Straincollectionnumbers CCUG67583,LMG29038

16SrRNAgeneaccessionnumber FN995250

Alternativehousekeepinggenes rpoD[FN994225],gyrB[LN876645]

Genomeaccessionnumber LMAZ00000000

Genomestatus draft

Genomesize 4246542

GCmol% 61.2

Countryoforigin Spain

Regionoforigin Galicia

Other Lari ˜nomunicipality

Dateofisolation 01September2004

Sourceofisolation SandcontaminatedbyPrestigecrudeoil

Samplingdate 01September2004

Geographiclocation PraiadaSedabeach

Latitude 424629.2N

Longitude 9727.1W

Depth 0

Altitude(alti) 0

Numberofstrainsinstudy 3

Sourceofisolationofnon-typestrains PraiadaSedabeach,Lari ˜nomunicipality,Galicia,Spain Growthmedium,incubationconditions

usedforstandardcultivation

Luria-Bertanimedium(LB)at30C

Gramstain NEGATIVE

Cellshape rod

Cellsize(lengthordiameter) 0.9–2.0␮mlongand0.6␮mwide

Motility Motile

Ifmotile Flagellar

Ifflagellated Onepolarflagellum

Sporulation(restingcells) None

Colonymorphology Round,convex,colourbeige,brightandwithentiremargins(1–4mmdiameter)onLBplatesafter incubationfor48hat30C

Temperaturerange 6–37

Lowesttemperatureforgrowth 6

Highesttemperatureforgrowth 37

Temperatureoptimum 25–30

LowestpHforgrowth 5

HighestpHforgrowth 10

LowestNaClconcentrationforgrowth 2

HighestNaClconcentrationforgrowth 13

Salinitycategory Moderatehalophile(optimum7–15%NaCl)

PositivetestswithBIOLOG l-Alanine,l-glutamicacid,glucuronamide,methylpyruvate,l-lacticacid,Tween40,

␤-hydroxy-d,l-butyricacid,acetoaceticacid,propionicacid,aceticacid,Tween80,sebacicacid, l-asparagine,1%sodiumlactate,fusidicacid,d-serine,troleandomycin,rifamycinSV,lincomycin, guanidineHCl,niaproof4,vancomycin,tetrazoliumviolet,tetrazoliumblue,nalidixicacid,lithium chloride,potassiumtellurite,aztreonam,sodiumbutyrate

NegativetestswithBIOLOG Negativeallstrains:d-maltose,d-trehalose,d-cellobiose,gentiobiose,sucrose,turanose, stachyose,d-raffinose,␣-d-lactose,d-melibiose,b-methyl-d-glucoside,d-salicin, N-acetyl-d-glucosamine,N-acetyl-␤-d-mannosamine,N-acetyl-d-galactosamine,

N-acetyl-neuraminicacid,␣-d-glucose,d-mannose,d-fructose,d-galactose,3-methylglucose, d-fucose,l-fucose,l-rhamnose,inosine,d-sorbitol,d-mannitol,d-arabitol,myo-Inositol, d-glucose-6-PO4,d-fructose-6-PO4,d-asparticacid,d-serine,gelatin,glycyl-l-proline,l-arginine, l-asparticacid,l-histidine,l-pyroglutamicacid,l-serine,pectin,d-galacturonicacid,d-galactonic acidlactone,d-gluconicacid,d-glucuronicacid,mucicacid,quinicacid,d-saccharicacid, p-hydroxy-phenylaceticacid,d-lacticacidmethylester,d-malicacid,gamma-amino-butyricacid,

␣-keto-butyricacid,formicacid,sodiumbromate,␣-cyclodextrin,i-erythritol,lactulose,d-psicose, xylitol,d-glucosaminicacid,itaconicacid,␣-ketovalericacid,malonicacid,l-alanyl-glycine, glycyl-l-asparticacid,l-histamine,hydroxy-l-proline,l-leucine,l-ornitine,l-phenylalanine, l-threonine,d,l-carnitine,urocanicacid,uridine,thymidine,phenylethylamine,2,3-butanediol, glycerol,d,l-␣-glycerolphosphate,glucose-1-phosphateWeakornegative:dextrin,glycogen,

␣-hydroxybutyricacid,adonitol,glycyl-l-glutamicacid,putrescine,2-aminoethanol VariabletestswithBIOLOG Minocycline,citricacid,␣-ketoglutaricacid,l-malicacid,bromo-succinicacid,nalidixicacid,

acetoaceticacid,l-arabinose,mono-methyl-succinate,cis-aconiticacid,succinicacid,succinamic acid,l-alaninamide,d-alanine,l-proline

PositivetestswithAPI CAP,ADI,MLT

NegativetestswithAPI(APIN) NEGATIVE:TRP,GLU,ADH,URE,ESC,GEL,PNPG,MNE,MAN,NAG,MAL,GNT,PAC,WEAK:ARA VariabletestswithAPI(APIV) NO3,GLU(fermentation),CIT

Commercialkitsused BIOLOGGENIII,BIOLOGGN2,API20NE

Energymetabolism Chemoorganotroph

(7)

Table4(Continued)

Oxidase Positive

Catalase Positive

Negativetests FluorescenceonKingAandKingBagar

Majorfattyacids Summedfeature8(C18:1ω6cand/orC18:1ω7c,35.1–30.0%),summedfeature3(C16:1ω7cand/or C16:1ω6c,32.3–26.7%),C16:0(14.8–12.8%),C12:0(10.4–8.7%),C10:03-OH(5.7–4.4%)andC12:03-OH (4.8–4.1%)

Biosafetylevel 1

Habitat Beachsand(http://purl.obolibrary.org/obo/ENVO00002138)

Bioticrelationship Free-living

Knownpathogenicity None

Conclusion

Thechemotaxonomic datasupportedbyMALDI-TOFandcell fatty acid methyl esters of the strains V113T, V92 and V120 clearlylocatethesestrainsinthePseudomonasgenus.Thegenomic sequencesof thehousekeepinggenes studied(16SrRNA, rpoD, gyrB)indicatethatthethreestrainsarerepresentativeofanew species. The ANIb genome analysis confirms this presumption.

StrainsV113T,V92andV120wereisolatedfromdifferentsitesof theintertidalcoastandaremembersofanewbacterialspeciesable topersistinacontaminatedenvironment.

Consideringthephylogenetic,chemotaxonomicandphenotypic characteristicspresented,weproposeanewspecies,P.gallaecien- sissp.nov.,withP.gallaeciensisV113Tasthetypestrain.Thefull descriptionofthenewtaxonisshowninTable4togetherwiththe descriptionoftheclosestspeciesinTableS4asobtainedfromthe DigitalProtologuewebsite(http://imedea.uib-csic.es/dprotologue/

)inwhichthenewspecieswasregisteredunderreferenceTA00074.

Note

TheGenBank/EMBL/DDBJaccessionnumbersforthenucleotide sequencesreportedin thisstudyare asfollows: LN876648and LN881559 (strain P. gallaeciensis V120 and Pseudomonas yang- mingensisDSM24213Tforthe16SrRNA),LN876645, LN876646, LN876647,LN881554,LN881555,LT724117andLT837808(strain P.gallaeciensisV113T,V92,V120,P.salegensCECT24213T,P.yang- mingensisDSM24213T,P.salinaJCM19469TandP.populiCCTCC AB2013069TforthegyrBgene),LN881556,LN881557,LN881558, LT724118andLT837807(strainP.salegensCECT8338T,P.yangmin- gensisDSM24213T,PseudomonasformosensisJCM18415T,P.salina JCM19469TandP.populiCCTCCAB2013069TfortherpoDgene).

Acknowledgements

WeareindebtedtoDr.M.Teuberfor correctingtheetymol- ogy.Financial supportwas obtainedfromthe SpanishMINECO throughprojectCGL2015-70925,withFondoEuropeodeDesarrollo Regional(FEDER)co-funding.MargaritaGomilawassupportedby apostdoctoralcontractfromtheConselleriad’Innovació,Recerca iTurismedelGoverndelesIllesBalearsandtheEuropeanSocial Fund.Allauthorsweresupportedbyfundsforcompetitiveresearch groupsfromtheGovernmentoftheBalearicIslands(withFEDER co-funding).D.Sánchezwastherecipientofapre-doctoralfellow- shipfromtheConselleriad’Interior,DireccióGeneraldeRecerca, DesenvolupamentTecnològiciInnovaciódelGoverndelesIlles Balears(FPI09)andtheEuropeanSocialFund(ESF).

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,athttps://doi.org/10.1016/j.syapm.2018.03.

008.

References

[1]Acosta-González,A.,Martirani-vonAbercron,S.M.,Rosselló-Móra,R.,Wittich, R.M.,Marqués,S.(2015)Theeffectofoilspillsonthebacterialdiversityand catabolicfunctionincoastalsediments:acasestudyonthePrestigeoilspill.

Environ.Sci.Pollut.Res.Int.22,15200–15214.

[2]Alonso-Gutiérrez,J.,Figueras,A.,Albaigés,J.,Jiménez,N.,Vi ˜nas,M.,Solanas, A.M.,Novoa,B.(2009)Bacterialcommunitiesfromshorelineenvironments (CostadaMorte,northwesternSpain)affectedbythePrestigeoilspill.Appl.

Environ.Microbiol.75,3407–3418.

[3]Amoozegar, M.A., Shahinpei, A., Sepahy, A.A., Makhdoumi-Kakhki, A., Seyedmahdi,S.S.,Schumann,P.,Ventosa,A.(2014)Pseudomonassalegenssp.

nov.,ahalophilicmemberofthegenusPseudomonasisolatedfromawetland.

Int.J.Syst.Evol.Microbiol.64,3565–3570.

[4]Anwar,N.,Abaydulla,G.,Zayadan,B.,Abdurahman,M.,Hamood,B.,Erkin,R., Ismayil,N.,Rozahon,M.,Mamtimin,H.,Rahman,E.(2016)Pseudomonaspopuli sp.nov.,anendophyticbacteriumisolatedfromPopuluseuphratica.Int.J.Syst.

Evol.Microbiol.66,1419–1425.

[5]Aragno,M.,Schlegel,H.G.(1981)Thehydrogen-oxidizingbacteria.In:Starr, M.P.,Stolp,H.,Trüper,H.G.,Balows,A.,Schlegel,H.G.(Eds.),TheProkaryotes.A HandbookonHabitats,IsolationandIdentificationofBacteria,Springer-Verlag, Berlin,pp.865–893.

[6]Azhar,E.I.,Papadioti,A.,Bibi,F.,Ashshi,A.M.,Raoult,D.,Angelakis,E.(2017)

‘Pseudomonassaudimassiliensis’sp.nov.anewbacterialspeciesisolatedfrom airsamplesintheurbanenvironmentofMakkah,SaudiArabia.NewMicrobes NewInfect.16,43–44.

[7]Carattoli,A.,Zankari,E.,Garcia-Fernandez,A.,VoldbyLarsen,M.,Lund,O.,Villa, L.,Aarestrup,F.M.,Hasman,H.(2014)PlasmidFinderandpMLST:insilicodetec- tionandtypingofplasmids.Antimicrob.AgentsChemother.58,3895–3903.

[8]Euzéby,J.P.(1997)Listofbacterialnameswithstandinginnomenclature:a folderavailableontheinternet.Int.J.Syst.Bacteriol.47,590–592.

[9]Felsenstein,J.(1981)EvolutionarytreesfromDNAsequences:amaximum likelihoodapproach.J.Mol.Evol.17,368–376.

[10]García-Valdés, E., Gomila,M., Mulet,M.,Lalucat, J. (2018) Draftgenome sequenceofPseudomonasoceanitypestrainDSM100277T,adeep-seabac- terium.GenomeAnnounc.6,e00254–18.

[11]Gomila, M., Mulet,M.,Lalucat, J.,García-Valdés,E. (2017) Draftgenome sequenceofthemarinebacteriumPseudomonasaestusnigriVGXO14T.Genome Announc.5,e00765–17.

[12]Gomila, M., Mulet,M.,Lalucat, J.,García-Valdés,E. (2017) Draftgenome sequenceofPseudomonaspachastrellaetypestrainCCUG46540T,adeep-sea bacterium.GenomeAnnounc.5,e00136–17.

[13]Hwang,C.Y.,Zhang,G.I.,Kang,S.H.,Kim,H.J.,Cho,B.C.(2009)Pseudomonas pelagiasp.nov.,isolatedfromacultureoftheAntarcticgreenalgaPyramimonas gelidicola.Int.J.Syst.Evol.Microbiol.59,3019–3024.

[14]Jukes,T.,Cantor,C.(1969)Evolutionofproteinmolecules.In:Munro,H.N.(Ed.), MammalianProteinMetabolism,AcademicPress,NewYork,pp.21–132.

[15]Kim,K.H.,Roh,S.W.,Chang,H.W.,Nam,Y.D.,Yoon,J.H.,Jeon,C.O.,Oh,H.M.,Bae, J.W.(2009)Pseudomonassabulinigrisp.nov.,isolatedfromblackbeachsand.

Int.J.Syst.Evol.Microbiol.59,38–41.

[16]Kawai,Y.,Yabuuchi,E.(1975)Pseudomonaspertucinogenasp.nov.,anorgan- ismpreviouslymisidentifiedasBordetellapertussis.Int.J.Syst.Bacteriol.25, 317–323.

[17]Koeuth,T.,Versalovic,J.,Lupski,J.R.(1995)Differentialsubsequenceconser- vationsupportsthemosaicnatureofinterspersedrepetitiveBOXelementsin bacteria.GenomeRes.5,408–418.

[18]Lai, Q.,Shao, Z. (2008) Pseudomonas xiamenensissp. nov.,a denitrifying bacteriumisolated fromactivatedsludge. Int.J.Syst. Evol.Microbiol.58, 1911–1915.

[19]Lalucat,J.(1988)Analysisofrefractile(R)bodies,in:Mayer,F.(Ed.),Methodsin MicrobiologyElectronMicroscopyinMicrobiology,vol.20,AcademicPress, London,pp.79–90.

[20]Lin, S.Y., Hameed,A., Liu, Y.C., Hsu, Y.H., Lai, W.A., Young, C.C. (2013) Pseudomonasformosensissp.nov.,agamma-proteobacteriaisolatedfromfood- wastecompostinTaiwan.Int.J.Syst.Evol.Microbiol.63,3168–3174.

[21]Liu,M.,Luo,X.,Zhang,L.,Dai,J.,Wang,Y.,Tang,Y.,Li,J.,Sun,T.,Fang,C.(2009) Pseudomonasxinjiangensissp.nov.,amoderatelythermotolerantbacterium isolatedfromdesertsand.Int.J.Syst.Evol.Microbiol.59,1286–1289.

[22]Nei,M.,Kumar,S.2000MolecularEvolutionandPhylogenetics,OxfordUniver- sityPress,NewYork.

Referanser

RELATERTE DOKUMENTER

The following ten amino acids were detected: leucine, valine, alanine, serine, glutamic acid, lysine, taurine, proline, tyrosin and ·metJhionine, the 3 last ones

Aspartic acid Threonine Serine Glutamic acid Proline Glycine Alanine Valine Cystine Methionine (chrom.) Methionine (color.) Isoleucine Leucine Tyrosine Phenylalanine

Nine results of gaschromatographic analyses of cod liver oil are compared in detail with the present findings, and the average composition of fatty acids in

Lipid Metabolism and Tissue Composition in Atlantic salmon (Salmo salar L.) - Effects of Capelin Oil, Palm Oil, and Oleic Acid-Enriched Sunflower Oil as Dietary Lipid

Clone VIII/1 separated from the other pollen samples based on its high content of many compounds (ellagic acid, cinnamic acid, aesculetin, coniferyl aldehyde, naringin,

Besides changes in amino acid patterns (glutamic acid, aspartic acid, and asparagine), monosaccharide levels (fructose) were strongly enhanced until the end of

Lactation main effects plot Genotyp main effects plot R-sq % Lactation mani effects plot Genotyp main effects plot R-sq % Lactation main effects plot Genotyp main effects plot R-sq

Lactation main effects plot Feed main effects plot R-sq % Lactation main effects plot Feed main effects plot R-sq % Lactation main effects plot Feed main effects plot R-sq