• No results found

FFI results from simple array case

In document 16-01146 (sider 77-84)

6 Work conducted by FOI Sweden

A.1 FFI results from simple array case

−1.50 −1 −0.5 0 0.5 1 1.5

Figure A.1 Horizontal profiles of time averaged normalized concentration of neutral gas. The simulation data is mirrored aroundy=0. Experimental values () and LES ( ).

0 0.1 0.2 0.3 0.4 0.5

Figure A.2 Vertical profiles of time averaged normalized concentration of neutral gas. Experimental values () and LES ( ).

−1.50 −1 −0.5 0 0.5 1 1.5

Figure A.3 Horizontal profiles of time averaged normalized concentration of dense gas. The simulation data is mirrored aroundy=0. Experimental values () and LES ( ).

0 0.1 0.2 0.3 0.4 0.5

Figure A.4 Vertical profiles of time averaged normalized concentration of dense gas. Experimental values () and LES ( ).

0 0.1 0.2 0.3 0.4 0.5

Figure A.5 Vertical profiles of dimensionless Reynolds stresses taken at line 10. Symbols denote experimental values and lines LES results. Neutral gas () and ( ). Dense gas () and (−−−).

Bibliography

[1] P. Durbin and B. P. Reif, “The elliptic relaxation method,” Closure Strategies for Turbulent and Transitional Flows, pp. 127–152, 2002.

[2] R. L. Lee, R. Calhoun, S. Chan, J. Leone, J. Shinn, and D. Stevens, “Urban dispersion CFD modeling, fact or fiction,” in 3rd Symposium on the Urban Environment, pp. 14–18, 2000.

[3] W. Coirier, D. Fricker, M. Furmanczyk, and S. Kim, “A Computational Fluid Dynamics approach for urban area transport and dispersion modeling,” Environmental Fluid Mechanics, vol. 5, no. 5, pp. 443–479, 2005.

[4] F.-S. Lien and E. Yee, “Numerical modelling of the turbulent flow developing within and over a 3D building array, Part I: A high-resolution Reynolds-Averaged Navier-Stokes approach,”

Boundary-Layer Meteorology, vol. 112, pp. 427–466, 2004.

[5] F.-S. Lien, E. Yee, H. Ji, A. Keats, and K. J. Hsieh, “Progress and challenges in the development of physically-based numerical models for prediction of flow and contaminant dispersion in the urban environment,” Int. Journal of Computational Fluid Dynamics, vol. 20, pp. 323–337, 2006.

[6] J. L. Santiago, A. Martilli, and F. Martin, “CFD simulation of airflow over a regular array of cubes. Part I: Three-dimensional simulation of the flow and validation with wind-tunnel experiments,” Boundary-Layer Meteorology, vol. 122, pp. 609–634, 2007.

[7] M. A. McBride, A. B. Reeves, M. D. Vanderheyden, C. J. Lea, and X. X. Zhou, “Use of advanced techniques to model the dispersion of chlorine in complex terrain,” Process Safety Environment, vol. 79, pp. 89–102, 2001.

[8] G. A. Perdikaris and F. Mayinger, “Numerical simulation of heavy gas cloud dispersion within topographically complex terrain,” Journal of Loss Prevention in the Process Industries, vol. 7, pp. 391–396, 1994.

[9] S. Sklavounos and F. Rigas, “Validation of turbulence models in heavy gas dispersion over obstacles,” Journal of Hazardous Materials, vol. A108, pp. 9–20, 2004.

[10] S. Tauseef, D. Rashtchian, and S. Abbasi, “CFD-based simulation of dense gas dispersion in presence of obstacles,” Journal of Loss Prevention in the Process Industries, vol. 24, no. 4, pp. 371–376, 2011.

[11] V. Boppana, Z.-T. Xie, and I. P. Castro, “Large-eddy simulation of dispersion from surface sources in arrays of obstacles,” Boundary-Layer Meteorology, vol. 135, no. 3, pp. 433–454, 2010.

[12] H. E. Fossum, B. A. Pettersson-Reif, M. Tutkun, and T. Gjesdal, “On the Use of Computational Fluid Dynamics to Investigat Aerosol Dispersion in an Industrial Environment: A Case Study,”

Boundary-Layer Meteorology, vol. 144, pp. 21–40, 2012.

[13] Y. Liu, G. Cui, Z. Wang, and Z. Zhang, “Large eddy simulation of wind field and pollutant dispersion in downtown Macao,” Atmospheric Environment, vol. 45, no. 17, pp. 2849–2859, 2011.

[14] Z.-T. Xie and I. P. Castro, “Large-eddy simulation for flow and dispersion in urban streets,”

Atmospheric Environment, vol. 43, no. 13, pp. 2174–2185, 2009.

[15] J. Burman, B. A. P. Reif, S. Burkhart, O. Parmhed, and A. Robins, “WP1000 - Scenario definition and dissemination strategy,” Swedish Defence Research Agency, FOI Rapport, no. 2015/..., 2015.

[16] A. Robins, P. Hayden, and E. M. M. Wingstedt, “MODITIC wind tunnel experiments,” Tech.

Rep. 2016/01483, Forsvarets Forskningsinstitutt, 2016.

[17] E. Åkervik and D. Eriksson, “Turbulent boundary layer simulations: comparison with experi-ments,” tech. rep., Technical Report FFI-rapport 2016/00827, Forsvarets Forskningsinstitutt, 2016.

[18] C. T. Inc, “User’s and developer’s manual. jefferson release version 4.1.0,” 2014.

[19] E. D, O. N. A, and Åkervik. E, “Neutrally buoyant gas dispersion within an urban street canyon,” MekIT15 Eight national conference on Computational Mechanics, pp. 149–166, 2015.

[20] W. H.G., T. G., J. H., and F. C., “A tensorial approach to cfd using object oriented techniques,”

Comp. in Physics, vol. 12, p. 629, 1997.

[21] T. Maric, J. Hopken, and K. Mooney, “The openfoam technology primer,” 2014.

[22] S. J., “General circulation experiments with the primitive equations. i. the basic experiment,”

Mont. Wea. Rev., vol. 91, p. 91, 1963.

[23] U. Schumann, “Subgrid scale model for finite difference simualtion of turbulent flows in plane channels and annuli,” J.Comp.Phys., no. 18, p. 376, 1975.

[24] S. Menon and W.-W. Kim, “High reynolds number flow simulations using the localized dynamic subgrid-scale model,” AIAA paper, no. 96-0425, 1996.

[25] R. Stull, An Introduction to Boundary Layer Meteorology. Dordrecht: Kluwer Academic Publishers, 1988.

[26] S. Warner, N. Platt, J. F. Heagy, S. Bradley, G. Bieberbach, G. Sugiyama, J. S. Nasstrom, K. T.

Foster, and D. Larson, “User-oriented measures of effectiveness for the evaluation of transport and dispersion models,” Institute For Defense Analysis, no. P-3554, 2001.

Administrative Staff Strategy and Planning

Defence Industrial Strategy Ministry of Defence

FFI´s Board

Analysis Cyber Systems and Maritime Systems

Electronic Warfare Air and

Space Systems

Land Systems Protection and

Societal Security

The Norwegian Defence Research Establishment (FFI) was founded 11th of April 1946. It is organised as an administrative agency subordinate to the Ministry of Defence.

FFI’s mIssIon

FFI is the prime institution responsible for defence related research in Norway. Its principal mission is to carry out research and development to meet the require-ments of the Armed Forces. FFI has the role of chief adviser to the political and military leadership. In particular, the institute shall focus on aspects of the development in science and technology that can influence our security policy or defence planning.

FFI’s vIsIon

FFI turns knowledge and ideas into an efficient defence.

FFI’s chArActerIstIcs

Creative, daring, broad-minded and responsible.

om FFI

Forsvarets forskningsinstitutt ble etablert 11. april 1946.

Instituttet er organisert som et forvaltnings organ med særskilte fullmakter underlagt Forsvarsdepartementet.

FFIs Formål

Forsvarets forskningsinstitutt er Forsvarets sentrale forskningsinstitusjon og har som formål å drive forskning og utvikling for Forsvarets behov. Videre er FFI rådgiver overfor Forsvarets strategiske ledelse. Spesielt skal instituttet følge opp trekk ved vitenskapelig og

militærteknisk utvikling som kan påvirke forutsetningene for sikkerhetspolitikken eller forsvarsplanleggingen.

FFIs vIsjon

FFI gjør kunnskap og ideer til et effektivt forsvar.

FFIs verdIer

Skapende, drivende, vidsynt og ansvarlig.

FFI’s organisation

In document 16-01146 (sider 77-84)