SEATWIRL POWER CABLE ANALYSIS
6 D YNAMIC A NALYSIS
6.1 N
ORMALO
PERATIONC
ONDITIONFor all load cases 1.6 and 6.1 defined in Appendix 9 and Appendix 10 full time domain simulations have been run with the corresponding environmental conditions. The overall maximum/minimum results are extracted and presented in Table 6.1-1. The governing factor for the global design is limiting the dynamic effect on the minimum tension at TDP along with minimising the departure angle at JTube bellmouth exit.
The power cable departure angle and JTube bellmouth exist angle has been designed to minimize the cable curvature on static condition.
Table 6.1-1 Primary Results- SOL
Tension Tension MBR
Min Max Min
[kN] [kN] [kN]
Allowable Limits 04 200 1.7m
JTube bellmouth 7.3 19.9 4.4
TDP 0.5 13.2 11.4
Table 6.1-2 Primary Results- EOL
Tension Tension MBR
Min Max Min
[kN] [kN] [m]
Allowable Limits 0 200 1.7m
JTube bellmouth 10.0 29.0 2.7
TDP -1.3* 17.8 8.2
Note: *There is minor compression seen at the TDP. This is minor and in an extreme offset condition.
4 Final Compression limit to be agreed with supplier
CoreMarine AS
-'SMART Ocean Solutions
Rev A0 Page | 20
Table 6.1-3 Detailed Results- SOL/EOL
Figure 6.1 Relevant Load Cases Capacity Plot at JTube bellmouth.
With reference to Figure 5.8 it is seen that the tension / curvature combinations for all load cases are well below the normal operation curve defined by supplier
MBR top MBR MSL MBR TDP
Min tension
top Max tension
top Min tension
MSL Max tension
MSL Min tension
TDP Max tension
TDP Arc Length
Min Arc Length
Max
m m m kN kN kN kN kN kN m m
STR_M7_B2_C5_ULS_SOL_1.6_N_6_Bell1_1h_Seed1 7 25 41 12 20 11 19 5.8 13 171 191
STR_M7_B2_C5_ULS_SOL_1.6_N_4_Bell1_1h_Seed1 7 21 31 11 16 9 15 4.2 9 163 175
STR_M7_B2_C5_ULS_SOL_1.6_N_24_Bell1_1h_Seed1 10 32 43 13 17 11 16 6.0 11 169 185
STR_M7_B2_C5_ULS_SOL_1.6_N_48_Bell1_1h_Seed1 20 28 13 8 14 6 12 0.5 6 148 162
STR_M7_B2_C5_ULS_SOL_1.6_N_47_Bell1_1h_Seed1 25 66 16 7 15 6 13 0.5 7 146 163
STR_M7_B2_C5_ULS_SOL_1.6_N_46_Bell1_1h_Seed1 24 56 18 8 14 7 13 1.6 7 148 165
STR_M7_B2_C5_ULS_SOL_6.1_N_17_Bell1_1h_Seed1 5 19 27 10 15 9 14 3.6 8 159 169
STR_M7_B2_C5_ULS_SOL_6.1_N_49_Bell1_1h_Seed1 5 15 30 10 16 9 15 3.7 9 161 173
STR_M7_B2_C5_ULS_SOL_6.1_N_1_Bell1_1h_Seed1 7 20 39 12 20 11 18 5.5 13 170 192
STR_M7_B2_C5_ULS_SOL_6.1_N_24_Bell1_1h_Seed1 11 21 11 8 14 6 13 1.0 6 151 163
STR_M7_B2_C5_ULS_SOL_6.1_N_40_Bell1_1h_Seed1 12 27 12 8 15 6 13 1.1 7 152 164
STR_M7_B2_C5_ULS_SOL_6.1_N_56_Bell1_1h_Seed1 7 21 15 9 15 7 13 1.6 7 155 167
STR_M7_B2_C5_ULS_EOL_1.6_N_6_Bell1_1h_Seed1 6 17 47 17 29 14 27 6.9 18 173 195
STR_M7_B2_C5_ULS_EOL_1.6_N_4_Bell1_1h_Seed1 5 12 29 15 24 12 21 4.2 12 164 179
STR_M7_B2_C5_ULS_EOL_1.6_N_24_Bell1_1h_Seed1 9 23 49 18 25 15 22 7.4 13 172 188
STR_M7_B2_C5_ULS_EOL_1.6_N_48_Bell1_1h_Seed1 10 21 11 11 21 8 19 -0.5 9 148 164
STR_M7_B2_C5_ULS_EOL_1.6_N_47_Bell1_1h_Seed1 12 43 12 10 22 7 20 -1.3 10 145 165
STR_M7_B2_C5_ULS_EOL_1.6_N_46_Bell1_1h_Seed1 10 33 18 13 21 10 19 1.8 9 150 168
STR_M7_B2_C5_ULS_EOL_6.1_N_17_Bell1_1h_Seed1 4 11 23 13 23 11 21 3.2 11 159 173
STR_M7_B2_C5_ULS_EOL_6.1_N_49_Bell1_1h_Seed1 4 10 26 14 25 11 23 3.7 12 163 176
STR_M7_B2_C5_ULS_EOL_6.1_N_1_Bell1_1h_Seed1 5 14 44 17 27 15 24 6.5 15 175 194
STR_M7_B2_C5_ULS_EOL_6.1_N_24_Bell1_1h_Seed1 9 15 8 10 20 7 18 -0.7 8 150 163
STR_M7_B2_C5_ULS_EOL_6.1_N_40_Bell1_1h_Seed1 14 19 11 11 21 9 19 0.5 9 151 166
STR_M7_B2_C5_ULS_EOL_6.1_N_56_Bell1_1h_Seed1 7 12 11 11 21 9 19 0.3 9 154 167
DLC 1.6 & 6.1 SOL 5 15 11 7 20 6 19 0.5 13 146 192
DLC 1.6 & 6.1 EOL 4 10 8 10 29 7 27 -1.3 18 145 195
Sumamry DLC 1.6 &
6.1 SOL
DLC 1.6 &
6.1 EOL
CoreMarine AS
-'SMART Ocean Solutions
Rev A0 Page | 21
6.1.1 A
BNORMALC
ONDITIONSeveral ALS load cases has been assessed.
The ALS condition covers the loss of one of the mooring line suspension Buoys. (Buoy 1 or Buoy 3) The Omnidirectional cases (all Extreme Meteo condition coming from south) is also considered in this Abnormal condition, due to it conservatisms. It is not an accidental load case but due to is unlikely probability it is considered in this section.
Table 6.1-4 Detailed Results Abnormal Condition- SOL/EOL
Figure 6.2 Relevant Load Cases Capacity Plot at Bell Mouth.
It is observed that the loos of one single buoy produce minimal effect on the full dynamics of the floater and hence very limited effect on the cable dynamics.
The omnidirectional case produces the Minimum Bending Radius at the exist of the JTube
bellmouth, exciding the supplier normal operation limits. This effect can be reduced with a redesign
MBR top MBR MSL MBR TDP
Min tension
top Max tension
top Min tension
MSL Max tension
MSL Min tension
TDP Max tension
TDP Arc Length
Min Arc Length
Max
m m m kN kN kN kN kN kN m m
STR_M7_B2_C5_ULS_SOL_6.1_N_17_Bell1_1h_Seed1 5.4 19 27 10 15 9 14 3.6 8 159 169
STR_M7_B2_C5_ALS_SOL_6.1_N_17_Bell1_1h_Seed1_B1 4.7 14 23 9 14 8 13 2.1 6 154 160
STR_M7_B2_C5_ALS_SOL_6.1_N_17_Bell1_1h_Seed1_B3 5.2 16 28 10 15 8 14 3.3 7 158 167
STR_M7_B2_C5_ULS_SOL_1.6_N_47_Bell1_1h_Seed 24.5 66 16 7 15 6 13 0.4 7 146 163
STR_M7_B2_C5_ALS_SOL_1.6_N_47_Bell1_1h_Seed1_B1 18.5 68 21 7 14 5 13 0.0 7 143 158
STR_M7_B2_C5_ALS_SOL_1.6_N_47_Bell1_1h_Seed1_B3 23.0 64 17 7 14 6 13 0.3 7 146 162
STR_M7_B2_C5_ULS_SOL_1.6_N_Omni_1_Bell1_1h_Seed1 4.8 17 15 9 17 8 16 2.0 10 154 175
STR_M7_B2_C5_ULS_SOL_1.6_N_Omni_2_Bell1_1h_Seed1 6.4 23 16 9 17 8 15 2.1 10 155 176
STR_M7_B2_C5_ULS_SOL_6.1_N_Omni_1_Bell1_1h_Seed1 4.4 12 16 8 15 7 13 1.7 7 150 163
STR_M7_B2_C5_ULS_SOL_6.1_N_Omni_2_Bell1_1h_Seed1 5.2 19 20 9 15 8 13 2.2 7 151 164
STR_M7_B2_C5_ULS_EOL_1.6_N_Omni_1_Bell1_1h_Seed1 4.7 10 14 12 25 10 23 1.5 13 155 177
STR_M7_B2_C5_ULS_EOL_1.6_N_Omni_2_Bell1_1h_Seed1 5.0 17 16 13 25 10 22 1.6 13 155 180
STR_M7_B2_C5_ULS_EOL_6.1_N_Omni_1_Bell1_1h_Seed1 2.7 7 13 12 23 10 21 1.1 10 151 169
STR_M7_B2_C5_ULS_EOL_6.1_N_Omni_2_Bell1_1h_Seed1 3.5 14 13 12 22 10 20 1.3 10 152 169
Omni SOL 4.4 12 15 8 17 7 16 1.7 10 150 176
Omni EOL 2.7 7 13 12 25 10 23 1.1 13 151 180
Sumamry ALS 1.6_47
Omni SOL
Omni EOL ALS 6.1_17
CoreMarine AS
-'SMART Ocean Solutions
Rev A0 Page | 22
of the last section of the JTube bellmouth. Considering the unlikely existence of such omnidirectional case it is not recommended to do any redesign at this stage.
C o r e M a r i n e A S
-' S M A R T O c e a n S o l u t i on s
R e v A 0 P a ge | 23
7 S E N S IT I V IT I ES
T he f o l l ow in g s e n s i t i vit ie s ha ve be e n r un a n d s how n t o n ot a d ve r s e l y i m pa ct t h e o ve r a l l g l ob a l d e s i gn of t h e s ys t e m .
7 . 1 S
I M U LA T IO N D U RA T IO N4 di f f e r e nt s i m ul a t io n a r e t e s t e d f o r D LC 1. 6 47. Th e r e s u l t s ( T a b l e 7. 3- 1) s h ow ve e r y s m a l l de p e nd e ncy on s im u l a t i on t im e du r a t i on . F or 1h a n d 3h. T he ca b l e r e s ul t s a r e n ot d e p e n de nt on e xt r e m e m ot io n s a n d m oo r in g t e n s i on. Du e t o the l a ck of s lo w dr i ft mo t i o n of t h i s f lo a t e r ( h i gh pr e t e n s i on a n d lo w e xcur s io n ) t h i s e ff e ct i s e xpe cte d .
7 . 2 W
A VES
EE D S5 di f f e r e n t s e e d a r e c a l cu l a t e d f or 1 h s i m u l a t i on a t D LC 1. 6 4 7. ( T a b l e 7.3- 1 ) T h e s e n s it i vit y t o th i s pa r a m e t e r i s m i ni m u m, D if f e r e nt wa ve s s e e ds ma ke ne gl i gi bl e e f f e ct on ca b l e e f f or t s d u e t o t he s m a l l e xcu r s i on o f t h e f l oa t e r . D ue t o t he la ck of s lo w d r i ft m ot i on of t hi s f l oa t e r ( hi gh pr e t e n s i on a n d l ow e xcu r s i on) t h i s e ff e ct i s e xp e ct e d .
7 . 3 P
O W ER C A B LE LA Y T O L E R A N CET he s e a b e d s e ct i on l i ne l e n g t h h a s be e n a s s e s s e d ( T a bl e 7. 3 - 1) fo r ove r / u n d er l a y of t h e po we r ca b l e . A t ol e r a n ce of + / - 5m a n d + / - 1 0m of ca b l e ha s be e n a s s e s s e d f or t he DL C 1 . 6 4 7 .
W he n t h e ca b l e is la i d l ong , I E . M or e pr o du ct on t he fr e e ha ng i ng s e ct io n th e r e w il l be com pr e s s i on a t t h e T D P .
T he r e f or e , t he i ns t a l l a t i on t ol e r a n ce o f t h e ca bl e s ha l l be + 5/ - 5m .
T a b l e 7 . 3 -1 S e ns i ti vi t y re s u l ts
M BR t o p M BR M S L M BR T DP
M in t e ns i o n
t o p M ax t e n s io n
t o p M in t e n s i on
M S L M ax t e n s i o n
M SL M i n t e n s io n
T DP M ax t e n s i o n
T DP Ar c L e n g t h
M i n A r c L e n g t h
M a x
m m m k N k N k N k N k N k N m m
S TR _ M7 _ B 2 _ C 5 _ U L S_ S OL _ 1 .6 _ N _ 4 7 _ Be l l 1 _ 1 0 m i n _ S e e d 1 31 104 19 9 14 7. 5 12 1. 7 6 151 162
S TR _ M7 _ B 2 _ C 5 _ U L S_ S OL _ 1 .6 _ N _ 4 7 _ Be l l 1 _ 3 0 m i n _ S e e d 1 25 66 17 7 14 6. 0 12 0. 4 7 146 163
S TR _ M7 _ B 2 _ C 5 _ U L S_ S OL _ 1 .6 _ N _ 4 7 _ Be l l 1 _ 1 h _ Se e d 1 25 66 16 7 15 6. 0 13 0. 4 7 146 163
S TR _ M7 _ B 2 _ C 5 _ U L S_ S OL _ 1 .6 _ N _ 4 7 _ Be l l 1 _ 3 h _ Se e d 1 21 66 15 7 15 6. 0 13 0. 4 7 146 164
S TR _ M7 _ B 2 _ C 5 _ U L S_ S OL _ 1 .6 _ N _ 4 7 _ Be l l 1 _ 1 h _ Se e d 1 25 66 16 7 15 6. 0 13 0. 4 7 146 163
S TR _ M7 _ B 2 _ C 5 _ U L S_ S OL _ 1 .6 _ N _ 4 7 _ Be l l 1 _ 1 h _ Se e d 2 21 82 14 7 14 5. 4 13 -0. 2 7 146 164
S TR _ M7 _ B 2 _ C 5 _ U L S_ S OL _ 1 .6 _ N _ 4 7 _ Be l l 1 _ 1 h _ Se e d 3 23 86 14 7 14 6. 1 13 0. 6 7 146 163
S TR _ M7 _ B 2 _ C 5 _ U L S_ S OL _ 1 .6 _ N _ 4 7 _ Be l l 1 _ 1 h _ Se e d 4 23 85 16 9 14 7. 1 13 1. 6 7 148 164
S TR _ M7 _ B 2 _ C 5 _ U L S_ S OL _ 1 .6 _ N _ 4 7 _ Be l l 1 _ 1 h _ Se e d 5 21 72 13 7 14 5. 5 13 0. 1 7 146 163
S TR _ M7 _ B 2 _ C 5 _ U L S_ S OL _ 1 .6 _ N _ 4 7 _ Be l l 1 _ 1 h _ Se e d 1 _ p l u s 1 0 11 70 34 8 12 6. 3 10 -0. 1 4 137 149
S TR _ M7 _ B 2 _ C 5 _ U L S_ S OL _ 1 .6 _ N _ 4 7 _ Be l l 1 _ 1 h _ Se e d 1 _ p l u s 5 15 77 25 7 13 6. 1 12 0. 2 5 143 155
S TR _ M7 _ B 2 _ C 5 _ U L S_ S OL _ 1 .6 _ N _ 4 7 _ Be l l 1 _ 1 h _ Se e d 1 25 66 16 7 15 6. 0 13 0. 4 7 146 163
S TR _ M7 _ B 2 _ C 5 _ U L S_ S OL _ 1 .6 _ N _ 4 7 _ Be l l 1 _ 1 h _ Se e d 1 _ m i n u s 5 14 70 12 8 17 6. 7 15 1. 0 10 151 173
S TR _ M7 _ B 2 _ C 5 _ U L S_ S OL _ 1 .6 _ N _ 4 7 _ Be l l 1 _ 1 h _ Se e d 1 _ m i n u s 1 0 8 87 14 9 19 7. 4 18 1. 7 13 158 185
S TR _ M7 _ B 2 _ C 5 _ U L S_ E OL _ 6 .1 _ N _ 1 7 _ Be l l 1 _ 1 h _ Se e d 1 _ p l u s 5 4. 284 10. 6 18 13 21 10. 1 19 2. 3 9 152 164
S TR _ M7 _ B 2 _ C 5 _ U L S_ E OL _ 6 .1 _ N _ 1 7 _ Be l l 1 _ 1 h _ Se e d 1 4. 344 10. 8 23 13 23 10. 9 21 3. 2 11 159 173
S TR _ M7 _ B 2 _ C 5 _ U L S_ E OL _ 6 .1 _ N _ 1 7 _ Be l l 1 _ 1 h _ Se e d 1 _ m i n u s 5 4. 343 11. 5 28 14 25 11. 8 23 4. 1 14 168 184
ULS 1. 6 47 Ins t al lat i on s ens it ivi t y ULS 1. 6 47
s i m ulat ion dura t ion S ens it i vi t y ULS 1. 6 47 s ee d S ens it i vi t y
CoreMarine AS
-'SMART Ocean Solutions
Rev A0 Page | 24