• No results found

Many adaptations, optimizations, and tests have been left for the further due to lack of time. Further work concerns improvements of electronics, process au-tomation, deeper analysis and covering wider frequency ranges. There are some ideas that I would have liked to try during developing prototype in Chapter 3.

Although the system is tested for a limited range of frequencies from 50kHz to 500kHz and it could cover 90% of the target bandwidth in the design specifi-cation, the device is potentially capable of generating wideband signals includ-ing lower and higher frequencies than 50kHz and 500kHz, respectively.

In addition, the process of analyzing the excitation response and plotting impedance spectra could be automated. Attempts have been made to migrate from several computing stages to an automated and user-friendly interface. But due to time constraint and lack of proper documentation for developing the user interface tool, this process is left for further work.

Several potential causes have been identified and presented in the fishbone diagram to improve the performance of the system. For improving accuracy of the measurement, it is recommended to minimize the crest factor of the re-sponse signal in the interest of using maximum dynamic range of ADC.

Bibliography

Aberg, P. et al. (2004). “Skin cancer identification using multifrequency electri-cal impedance-a potential screening tool”. In:IEEE Transactions on Biomed-ical Engineering 51.12, pp. 2097–2102. ISSN: 0018-9294. DOI: 10 . 1109 / TBME.2004.836523.

Abtahi, Farhad, Fernando Seoane, and Kaj Lindecrantz (2014). “Electrical bioimpedance spectroscopy in time-variant systems: Is undersampling always a problem?”

In: Journal of Electrical Bioimpedance5. ISSN: 1891-5469. DOI: 10 . 5617 / jeb . 80128 - 33. URL: https : / / www . journals . uio . no / index . php / bioimpedance/article/view/801.

Ai Hui, Tan and K. R. Godfrey (2002). “The generation of binary and near-binary pseudorandom signals: an overview”. In: IEEE Transactions on In-strumentation and Measurement51.4, pp. 583–588. ISSN: 0018-9456.DOI: 10.1109/TIM.2002.802243.

Beauchamp, K. G. (1975).Walsh functions and their applications / K. G. Beauchamp.

Techniques of physics ; 3. London ; New York: Academic Press.ISBN: 0120840502.

Bera, Tushar Kanti (2014). “Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review”. In:Journal of Medical Engineering2014, p. 28.

DOI:10.1155/2014/381251.URL:http://dx.doi.org/10.1155/2014/

381251.

Bogdan, Adamczyk (2017). Spectra of Digital Clock Signals, Web Page. URL: https://incompliancemag.com/article/spectra- of- digital- clock-signals/.

Bos, A. Van Den (1987). “A new method for synthesis of low-peak-factor sig-nals”. In:IEEE Transactions on Acoustics, Speech, and Signal Processing35.1, pp. 120–122.ISSN: 0096-3518.DOI:10.1109/TASSP.1987.1165028.

Bos, A. Van Den and R. G. Krol (1979). “Synthesis of discrete-interval binary signals with specified Fourier amplitude spectra”. In:International Journal of Control30.5, pp. 871–884.ISSN: 0020-7179.DOI:10.1080/00207177908922819.

URL:https://doi.org/10.1080/00207177908922819.

Brown, B. H. (2003). “Electrical impedance tomography (EIT): a review”. In:

Journal of Medical Engineering & Technology27.3, pp. 97–108. ISSN: 0309-1902. DOI:10.1080/0309190021000059687. URL:https://doi.org/10.

1080/0309190021000059687.

Chang, Byoung-Yong and Su-Moon Park (2010). “Electrochemical Impedance Spectroscopy”. In:Annual Review of Analytical Chemistry3.1, pp. 207–229.

ISSN: 1936-1327. DOI: 10 . 1146 / annurev . anchem . 012809 . 102211. URL: https://doi.org/10.1146/annurev.anchem.012809.102211.

Creason, Sam C. and Donald E. Smith (1972). “Fourier transform faradaic ad-mittance measurements II. Ultra-rapid, high precision acquisition of the fre-quency response profile”. In:Journal of Electroanalytical Chemistry and In-terfacial Electrochemistry40.1, A1–A5.ISSN: 0022-0728.DOI:https://doi.

org/10.1016/S0022-0728(72)80146-3.URL:http://www.sciencedirect.

com/science/article/pii/S0022072872801463.

DIAGRAM, PRINTABLE (2019). Anatomy of Human Cell Diagrams, Web Page.

URL:https : / / www . printablediagram . com / anatomy of human cell -diagrams/.

Godfrey, K. R., H. A. Barker, and A. J. Tucker (1999). “Comparison of pertur-bation signals for linear system identification in the frequency domain”. In:

IEE Proceedings - Control Theory and Applications146.6, pp. 535–548.ISSN: 1350-2379.DOI:10.1049/ip-cta:19990529.

Godfrey, K. R. et al. (2005). “A survey of readily accessible perturbation signals for system identification in the frequency domain”. In:Control Engineering Practice13.11, pp. 1391–1402. ISSN: 0967-0661. DOI:https://doi.org/

10.1016/j.conengprac.2004.12.012.URL:http://www.sciencedirect.

com/science/article/pii/S0967066105000080.

Grimnes, S., Ø G. Martinsen, and C. Tronstad (2009). “Noise properties of the 3-electrode skin admittance measuring circuit”. In:4th European Conference of the International Federation for Medical and Biological Engineering. Ed. by Jos Vander Sloten et al. Springer Berlin Heidelberg, pp. 720–722.ISBN: 978-3-540-89208-3.

Grimnes, Sverre and Ørjan Grøttem Martinsen (2008a). “Chapter 1 - INTRO-DUCTION1”. In:Bioimpedance and Bioelectricity Basics (Second Edition). Ed.

by Sverre Grimnes and Ørjan Grøttem Martinsen. New York: Academic Press, pp. 1–6.ISBN: 978-0-12-374004-5.DOI: https://doi.org/10.1016/B978-0 - 12 - 374https://doi.org/10.1016/B978-0https://doi.org/10.1016/B978-04 - 5 . https://doi.org/10.1016/B978-0https://doi.org/10.1016/B978-0https://doi.org/10.1016/B978-0https://doi.org/10.1016/B978-01 - 5. URL: http : / / www . sciencedirect . com / science/article/pii/B9780123740045000015.

— (2008b). “Chapter 3 - DIELECTRICS”. In: Bioimpedance and Bioelectricity Basics (Second Edition). Ed. by Sverre Grimnes and Ørjan Grøttem Martin-sen. New York: Academic Press, pp. 57–92.ISBN: 978-0-12-374004-5.DOI: https://doi.org/10.1016/B978-0-12-374004-5.00003-9.URL:http://

www.sciencedirect.com/science/article/pii/B9780123740045000039.

— (2008c). “Chapter 6 - GEOMETRICAL ANALYSIS”. In:Bioimpedance and Bio-electricity Basics (Second Edition). Ed. by Sverre Grimnes and Ørjan Grøttem Martinsen. New York: Academic Press, pp. 161–204.ISBN: 978-0-12-374004-5.DOI:https://doi.org/10.1016/B978-0-12-374004-5.00006-4.URL:

http://www.sciencedirect.com/science/article/pii/B9780123740045000064.

Guillaume, P. et al. (1991). “Crest-factor minimization using nonlinear Cheby-shev approximation methods”. In:IEEE Transactions on Instrumentation and Measurement40.6, pp. 982–989.ISSN: 0018-9456.DOI:10.1109/19.119778.

Horner, Andrew and James Beauchamp (1996). “Genetic algorithm-based method for synthesis of low peak amplitude signals”. In:Journal of The Acoustical So-ciety of America - J ACOUST SOC AMER99.DOI:10.1121/1.414555.

Ichise, Mitsunojo, Yutaka Nagayanagi, and Tsugio Kojima (1974). “Application of pseudo-random signals and cross-correlation techniques in electroanalyti-cal chemistry”. In:Journal of Electroanalytical Chemistry and Interfacial Elec-trochemistry49.2, pp. 187–198.ISSN: 0022-0728.DOI:https://doi.org/

10 . 1016 / S0022 - 0728(74 ) 80226 - 3. URL:http : / / www . sciencedirect . com/science/article/pii/S0022072874802263.

Kyle, Ursula G. et al. (2004). “Bioelectrical impedance analysis—part I: re-view of principles and methods”. In:Clinical Nutrition23.5, pp. 1226–1243.

ISSN: 0261-5614. DOI: https : / / doi . org / 10 . 1016 / j . clnu . 2004 . 06 . 004. URL: http : / / www . sciencedirect . com / science / article / pii / S0261561404000937.

Lathi B. P., Zhi Ding. (2009). Modern Digital and Analog Communication Sys-tems. 4rd. New York, NY, USA: Oxford University Press, Inc.ISBN: 9780195331455 0195331451.

Ojarand, Jaan (2012). “Wideband Excitation Signals for Fast Impedance Spec-troscopy of Biological Objects.” Thesis.

Ojarand, Jaan, Paul Annus, and Mart Min (2013). “Optimisation of multisine waveform for bio-impedance spectroscopy”. In: Journal of Physics: Confer-ence Series 434, p. 012030. ISSN: 1742-6588 1742-6596. DOI: 10 . 1088 / 1742 - 6596 / 434 / 1 / 012030. URL:http : / / dx . doi . org / 10 . 1088 / 1742 -6596/434/1/012030.

Ojarand, Jaan and Mart Min (2013). “Simple and Efficient Excitation Signals for Fast Impedance Spectroscopy”. In:Electronics and Electrical Engineering 19, pp. 49–52.DOI:10.5755/j01.eee.19.2.3468.

Ojarand, Jaan, Mart Min, and Paul Annus (2014). “Crest factor optimization of the multisine waveform for bioimpedance spectroscopy”. In:Physiological Measurement35.6, pp. 1019–1033.ISSN: 0967-3334 1361-6579. DOI:10 . 1088/0967- 3334/35/6/1019. URL: http://dx.doi.org/10.1088/0967-3334/35/6/1019.

Ojarand, Jaan et al. (2009). “Nonlinear Chirp Pulse Excitation for the Fast Impedance Spectroscopy”. In:

Ouderaa, E. Van der, J. Schoukens, and J. Renneboog (1988). “Peak factor minimization using a time-frequency domain swapping algorithm”. In:IEEE Transactions on Instrumentation and Measurement37.1, pp. 145–147.ISSN: 0018-9456.DOI:10.1109/19.2684.

Paehlike, K. D. and H. Rake (1979). “Binary Multifrequency Signals - Syn-thesis and Application”. In: IFAC Proceedings Volumes 12.8, pp. 589–596.

ISSN: 1474-6670. DOI: https : / / doi . org / 10 . 1016 / S1474 - 6670(17 ) 65468- 5. URL:http://www.sciencedirect.com/science/article/pii/

S1474667017654685.

Pintelon, Rik and Johan Schoukens (2012).System identification: a frequency do-main approach. wiley.ISBN: 978-0-470-64037-1.DOI:10.1002/0471723134.

Pinterest (2019). Plasma structure, Web Page.URL:https://i.pinimg.com/

originals/ac/98/c5/ac98c5f6fb9fa676f2877b29b5543f2b.png.

Pliquett, Uwe (2010). “Bioimpedance: A Review for Food Processing”. In:Food Engineering Reviews2.2, pp. 74–94.ISSN: 1866-7929.DOI: 10.1007/s12393-010-9019-z.URL:https://doi.org/10.1007/s12393-010-9019-z.

Rees, D., D. L. Jones, and D. C. Evans (1992). “Practical considerations in the de-sign of multisine test de-signals for system identification”. In:Conference Record IEEE Instrumentation and Measurement Technology Conference, pp. 174–179.

DOI:10.1109/IMTC.1992.245155.

Rivera, D. E. et al. (2006). “OPTIMIZATION-BASED DESIGN OF PLANT-FRIENDLY MULTISINE SIGNALS USING GEOMETRIC DISCREPANCY CRITERIA”. In:

IFAC Proceedings Volumes39.1, pp. 1133–1138.ISSN: 1474-6670.DOI:https:

/ / doi . org / 10 . 3182 / 20060329 - 3 - AU - 2901 . 00182. URL:http : / / www . sciencedirect.com/science/article/pii/S1474667015354185.

Sanchez, Benjamin et al. (2013). “A new measuring and identification approach for time-varying bioimpedance using multisine electrical impedance spec-troscopy”. In: Physiological measurement 34, pp. 339–57. DOI: 10 . 1088 / 0967-3334/34/3/339.

Schneider, I. (1996). “Broadband signals for electrical impedance measurements of long bone fractures”. In:Proceedings of 18th Annual International Confer-ence of the IEEE Engineering in Medicine and Biology Society. Vol. 5, 1934–

1935 vol.5.DOI:10.1109/IEMBS.1996.646327.

Schroeder, M. (1970). “Synthesis of low-peak-factor signals and binary sequences with low autocorrelation (Corresp.)” In:IEEE Transactions on Information Theory16.1, pp. 85–89.ISSN: 0018-9448.DOI:10.1109/TIT.1970.1054411.

Steendijk, P., Enno van der Velde, and Jan Baan (1994). “Dependence of Anisotropic Myocardial Electrical Resistivity on Cardiac Phase and Excitation Frequency”.

In:Basic research in cardiology89, pp. 411–26.DOI:10.1007/BF00788279.

STEMLab (2019a). Fast analog IO, Web Page.URL:https://redpitaya.readthedocs.

io/en/latest/developerGuide/125-14/fastIO.html.

— (2019b). The Red Pitaya Board, Web Page. URL: https : / / marceluda . github.io/rp_lock-in_pid/TheApp/RedPitaya_board/.

Sun, Tao et al. (2007). “Broadband single cell impedance spectroscopy using maximum length sequences: theoretical analysis and practical considera-tions”. In:Measurement Science and Technology18.9, pp. 2859–2868. ISSN: 0957-0233 1361-6501.DOI:10.1088/0957- 0233/18/9/015. URL:http:

//dx.doi.org/10.1088/0957-0233/18/9/015.

Warren, Mark et al. (2000). “Percutaneous Electrocatheter Technique for On-Line Detection of Healed Transmural Myocardial Infarction”. In:Pacing and clinical electrophysiology : PACE23, pp. 1283–7. DOI: 10 . 1111 / j . 1540 -8159.2000.tb00945.x.

Wikipedia (2019). Zero-order hold, Web Page.URL:https://en.wikipedia.

org/wiki/Zero-order_hold.

Yang, Y. et al. (2009). “Waveform synthesis of multi-frequency sinusoids with 2nth primary harmonics based on Walsh functions”. In:2009 IEEE Biomed-ical Circuits and Systems Conference, pp. 129–132. ISBN: 2163-4025. DOI: 10.1109/BIOCAS.2009.5372066.

Yang, Yuxiang et al. (2010). “Design of a wideband excitation source for fast bioimpedance spectroscopy”. In:Measurement Science and Technology 22.1, p. 013001.ISSN: 0957-0233 1361-6501. DOI:10.1088/0957- 0233/22/1/

013001.URL:http://dx.doi.org/10.1088/0957-0233/22/1/013001.

Appendix A

Algorithms

Algorithm 1Wideband Binary Signal Geneartor

1: procedureWIDEBANDBINARYSIGNALGENERATOR(A~I,K,N,~ Opt,Loop Count) 2: ifOpt=Schroederthen

3: Φ~I=P haseGen(Schroeder, ~K)

Algorithm 2Phase Generator

1: procedurePHASEGEN(Opt,K)~ 2: for allk(K~Specif ied)do 3: ifOpt=Schroederthen 4: φk=φk−1+ 2πPk−1

2: for allkK~Ido .Frequency-domain signal construction 3: Compute:Xd(k) =PN−1

14: forn= 0 : (N1)do .Quantization:converting to binary signal 15: Compute:xq(n) =Sgn(Re{x(n)})

Algorithm 4Time-domain Frequency-domain swap

1: procedureTFSWAP(A,~ Φ)~

2: fork= 0 : (N1)do .Frequency-domain signal construction 3: Compute:X(k) =PN−1

8: forn= 0 : (N1)do .Quantization:converting to binary signal 9: Compute:xq(n) =Sgn(Re{x(n)})

Algorithm 5Power Factor Calculator

1: procedurePFCALC(A,~ K)~

Appendix B