• No results found

6. Conclusion

6.1 Future perspective

Some of the results in this thesis are basic research, making room for many interesting experiments for future investigation.

We speculate whether MITF is a direct target for tankyrase inhibition or if MITF and tankyrase are connected. To better understand how the G007-LK mechanism affects MITF and tankyrase protein level, it would be interesting to use immunoprecipitation (IP) to isolate MITF and

tankyrase antigen from a mixture, followed by immunoblot analysis for detection. It could also be helpful to utilize mass spectrometry (MS) analysis to assess whether MITF and tankyrase are connected.

Knockdown and over-expression experiments of MITF siRNA and treatment with tankyrase inhibitor and WNT activating ligands could be interesting to explore if this affects YAP expression and vice versa. Furthermore, we are curious to investigate the effect of G007-LK, anti-PD-1, and combinational therapy with G007-LK + anti-PD-1 in mice parallel with MITF and YAP knockdown and overexpression experiments. A theory might be that overexpression of MITF leads to increased sensitivity towards anti-PD-1 or that a knockdown of MITF decreases the synergic effect of G007-LK and anti-PD-1 demonstrated in previous research [25].

63 Our experiments established that MITF is not linked to β-catenin when regulated, suggesting another mechanism involved. Immunofluorescent staining did not indicate a co-localization of either MITF/β-catenin protein or MITF/YAP protein. To further explore the underlying regulating mechanism of MITF upon treatment with G007-LK, it can be useful to investigate several more antibodies, such as anti-TNKS1/2 and anti-AMOTL1/2, for their determination of localization together with MITF. It is still unknown where MITF is located in the WNT and YAP signaling context.

It would be interesting to investigate more antibodies for immunoblotting of melanoma, for example, PGC-1α, which is a co-activator for several different transcription factors – including MITF via α-MSH [124]. Previous research has shown that overexpression of PGC-1α in B16-F10 melanoma cells led to hyperpigmentation of the cells [124]. PGC-1α regulates the Tyrosinase gene directly, which plays an essential role in melanocyte development [80] [124]. MITF

controls tyrosinase, and a PGC-1α knockdown has reduced MITF-M expression, and MITF protein in B16-F10 and several human melanoma cell lines [124].

Additionally, it would be interesting to explore the effect of G007-LK on MITF target genes for differentiation, proliferation, and survival. More than 40 MITF target genes have been identified, listed in Appendix C, Supplementary table 9 [125].

64

References

1. D Hanahan, R.W., The Hallmarks of Cancer. Cell, 2000(1): p. 57-70.

2. Weinberg, R., The biology of cancer. 2013. p. 32-33.

3. Cooper, G.M., The Development and Causes of Cancer. The Cell, 2000.

4. Brazier, Y., What are the different types of tumor? MedicalNewsToday, 2019.

5. Lodish H, B.A., Zipursky SL, et al., Lodish H, Berk A, Zipursky SL, et al. 4th edition ed.

2000.

6. Zhihua Kang , Q.Y., Yintao Li, DNA Repair in Cancer. Journal of Oncology, 2019.

7. Weinberg, D.H.R.A., Hallmarks of cancer: the next generation. Cell, 2011.

8. MacGill, M., What to know about melanoma. MedicalNewsToday, 2019.

9. Natalie H. Matthews, W.-Q.L., Abrar A. Qureshi, Martin A. Weinstock, Eunyoung Cho., Cutaneous Melanoma: Etiology and Therapy [Internet]. Codon Publications, 2017.

10. Elizabeth Hale, W.H. Squamous Cell Carcinoma Overview. 2019.

11. Julie Karen, R.M. Basal Cell Carcinoma Overview. 2021; Available from:

https://www.skincancer.org/skin-cancer-information/basal-cell-carcinoma/.

12. MayoClinicStaff. Merkel cell carcinoma. 2021; Available from:

https://www.mayoclinic.org/diseases-conditions/merkel-cell-carcinoma/diagnosis-treatment/drc-20351036.

13. Barrell, A. What to know about nodular melanoma. 2018.

14. Christiano, D., Superficial Spreading Melanoma: Know the Signs. healthline, 2017.

15. Bandoim, L., How to Recognize and Treat Lentigo Maligna Melanoma. healthline, 2018.

16. Mirosława Cichorek, M.W., Aneta Stasiewicz, Agata Tymińska, Skin melanocytes:

biology and development. Postepy Dermatol Alergol, 2013(1): p. 30-41.

17. Jonathan B. Heistein, U.A., Malignant Melanoma. StatPearls, 2021.

18. Atillasoy, E.S., Seykora, J. T., Soballe, P. W., Elenitsas, R., Nesbit, M., Elder, D. E., Montone, K. T., Sauter, E., Herlyn, M, UVB induces atypical melanocytic lesions and melanoma in human skin. The American Hournal of Pathology. 152,5: p. 1179-86.

19. Luis Sánchez-del-Campo, R.M.-D., María F. Montenegro, Rebeca González-Guerrero, Trinidad Hernández-Caselles, Enrique Martínez-Barba, Antonio Piñero-Madrona, Juan Cabezas-Herrera, Colin R. Goding, José Neptuno Rodríguez-López https://doi.org/10.1186/s13046-021-01916-8 Exp Clin Cancer 2021.

20. John D'Orazio, S.J., Alexandra Amaro-Ortiz, Timothy Scott, UV radiation and the skin.

National Library of Medicine, 2013: p. 7;14(6):12222-48.

21. MelanomaResearchAlliance. Melanoma & Skin of Color. Available from:

https://www.curemelanoma.org/about-melanoma/people-of-color/.

22. Wallace H. Clark Jr, D.E.E., DupontGuerry, Martin N. Epstein, Mark H. Greene, Marie Van Horn, A study of tumor progression: The precursor lesions of superficial spreading and nodular melanoma. ScienceDirect, 1984(12): p. 1147-1165.

23. Grimm, J., Autrocrine and paracrine effects of BRAF inhibitor induced sensescence in melanoma. 2019.

24. Alex Kim , M.S.C., The discovery of vemurafenib for the treatment of BRAF-mutated metastatic melanoma. National Library of Medicine, 2016: p. 907-16.

25. Waaler, J., et al., Tankyrase inhibition sensitizes melanoma to PD-1 immune checkpoint blockade in syngeneic mouse models. Commun Biol, 2020. 3(1): p. 196.

65 26. Pai, S.G., Carneiro, B.A., Mota, J.M. et al., Wnt/beta-catenin pathway: modulating

anticancer immune response. J Hematol Oncol, 2017.

27. Zachary Steinhart, S.A., Wnt signaling in development and tissue homeostasis. 2018.

145(11).

28. Katrin E Wiese , R.N., Renée van Amerongen Wnt signalling: conquering complexity.

2018.

29. Kahn, M., Can we safely target the WNT pathway? Nat Rev Drug Discov, 2014: p. 513-32.

30. T Zhan , N.R., M Boutros Wnt signaling in cancer. National Library of Medicine, 2017:

p. 1461-1473.

31. Marie R Webster, C.H.K., Ashani T Weeraratna, The Wnts of Change: How Wnts Regulate Phenotype Switching in Melanoma. Biochim Biophys Acta, 2015: p. 255-251.

32. Roel Nusse , H.C., Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. National Library of Medicine, 2017: p. 985-999.

33. Jennifer L Stamos, W.I.W., The β-catenin destruction complex. Cold Spring Harb Perspect Biol, 2013.

34. Thorvaldsen, T.E., Targeting Tankyrase to Fight WNT-dependent Tumours. Basic Clin Pharmacol Toxicol., 2017: p. 81-88.

35. Nusse, R., Wnt signaling. Cold Spring Harbor perspectives in biology, 2012.

36. Bryan T MacDonald, K.T., Xi He, Wnt/beta-catenin signaling: components, mechanisms, and diseases. Cell, 2009: p. 9-26.

37. Eek-hoon Jho, T.Z., Claire Domon, Choun-Ki Joo, Jean-Noel Freund, Frank Costantini, Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell biol, 2002: p. 1172-83.

38. Zhiqing Liu, Z.L., Pingyuan Wang, Eric A. Wold, Qiaoling Song, Chenyang Zhao, Changyun Wang, Jia Zhou, Small-Molecule Inhibitors Targeting the Canonical WNT Signaling Pathway for the Treatment of Cancer. J. Med. Chem., 2021: p. 4257–4288.

39. Nicolas Figeac, P.S.Z., Coordinated action of Axin1 and Axin2 suppresses β-catenin to regulate muscle stem cell function. Cell Signal., 2015: p. 1652-65.

40. Tor Espen Thorvaldsen , N.M.P., Eva Maria Wenzel ,Harald Stenmark Differential Roles of AXIN1 and AXIN2 in Tankyrase Inhibitor-Induced Formation of Degradasomes and β-Catenin Degradation. PLOS ONE, 2017.

41. Tao Ye, A.K.Y.F., Nancy Y. Ip, Emerging roles of Axin in cerebral cortical development.

frontiers in Cellular Neuroscience, 2015.

42. Varelas, X., The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development, 2014: p. 1614-26.

43. Gandhi T. K. Boopathy, W.H., Role of Hippo Pathway-YAP/TAZ Signaling in Angiogenesis. frontiers in Cell and Developmental Biology, 2019.

44. Georg Halder , R.L.J., Hippo signaling: growth control and beyond. Development, 2011:

p. 9-22.

45. Piccolo S, D.S., Cordenonsi M. , The biology of YAP/TAZ: hippo signaling and beyond.

Physiol Rev, 2014: p. 1287-312.

46. Pan, D., The hippo signaling pathway in development and cancer. Development, 2010: p.

491-505.

47. Carsten Gram Hansen, T.M., Kun-Liang Guan, YAP and TAZ: a nexus for Hippo signaling and beyond. Trends Cell Biol., 2015: p. 499-513.

66 48. Wenqi Wang, N.L., Xu Li, My Kim Tran, Xin Han, Junjie Chen, Tankyrase inhibitors

target YAP by stabilizing angiomotin family proteins. Cell, 2015.

49. al, J.W.e., Identification of response signatures for tankyrase inhibitor treatment in tumor cell lines. iScience, 2021. 24(7).

50. Robert Ballotti, Y.C., Corine Bertolotto The complex relationship between MITF and the immune system: a Melanoma ImmunoTherapy (response) Factor? Molecular Cancer, 2020.

51. Goding C R, A.H., MITF-the first 25 years. Europe PMC, 2019: p. 983-1007.

52. Ji Eun Kim, G.J.F., Bruce C. Baguley, The Role of the Hippo Pathway in Melanocytes and Melanoma. frontiers in Oncology, 2013.

53. Kim, M.K., Novel insight into the function of tankyrase (Review). Oncology Letters, 2018: p. 6895-6902.

54. Tomoyuki Mukai, S.F., Yoshitaka Morita, Tankyrase (PARP5) Inhibition Induces Bone Loss through Accumulation of Its Substrate SH3BP2. Cells, 2019.

55. Teemu Haikarainen, S.K., Lari Lehtio, Tankyrases: Structure, Function and Therapeutic Implications in Cancer. Current Pharmaceutical Design, 2014. 20(41).

56. Laura Mariotti, C.M.T., Michael Ranes, Patricia Paracuellos, Nora Cronin, Fabienne Beuron, Edward Morris, Sebastian Guettler, Tankyrase Requires SAM Domain-Dependent Polymerization to Support Wnt-β-Catenin Signaling. Molecular Cell, 2016. 63(3): p. 498-513.

57. Teemu Haikarainena, J.W., Alexander Ignateva, Yves Nkizinkikoa, Harikanth, Venkannagaria, Ezeogo Obajia , StefanKrauss, LariLehtiöa, Development and structural analysis of adenosine site binding tankyrase inhibitors. Bioorganic & Medicinal Chemistry Letters, 2016. 26(2): p. 328-333.

58. Anna Mária Cseh, Z.F., Balázs Sümegi, Luca Scorrano, Poly(adenosine diphosphate-ribose) polymerase as therapeutic target: lessons learned from its inhibitors. Oncotarget, 2017: p. 50221-50239.

59. Lari Lehtiö 1, N.-W.C., Stefan Krauss, Tankyrases as drug targets. FEBS J, 2013: p.

3576-93.

60. et.al, S.-V.F., Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cekk, 2018:

p. 321-337.

61. Nan Li, Y.Z., Xin Han, Ke Liang, Jiadong Wang, Lin Feng, Wenqi Wang, Zhou Songyang, Chunru Lin, Liuqing Yang, Yonghao Yu, Junjie Chen, Poly-ADP ribosylation of PTEN by tankyrases promotes PTEN degradation and tumor growth. Cold Spring Harbor Laboratory Press, 2014.

62. Solberg, N.T., et al., TANKYRASE Inhibition Enhances the Antiproliferative Effect of PI3K and EGFR Inhibition, Mutually Affecting beta-CATENIN and AKT Signaling in Colorectal Cancer. Mol Cancer Res, 2018. 16(3): p. 543-553.

63. Sánchez-del-Campo, L., Martí-Díaz, R., Montenegro, M.F. et al., MITF induces escape from innate immunity in melanoma. J Exp Clin Cancer Res, 2021.

64. Anushka Dongre, R.A.W., New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nature Reviews Molecular Cell Biology, 2018: p.

69–84.

65. Raghu Kalluri1, R.A.W., The basics of epithelial-mesenchymal transition. J Clin Invest, 2009: p. 1420–1428.

66. S A Wajed , P.W.L., T R DeMeester, DNA methylation: an alternative pathway to cancer.

Ann Surg., 2001: p. 10-20.

67 67. D S Sanders, K.B., G A Hassan, R Bruton, J R Marsden, J Jankowski, Alterations in cadherin and catenin expression during the biological progression of melanocytic tumours. Mol Pathol., 1999: p. 151–157.

68. Wienberg, R., The biology of cancer, Wienberg, R. s.657-666 2013. p. 657-666

69. Arun Satelli, S.L., Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci, 2011: p. 3033-46.

70. Marie R Webster, C.H.K., Ashani T Weeraratna, The Wnts of Change: How Wnts Regulate Phenotype Switching in Melanoma. Biochim Biophys Acta, 2015: p. 244-251.

71. Daniela Kovacs, E.M., Luca Muscardin, Vitaliano Silipo, Caterina Catricalà, Mauro Picardo, Barbara Bellei, The role of Wnt/β-catenin signaling pathway in melanoma epithelial-to-mesenchymal-like switching: evidences from patients-derived cell lines.

Oncotarget: p. 43295-43314.

72. Vachtenheim, J., The Many Roles of MITF in Melanoma. Biology, 2017.

73. Gabriela M Wiedemann, C.A., Angelina Kraechan, Constanze Heise, Bruno L Cadilha, Jin Zhang, Peter Duewell, Robert Ballotti, Stefan Endres Corine Bertolotto,Sebastian obold, Microphthalmia-Associated Transcription Factor (MITF) Regulates Immune Cell Migration into Melanoma. Trasnlational Oncology, 2019. 12(2): p. 350-360.

74. Jón H Hallsson, B.S.H., Chad Stivers, Ward Odenwald, Heinz Arnheiter, Francesca Pignoni, Eiríkur Steingrímsson, The basic helix-loop-helix leucine zipper transcription factor Mitf is conserved in Drosophila and functions in eye development. Genetics, 2004:

p. 233–241.

75. R K Tripathi , D.J.F., T L Young, W S Oetting, A Ramaiah, R A King, R E Boissy, J J Nordlund, Microphthalmia-associated transcription factor (MITF) locus lacks linkage to human vitiligo or osteopetrosis: an evaluation. 1999: p. 187-92.

76. Kritika Kirty, S.S., Þorkell Guðjόnsson, Berglind Ósk Einarsdóttir, Stefán Sigurðsson, MITF Isoforms- Insights from an RNA-Seq study. BioRxiv.

77. Oppezzo A, R.F., The underestimated role of the microphthalmia-associated transcription factor (MiTF) in normal and pathological haematopoiesis. Cell Biosci, 2021.

78. Hartman, M.L. and M. Czyz, MITF in melanoma: mechanisms behind its expression and activity. Cell Mol Life Sci, 2015. 72(7): p. 1249-60.

79. Akinori Kawakami, D.E.F., The master role of microphthalmia-associated transcription factor in melanocyte and melanoma biology. Laboratory Investigation volume, 2017: p.

649–656.

80. ThermoFischer, MITF gene (Protein Coding). . GeneCards.

81. Cortés-González V, Z.J., Guzmán-Sánchez M, Giordano-Herrera V, Guadarrama-Vallejo D, Ruíz-Quintero N, Villanueva-Mendoza C., Tietz/Waardenburg type 2A syndrome associated with posterior microphthalmos in two unrelated patients with novel MITF gene mutations. Am J Med Genet A., 2016: p. 3294-3297.

82. Mariusz L. Hartman, M.C., MITF in melanoma: mechanisms behind its expression and activity. Cellular and Molecular Life Sciences, 2014: p. 1249–1260.

83. Mitchell., P.H., Patient Safety and Quality: An Evidence-Based Handbook for Nurses., ed.

H. RG. 2008.

84. Immunotherapy for Melanoma Skin Cancer. 2020; Available from:

cancer.org/cancer/melanoma-skin-cancer/treating/immunotherapy.html.

85. InformedHealth.org[Internet], The innate and adaptive immune systems, ed. I.f.Q.a.E.i.H.

Care. 2020.

68 86. Hugo Gonzalez, C.H., Zena Werb, Roles of the immune system in cancer: from tumor

initiation to metastatic progression. Genes Dev, 2018: p. 1267–1284.

87. Ribas A, L.D., Atkinson V. et al., Combined BRAF and MEK inhibition with PD-1 blockade immunotherapy in BRAF-mutant melanoma. Nat Med, 2019: p. 936–940.

88. Dummer R, L.C., Atkinson V. et al., Combined PD-1, BRAF and MEK inhibition in advanced BRAF-mutant melanoma: safety run-in and biomarker cohorts of COMBI-i. Nat Med, 2020: p. 1557–1563.

89. Melanoma: Types of Treatment. Available from: https://www.cancer.net/cancer-types/melanoma/types-treatment.

90. Rachna Raman, D.V., Immunotherapy in Metastatic Renal Cell Carcinoma: A Comprehensive Review. BioMed Research International 2015: p. 367354.

91. Muhammad Haseeb, R.H.P., Qurat Ul Ain, Sangdun Choi Wnt Signaling in the Regulation of Immune Cell and Cancer Therapeutics. Cells, 2019: p. 1380.

92. Takayoshi Yamauchi, T.M., Hippo Pathway in Mammalian Adaptive Immune System.

Cells, 2019: p. 398.

93. Kornel Labun, T.G.M., James A Gagnon, Summer B Thyme, Eivind Valen CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res. , 2016.

94. Laleh Nikfarjam, P.F., Prevention and Detection of Mycoplasma Contamination in Cell Culture. Cell, 2011: p. 203–212.

95. Renyue Bao, n.C., Siyuan Song, Stephane Angers, Xiaojun Yan, 2, Liliana Attisano Inhibition of Tankyrases Induces Axin Stabilization and Blocks Wnt Signalling in Breast Cancer Cells. PLoS One, 2012.

96. Bryan T. MacDonald, K.T., Xi He, Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev Cell, 2009: p. 9-26.

97. Tahrin Mahmood, P.-C.Y., Western Blot: Technique, Theory, and Trouble Shooting. N Am J Med Sci, 2012: p. 429–434.

98. ThermoFischerScientific. Chemiluminescent Western Blotting.

99. Tamara, Beginning Chemiluminescent Western Blotting. azure biosystems, 2021.

100. Hyun Woo Park , Y.C.K., Bo Yu , Toshiro Moroishi , Jung-Soon Mo , Steven W Plouffe , Zhipeng Meng , Kimberly C Lin , Fa-Xing Yu , Caroline M Alexander , Cun-Yu Wang , Kun-Liang Guan Alternative Wnt Signaling Activates YAP/TAZ. Cell, 2015: p. 780-94.

101. Sohyun Moon, S.L., Joy Ann Caesar, Sarah Pruchenko, Andrew Leask, James A.

Knowles, Jose Sinon, Brahim Chaqour, A CTGF-YAP Regulatory Pathway Is Essential for Angiogenesis and Barriergenesis in the Retina. iScience, 2020. 23(6).

102. Bin Zhao, L.L., Qing Lu, Lloyd H. Wang, Chen-Ying Liu, Qunying Lei, Kun-Liang Guan, Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein.

Genes and Development, 2011.

103. Daniel Swafford, S.M., Wnt Signaling in Dendritic Cells: Its Role in Regulation of Immunity and Tolerance. Discov Med, 2016: p. 303-310.

104. Alex K. Lancaster, J.M., The evolution of reversible switches in the presence of irreversible mimics. Evolution, 2009: p. 2350–2362.

105. Ferlay J, E.M., Lam F, Colombet M, Mery L, Piñeros M, et al., Cancer Today. Global Cancer Observatory, 2020.

106. Surgery for Melanoma Skin Cancer. American Cancer Society, 2019.

107. Russell W Jenkins, D.E.F., Treatment of Advanced Melanoma in 2020 and Beyond. J Invest Dermatol, 2021: p. 23-31.

69 108. Bradley D. Shields, F.M., Erin M. Taylor, Stephanie D. Byrum, Deepanwita Sengupta, Brian Koss, Giulia Baldini, Seth Ransom, Kyle Cline, Samuel G. Mackintosh, Ricky D.

Edmondson, Sara Shalin, Alan J. Tackett Indicators of responsiveness to immune checkpoint inhibitors. Sci Rep, 2017: p. 807.

109. Ernesto Rossi, G.S., Brigida Anna Maiorano, Giulia Indellicati, Alessandro Di Stefani, Monica Maria Pagliara, Simona Maria Fragomeni, Erika Valentina De Luca, Maria Grazia Sammarco, Giorgia Garganese, Jacopo Galli, Maria Antonietta Blasi, Gaetano Paludetti, Giovanni Scambia, Ketty Peris, Giampaolo Tortora, Efficacy of immune checkpoint inhibitors in different types of melanoma. Human Vaccines &

Immunotherapeutics, 2020: p. 4-14.

110. Li Fang Ng, P.K., Nawat Bunnag, Jahnavi Suresh, Isabelle Chiao Han Sung, Qian Hui Tan, Jan Gruber, Nicholas S. Tolwinski, WNT Signaling in Disease. Cells, 2019: p. 826.

111. Jiaoyuan Jia, Y.Q., Maria G. Pilo,Antonio Cigliano,Xianqiong Liu,Zixuan Shao,Diego F.

Calvisi ,Xin Chen Tankyrase inhibitors suppress hepatocellular carcinoma cell growth via modulating the Hippo cascade. PLOS ONE, 2017.

112. Luca Azzolin , F.Z., Silvia Bresolin, Mattia Forcato, Giuseppe Basso, Silvio Bicciato, Michelangelo Cordenonsi, Stefano Piccolo, Role of TAZ as mediator of Wnt signaling.

Cell, 2012.

113. Wenqi Wang, N.L., Xu Li, My Kim Tran, Xin Han, and Junjie Chen, Tankyrase inhibitors target YAP by stabilizing angiomotin family proteins. Cell Rep, 2015: p. 524-532.

114. Hui Wang , B.L., Johnny Castillo , Yue Zhang , Zinger Yang , Gregory McAllister , Alicia Lindeman , John Reece-Hoyes , John Tallarico , Carsten Russ , Greg Hoffman , Wenqing Xu , Markus Schirle , Feng Cong Tankyrase Inhibitor Sensitizes Lung Cancer Cells to Endothelial Growth Factor Receptor (EGFR) Inhibition via Stabilizing Angiomotins and Inhibiting YAP Signaling. J Biol Chem, 2016.

115. Frederic Zhentao Li, A.S.D., Robin L. Anderson, Grant McArthur, Petranel T. Ferrao1, Phenotype Switching in Melanoma: Implications for Progression and Therapy. Front Oncol., 2015: p. 31.

116. Samy Lamouille, J.X., Rik Derynck, Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol, 2014: p. 178-96.

117. Michael Zeisberg, E.G.N., Biomarkers for epithelial-mesenchymal transitions. J Clin Invest, 2009: p. 1429–1437.

118. Willem W. Overwijk, N.P.R., B16 as a Mouse Model for Human Melanoma. Curr Protoc Immunol, 2009.

119. Kirsten Strømme Kierulf-Vieira, C.J.S., Jo Waaler, Kaja Lund, Erlend Skaga, Birthe Mikkelsen Saberniak, Ioannis Panagopoulos, Petter Brandal, Stefan Krauss, Iver Arne Langmoen, Einar Osland Vik-Mo, A Small-Molecule Tankyrase Inhibitor Reduces Glioma Stem Cell Proliferation and Sphere Formation. Cancers (Basel), 2020.

120. Steven W. Plouffe, K.C.L., Jerrell L. Moore, 3rd, Frederick E. Tan, Shenghong Ma, Zhen Ye, Yunjiang Qiu, Bing Ren, Kun-Liang Guan, The Hippo pathway effector proteins YAP and TAZ have both distinct and overlapping functions in the cell. J Biol Chem., 2018: p.

11230–11240.

121. Alver T. N., H.K.M., Hovig E., Bøe S. L. , Co-operative induction of RTK`s contributes to adaptive MAPK drug resistance in melanoma thorugh the PI3K pathway. To be published.

70 122. Boni, A., Selective BRAFV600E Inhibition Enhances T-Cell Recognition of Melanoma

without Affecting Lymphocyte Function. Cancer Research, 2010. 70(30).

123. Gabriela M Wiedemann, C.A., Angelina Kraechan, Constanze Heise, Bruno L Cadilha, Jin Zhang, Peter Duewell, Robert Ballotti, Stefan Endres, Corine Bertolotto, Sebastian Kobold Microphthalmia-Associated Transcription Factor (MITF) Regulates Immune Cell Migration into Melanoma. Transl Oncol., 2019: p. 350-360.

124. Shoag J, H.R., Zhang M, et al. , PGC-1 Coactivators Regulate MITF and the Tanning Response. Mol Cell, 2013: p. 145-157.

125. Keith S. Hoek, O.M.E., Natalie C. Schlegel, Udo Döbbeling, Nikita Kobert, Leo Schaerer, Silvio Hemmi, Reinhard Dummer, In vivo Switching of Human Melanoma Cells between Proliferative and Invasive States. Molecular Biology, Pathobiology, and Genetics, 2008.

126. R&Dsystems, Protocol for Making a 4% Formaldehyde Solution in PBS.

127. IHCworld. Aqueous Mounting Medium Protocols. Available from:

http://www.ihcworld.com/_protocols/histology/mounting_medium.htm.

71

Appendix A: Recipes

Supplementary Table 1. SDS loading buffer.

Supplementary Table 2. 10x Protein transfer buffer.

Supplementary Table 3. 1x Protein transfer buffer.

Supplementary Table 4. 4% PFA (1L) [126].

1L 4% PFA

Reagent Volume

1X PBS (pH 7.4) 800 mL Paraformaldehyde powder 40 g

NaOH 1 N

Dilute HCl X

SDS loading buffer

Reagent Volume

1M Tris-HCl (pH 6.8) 2 mL

SDS 0.8 g

14.7 M β-mercaptoethanol 4 mL

0.5 EDTA 1 mL

Bromophenol Blue 8 mg

H2O 2 mL

10x Protein transfer buffer

Reagent Volume

Trisma-base 30.3 g

Glysin 144 g

dH2O 1000 mL

1x Protein transfer buffer

Reagent Volume

10x Protein transfer buffer 100 mL

Methanol 200 mL

dH2O 700 mL

72 Supplementary Table 5. Primary antibodies diluted in 4% BSA/PBS.

Supplementary Table 6. Aqueous Mounting Medium [127].

Appendix B: Equipment and instruments

Supplementary Table 7. List of equipment.

Product name Catalog number Provider Country

Cell culture

B16-F10 ATCC® CRL-6475™ American Type Culture

Collection

FBS 10270-106 Life technologies Carlsbad, California, USA

P/S P4333 Sigma-Aldrich Saint Louis, Missouri, USA

PBS Oslo University hospital Oslo, Norway

Trypsin T3924 Sigma-Aldrich. Saint Louis, Missouri, USA

CryoTube 368632 Thermo Fisher Scientific Waltham, Massachusetts,

USA

Mr. Frosty 5100-0001 Thermo Fisher Scientific Waltham, Massachusetts,

USA

Mycoplasma detection kit LT07-318 Lonza Bazel, Switzerland

Poly-L-Lysine solution Sc-286689 Santa Cruz Dallas, Texas, USA

96 well plate 734-2073 NuncTM Roskilde, Denmark

6 well plate 140675 NuncTM Roskilde, Denmark

20 cm dishes NuncTM Roskilde, Denmark

T25 culture flask 156367 NuncTM Roskilde, Denmark

T75 culture flask 10364131 Thermo Fisher Scientific Waltham, Massachusetts,

USA Primary antibodies diluted in 4% BSA/PBS

Antibody Dilution rate

β-Catenin 1:200

MITF 1:50

YAP 1:200

Aqueous Mounting Medium

Kisser’s Kaiser’s Glycerol Jelly Modified

Gelatine 10 g 40 g 65 g 5 g

Distilled water 35 ml 210 ml 300 ml 50 ml Glycerol (glycerin) 30 ml 250 ml 100 ml 50 ml Phenol (carbolic acid) 5 ml 5 ml

73

T175 culture flask 10246131 Thermo Fisher Scientific Waltham, Massachusetts, USA

Eppendorf tubes 72.706 Sarstedt Nümbrecht, Germany

Cell scrapers 83.3959 Sarstedt Nümbrecht, Germany

Drugs and substanses G007-LK

DMSO D8418 Sigma-Aldrich Saint Louis, Missouri, USA

WNT3a CHIR

RT-qPCR

Qiagen RNeasy mini kit 74106 Qiagen Hilden, Germany

High-Capacity cDNA Reverse Transcription Kit

4368814 Applied BiosystemsTM Foster City, California,

USA

Master Mix 4370074 Thermo Fischer Scientific Waltham, Massachusetts,

USA

384 well plate 4343814 Thermo Fischer Scientific Waltham, Massachusetts,

USA Gapdh, TaqMan® Gene

Expression Assay, Hs02758991_g1

4131182 Thermo Fischer Scientific Waltham, Massachusetts, USA

Axin2, TaqMan® Gene Expression Assay, Hs00610344_m1

4331182 Thermo Fisher Scientific Waltham, Massachusetts, USA

Ctgf, TaqMan® Gene Expression Assay, Hs00170014_m1

4331182 Thermo Fisher Scientific Waltham, Massachusetts, USA

Cyr61, TaqMan® Gene Expression Assay, Hs00155479_m1

4331182 Thermo Fisher Scientific Waltham, Massachusetts, USA

4331182 Thermo Fisher Scientific Waltham, Massachusetts, USA

Immunoblot

NP40 lysis buffer FNN0021 Life technologies Carlsbad, California, USA

Protease inhibitor 4693116001 Roche Basel, Switzerland

RIPA buffer 89900 Thermo Fisher Scientific Waltham, Massachusetts,

USA

Non-fat dried milk A0830 Applichem Chicago, Illinois, USA

Non-fat dried milk A0830 Applichem Chicago, Illinois, USA