• No results found

MSc, Department of Chemical Engineering, Norwegian University of Science and Technology, 2012

[7] M. H. Li and B. C. Chang, "Solubility of mixtures of Carbon Dioxide and Hydrogen Sulfide in Water + Monoethanolamine + 2-Amino-2-methul-1-propanol,"

J. Chem.

Eng. Data, vol. 40, pp. 328-331, 1995.

[8] M. H. Li and M. D. Lai, "Solubility and Diffusivity of N

2

O and CO

2

in

(Monoethanolamine + N-Methyldiethanolamine + water) and in (Monoethanolamine + 2-Amino-2-methyl-1-propanol+water),"

J. Chem. Eng. Data, vol. 40, pp. 486-492,

1995.

[9] D. Śpiewak et al., "PDU1-SCALE EXPERIMENTAL RESULTS OF CO

2

REMOVAL WITH AMP/PZ SOLVENT,"

Chemical and Process Engineering: DE GRUYTER OPEN, vol. 36, no. 39-48, 2015.

[10] A. Aroonwilas and A. Veawab, "Integration of CO

2

capture unit using blended

MEA-AMP solution into coal-fired power plants," Energy Procedia, vol. 1, pp. 4315-4321,

2009.

blends containing 2-amino-2-methyl-1-propanol (AMP) and methyldiethanolamine (MDEA) promoted by diethylenetriamine (DETA)," International Journal of

Greenhouse Gas Control, vol. 53, pp. 292-304, 2016, doi:

10.1016/j.ijggc.2016.08.012.

[13] B. P. Mandal and S. S. Bandyopadhyay, "Absorption of carbon dioxide into aqueous blends of 2-amino-2-methyl-1-propanol and monoethanolamine " Chemical

Engineering Science vol. 61, pp. 5440-5447, 2006, doi: 10.1016/j.ces.2006.04.002.

[14] B. P. Mandal, M. Kundu, and S. S. Bandyopadhyay, "Density and viscosity of aqueous solution of Methyldiethanolamine + Monoethanolamine), (N-Methyldiethanolamine + Diethanolamine), (2-Amino-2-methyl-1-propanol + Monoethanolamine), and (2-Amino-2-methyl-1-propanol + Diethanolamine),"

J.

Chem. Eng. Data, vol. 48, pp. 703-707, 2003.

[15] M.-H. Li and Y.-C. Lie, "Densities and viscosities of solutions of Monoethanolamine + N-Methyldiethanolamine + water and Monoethanolamine + 2-Amino-2-methyl-1-propanol + water," J. Chem. Eng. Data, vol. 39, pp. 444-447, 1994.

[16] O. Redlich and A. T. Kister, "Algebraic representation of thermodynamic properties and the classification of solutions,"

Ind. Eng. Chem., vol. 40, no. 2, pp. 345-348, 1948.

[17] R. H. Weiland, J. C. Dingman, D. B. Cronin, and G. J. Browning, "Density and viscosity of some partially carbonated aqueous alkanolamine solutions and their blends," J. Chem. Eng. Data, vol. 43, pp. 378-382, 1998.

[18] H. Eyring, "Viscosity, Plasticity, and Diffusion as example of absolute reaction rates,"

Journal of chemical physics, vol. 4, pp. 283-291, 1936.

[19] J. Han, J. Jin, D. A. Eimer, and M. C. Melaaen, "Density of water (1) +

Monoethanolamine (2) + CO

2

(3) from (298.15 to 413.15) K and surface tension of water (1) + Monoethanolamine (2) from (303.15 to 333.15) K,"

J. Chem. Eng. Data,

vol. 57, pp. 1095-1103, 2012.

[20] S. Jayarathna, A. Weerasooriya, S. Dayarathna, D. A. Eimer, and M. C. Melaaen,

"Densities and surface tensions of CO

2

loaded aqueous monoethanolamine solution with r=(0.2 to 0.7) at T=(303.15 to 333.15)K,"

J. Chem. Eng. Data, vol. 58, pp.

986-992, 2013.

[21] Z. Idris, N. B. Kummamuru, and D. A. Eimer, "Viscosity measurement of unloaded and CO

2

-loaded aqueous monoethanolamine at higher concentrations,"

Journal of Molecular Liquids, vol. 243, pp. 638-645, 2017.

[22] JCGM, Evaluation of measurement data — Supplement 1 to the “Guide to the

expression of uncertainty in measurement” — Propagation of distributions using a Monte Carlo method, 2008.

[23] S. L. R. Ellison and A. Williams, Quantifying uncertainty in analytical measurement 2012.

[24] J. Aguila-Hernández, R. Gómez-Quintana, F. Murrieta-Guevara, A. Romero-Martínez, and A. Trejo, "Liquid Density of Aqueous Blended Alkanolamines and

N-Methylpyrrolidone as a Function of Concentration and Temperature,"

Journal of Chemical & Engineering Data, vol. 46, no. 4, pp. 861-867, 2001, doi:

10.1021/je0002944.

[25] A. Henni, J. J. Hromek, P. Tontiwachwuthikul, and A. Chakma, "Volumetric

properties and viscosities for aqueous AMP solutions from 25 °C to 70 °C,"

Journal of Chemical & Engineering Data, vol. 48, no. 3, pp. 551-556, 2003, doi:

10.1021/je0201119.

[26] S. Xu, F. D. Otto, and A. E. Mather, "Physical properties of aqueous AMP solutions,"

Journal of Chemical & Engineering Data, vol. 36, no. 1, pp. 71-75, 1991, doi:

10.1021/je00001a021.

[27] K. Zhang, B. Hawrylak, R. Palepu, and P. R. Tremaine, "Thermodynamics of aqueous amines: excess molar heat capacities, volumes, and expansibilities of {water+

methyldiethanolamine (MDEA)} and {water + 2-amino-2-methyl-1-propanol (AMP)}," The Journal of Chemical Thermodynamics, vol. 34, no. 5, pp. 679-710, 2002, doi: 10.1006/jcht.2002.0937.

[28] A. J. Treszczanowicz and G. C. Benson, "Excess volumes for n-alkanols + n-alkanes II. Binary mixtures of n-pentanol, n-hexanol, n-octanol, and n-decanol + n-heptane,"

The Journal of Chemical Thermodynamics, vol. 10, no. 10, pp. 967-974, 1978, doi:

10.1016/0021-9614(78)90058-7.

[29] H. Iloukhani, M. Rezaei-Sameti, and J. Basiri-Parsa, "Excess molar volumes and dynamic viscosities for binary mixtures of toluene+n-alkanes (C5–C10) at T=298.15K – Comparison with Prigogine–Flory–Patterson theory,"

The Journal of Chemical Thermodynamics, vol. 38, no. 8, pp. 975-982, 2006, doi: 10.1016/j.jct.2005.10.011.

[30] A. A. Rostami, M. J. Chaichi, and M. Sharifi, "Densities, Viscosities, and Excess Gibbs Energy of Activation for Viscous Flow, for Binary Mixtures of Dimethyl Phthalate (DMP) with 1-Pentanol, 1-Butanol, and 1-Propanol at Two Temperatures,"

Monatshefte für Chemie - Chemical Monthly, vol. 138, no. 10, pp. 967-971, 2007, doi:

10.1007/s00706-007-0691-5.

[31] S. C. Bhatia, R. Bhatia, and G. P. Dubey, "Studies on transport and thermodynamic properties of binary mixtures of octan-1-ol with chloroform, 1,2-dichloroethane and 1,1,2,2-tetrachloroethane at 298.15 and 308.15 K," Journal of Molecular Liquids, vol.

144, no. 3, pp. 163-171, 2009, doi: 10.1016/j.molliq.2008.11.003.

[32] A. Hartono, E. O. Mba, and H. F. Svendsen, "Physical properties of partially CO

2

loaded aqueous monoethanolamine (MEA)," J. Chem. Eng. Data vol. 59, pp. 1808-1816, 2014.

[33] S. A. Jayarathna, C. K. Jayarathna, D. A. Kottage, S. Dayarathna, D. A. Eimer, and M.

C. Melaaen, "Density and surface tension measurement of partially carbonated aqueous monoethanolamine solutions " J. Chem. Eng. Data, vol. 58, pp. 343-348, 2013.

[34] M. Shokouhi, A. H. Jalili, F. Samani, and M. Hosseini-Jenab, "Experimental investigation of the density and viscosity of CO

2

-loaded aqueous alkanolamine solutions," Fluid Phase Equilibria, vol. 404, pp. 96-108, 2015, doi:

10.1016/j.fluid.2015.06.034.

[35] J. Setschenow, "Über die Konstitution der Salzlösungen auf Grund ihres Verhaltens zu Kohlensäure," in

Zeitschrift für Physikalische Chemie vol. 4U, ed, 1889, p. 117.

[36] J. M. Prausnitz, R. N. Lichtenthaler, and E. G. d. Azevedo, Molecular

thermodynamics of fluid-phase equilibria. Prentice Hall PTR, 1999.

[37] A. H. Harvey,

Thermodynamic properties of water. Boulder, Colorado: NIST, 1998.

[38] T. G. Amundsen, L. E. Øi, and D. A. Eimer, "Density and viscosity of

monoethanolamine + water + carbon dioxide from (25 to 80)

o

C," J. Chem. Eng. Data, vol. 54, pp. 3096-3100, 2009.

[39] E. N. d. C. Andrade, "LVIII. A theory of the viscosity of liquids. Part II, Philosophical Magazine Series 7," vol. 17, no. 113, pp. 698-732, 1934.

[40] D. H. Vogel, "Das Temperaturabhaengigkeitsgesetz der Viskositaet von Fluessigkeiten,"

Physikalische Zeitschrift,

vol. 22, pp. 645-646, 1921.

[41] D. Fu, H. Hao, and F. Liu, "Experiment and model for the viscosity of carbonated

monoethanolamine and

2-amino-2-methyl-1-propanol-ed. USA: John Wiley & Sons, Inc., 2002.

[43] R. Meyer, M. Meyer, J. Metzger, and A. Peneloux, "Thermodynamic and

physicochemical properties of binary solvent " Journal de Chimie Physique et de

Physico-Chimie Biologique, vol. 68, pp. 406-412, 1971.

[44] C. M. Kinart, W. J. Kinart, and A. Ćwiklińska, "2-Methoxyethanol–Tetrahydrofuran–

binary liquid system. Viscosities, densities, excess molar volumes and excess Gibbs activation energies of viscous flow at various temperatures,"

Journal of Thermal Analysis and Calorimetry, vol. 68, no. 1, pp. 307-317, 2002, doi:

10.1023/A:1014981921097.

[45] S. Oswal and M. V. Rathnam, "Viscosity data of binary mixtures: ethyl acetate + cyclohexane, + benzene, + toluene, + ethylbenzene + carbon tetrachloride, and + chloroform at 303.15 K," Canadian Journal of Chemistry, vol. 62, no. 12, pp. 2851-2853, 1984, doi: 10.1139/v84-482.

[46] A. Ćwiklińska and C. M. Kinart, "Thermodynamic and physicochemical properties of binary mixtures of nitromethane with {2-methoxyethanol+2-butoxyethanol} systems at T=(293.15, 298.15, 303.15, 308.15, and 313.15)K,"

The Journal of Chemical Thermodynamics, vol. 43, no. 3, pp. 420-429, 2011, doi: 10.1016/j.jct.2010.10.016.

[47] T. M. Aminabhavi, M. I. Aralaguppi, G. Bindu, and R. S. Khinnavar, "Densities, shear viscosities, refractive indices, and speeds of sound of Bis(2-methoxyethyl) Ether with Hexane, Heptane, Octane, and 2,2,4-Trimethylpentane in the temperature interval 298.15-318.15 K," Journal of Chemical & Engineering Data, vol. 39, no. 3, pp. 522-528, 1994, doi: 10.1021/je00015a028.

[48] K. Ohnishi, I. Fujihara, and S. Murakami, "Thermodynamic properties of decalins mixed with hexane isomers at 298.15 K. II. Excess volumes and isentropic

compressibilities," Fluid Phase Equilibria, vol. 46, no. 1, pp. 73-84, 1989, doi:

10.1016/0378-3812(89)80276-6.

[49] N. S. Matin, J. E. Remias, and K. Liu, "Application of electrolyte-NRTL model for prediction of the viscosity of carbon dioxide loaded aqueous amine solutions " Ind.

Eng. Chem. Res, vol. 52, pp. 16979-16984, 2013.