• No results found

1) NFATc1 has a repressive and an activating effect on transcription, while NFATc2-4 only have an activating effect.

2) Overexpression of p300 increases the transactivational activity of NFATc2-4 in vitro.

3) Voluntary exercise increases the transactivational activity of NFAT in soleus and plantaris with the most prominent effect in the latter.

4) Voluntary exercise decreases the expression of NFATs in plantaris.

6 References

55

6 References

Allen, D. G. and Westerblad, H. (2001) ‘Role of phosphate and calcium stores in muscle fatigue’, Journal of Physiology. doi: 10.1111/j.1469-7793.2001.t01-1-00657.x.

Avots, A. et al. (1999) ‘CBP/p300 integrates Raf/Rac-signaling pathways in the transcriptional induction of NF-ATc during T cell activation’, Immunity. doi: 10.1016/S1074-7613(00)80051-5.

Bengtsen, M. et al. (2017) ‘The adaptor protein ARA55 and the nuclear kinase HIPK1 assist c-Myb in recruiting p300 to chromatin’, Biochimica et Biophysica Acta - Gene Regulatory Mechanisms. doi: 10.1016/j.bbagrm.2017.05.001.

Blaeser, F. et al. (2000) ‘Ca2+-dependent gene expression mediated by MEF2 transcription factors’, Journal of Biological Chemistry. doi: 10.1074/jbc.275.1.197.

Bugge, R. (2017) ‘Differences in skeletal muscle NFAT activity in response to strength- and endurance training’, Master thesis.

Calabria, E. et al. (2009) ‘NFAT isoforms control activity-dependent muscle fiber type

specification’, Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.0812911106.

Chakkalakal, J. V et al. (2003) ‘Expression of utrophin A mRNA correlates with the oxidative capacity of skeletal muscle fiber types and is regulated by calcineurin/NFAT signaling.’, Proceedings of the National Academy of Sciences of the United States of America. doi:

10.1073/pnas.0932671100.

Cheung, W. Y. (1980) ‘Calmodulin plays a pivotal role in cellular regulation.’, Science. doi:

10.1126/science.6243188.

Chin, E. R. et al. (1998) ‘A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type.’, Genes & development. doi: 10.1101/gad.12.16.2499.

Chin, E. R. and Allen, D. G. (1996) ‘The role of elevations in intracellular [Ca2+] in the

development of low frequency fatigue in mouse single muscle fibres’, Journal of Physiology. doi:

10.1113/jphysiol.1996.sp021259.

Chow, C. W. et al. (1997) ‘Nuclear accumulation of NFAT4 opposed by the JNK signal transduction pathway’, Science. doi: 10.1126/science.278.5343.1638.

Chytil, M. and Verdine, G. L. (1996) ‘The Rel family of eukaryotic transcription factors’, Current Opinion in Structural Biology. doi: 10.1016/S0959-440X(96)80100-X.

Coffey, V. G. and Hawley, J. A. (2007) ‘The molecular bases of training adaptation’, Sports Medicine. doi: 10.2165/00007256-200737090-00001.

Cohen, T. V. and Randall, W. R. (2004) ‘NFATc1 activates the acetylcholinesterase promoter in rat muscle’, Journal of Neurochemistry, 90(5), pp. 1059–1067. doi:

10.1111/j.1471-4159.2004.02564.x.

56

Crabtree, G. R. and Olson, E. N. (2002) ‘NFAT signaling: Choreographing the social lives of cells’, Cell. doi: 10.1016/S0092-8674(02)00699-2.

Ehlers, M. L., Celona, B. and Black, B. L. (2014) ‘NFATc1 controls skeletal muscle fiber type and is a negative regulator of MyoD activity’, Cell Reports. doi: 10.1016/j.celrep.2014.08.035.

Eken, T. and Gundersen, K. (1988) ‘Electrical stimulation resembling normal motor???unit activity: effects on denervated fast and slow rat muscles.’, The Journal of Physiology. doi:

10.1113/jphysiol.1988.sp017227.

Fabiato, A. (1983) ‘Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum.’, The American journal of physiology. doi: 10.1016/0022-2828(92)90114-F.

‘Factors Influencing Transfection Efficiency - NO’ (no date). Available at:

https://www.thermofisher.com/no/en/home/references/gibco-cell-culture-basics/transfection-basics/factors-influencing-transfection-efficiency.html (Accessed: 18 June 2018).

Garcia-Rodriguez, C. and Rao, A. (1998) ‘Nuclear factor of activated T cells (NFAT)-dependent transactivation regulated by the coactivators p300/CREB-binding protein (CBP)’, J Exp Med.

doi: 10.1084/jem.187.12.2031.

Gomez del Arco, P. et al. (2000) ‘A role for the p38 MAP kinase pathway in the nuclear shuttling of NFATp’, J Biol Chem. doi: 275/18/13872 [pii].

Gorza, L. et al. (1988) ‘Slow-to-fast transformation of denervated soleus muscles by chronic high-frequency stimulation in the rat.’, The Journal of Physiology, 402(1), pp. 627–649. doi:

10.1113/jphysiol.1988.sp017226.

Graef, I. A. et al. (2001) ‘Signals transduced by Ca(2+)/calcineurin and NFATc3/c4 pattern the developing vasculature.’, Cell. doi: 10.1016/S0092-8674(01)00396-8.

Gundersen, K. (2011) ‘Excitation-transcription coupling in skeletal muscle: The molecular pathways of exercise’, Biological Reviews. doi: 10.1111/j.1469-185X.2010.00161.x.

Harrison, S. C. (1991) ‘A structural taxonomy of DNA-binding domains’, Nature. doi:

10.1038/353715a0.

Hashimoto, Y., King, M. M. and Soderling, T. R. (1988) ‘Regulatory Interactions of Calmodulin-Binding Proteins: Phosphorylation of Calcineurin by Autophosphorylated Ca2+/calmodulin-dependent Protein Kinase II’, Proceedings of the National Academy of Sciences, 85(18), pp.

7001–7005. doi: 10.1073/pnas.85.18.7001.

Hoey, T. et al. (1995) ‘Isolation of two new members of the NF-AT gene family and functional characterization of the NF-AT proteins’, Immunity. doi: 10.1016/1074-7613(95)90027-6.

Hogan, P. G. et al. (2003) ‘Transcriptional regulation by calcium, calcineurin, and NFAT’, Genes and Development. doi: 10.1101/gad.1102703.

Horsley, V. et al. (2001) ‘Regulation of the growth of multinucleated muscle cells by an NFATC2-dependent pathway’, Journal of Cell Biology. doi: 10.1083/jcb.153.2.329.

6 References

57

‘Human BLAT Search’ (no date). Available at: https://genome.ucsc.edu/cgi-bin/hgBlat (Accessed: 19 June 2018).

Kegley, K. M. et al. (2001) ‘Altered primary myogenesis in NFATC3-/-mice leads to decreased muscle size in the adult’, Developmental Biology. doi: 10.1006/dbio.2001.0179.

Kincaid, R. L., Nightingale, M. S. and Martin, B. M. (1988) ‘Characterization of a cDNA clone encoding the calmodulin-binding domain of mouse brain calcineurin.’, Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.85.23.8983.

Latchman, D. S. (1997) ‘Transcription factors: An overview’, International Journal of

Biochemistry and Cell Biology, 29(12), pp. 1305–1312. doi: 10.1016/S1357-2725(97)00085-X.

Lawrence, M. C. et al. (2015) ‘NFAT Targets Signaling Molecules to Gene Promoters in Pancreatic β-Cells’, Molecular Endocrinology. doi: 10.1210/me.2014-1066.

Ledsaak, M. et al. (2016) ‘PIAS1 binds p300 and behaves as a coactivator or corepressor of the transcription factor c-Myb dependent on SUMO-status’, Biochimica et Biophysica Acta - Gene Regulatory Mechanisms. doi: 10.1016/j.bbagrm.2016.03.011.

Lee, M. Y. et al. (2009) ‘Integrative genomics identifies DSCR1 (RCAN1) as a novel NFAT-dependent mediator of phenotypic modulation in vascular smooth muscle cells’, Human Molecular Genetics. doi: 10.1093/hmg/ddp511.

Liu, W. et al. (2014) ‘Calcineurin-NFAT signaling and neurotrophins control transformation of myosin heavy chain isoforms in rat soleus muscle in response to aerobic treadmill training’, Journal of Sports Science and Medicine.

Liu, Y. et al. (2001) ‘Activity-dependent nuclear translocation and intranuclear distribution of NFATc in adult skeletal muscle fibers’, Journal of Cell Biology. doi: 10.1083/jcb.200103020.

López-Rodríguez, C. et al. (1999) ‘NFAT5, a constitutively nuclear NFAT protein that does not cooperate with Fos and Jun’, Proceedings of the National Academy of Sciences. doi:

10.1073/pnas.96.13.7214.

López-Rodríguez, C. et al. (2003) ‘Bridging the NFAT and NF-κB families: NFAT5 dimerization regulates cytokine gene transcription in response to osmotic stress’, Immunity. doi:

10.1016/S1074-7613(01)00165-0.

Macian, F. (2005) ‘NFAT proteins: Key regulators of T-cell development and function’, Nature Reviews Immunology. doi: 10.1038/nri1632.

Macián, F., López-Rodríguez, C. and Rao, A. (2001) ‘Partners in transcription: NFAT and AP-1’, Oncogene. doi: 10.1038/sj.onc.1204386.

Masuda, E. S. et al. (1998) ‘Signalling into the T-Cell nucleus: NFAT regulation’, ScienceD, 10(9), pp. 599–611. doi: 10.1016/S0898-6568(98)00019-9.

McCullagh, K. J. A. et al. (2004) ‘NFAT is a nerve activity sensor in skeletal muscle and controls activity-dependent myosin switching’, Proceedings of the National Academy of Sciences. doi:

58

10.1073/pnas.0308035101.

Meissner, J. D. et al. (2011) ‘Extracellular signal-regulated kinase 1/2-mediated phosphorylation of p300 enhances myosin heavy chain I/{beta} gene expression via acetylation of nuclear factor of activated T cells c1.’, Nucleic acids research. doi: 10.1093/nar/gkr162.

Mognol, G. P. et al. (2016) ‘Cell cycle and apoptosis regulation by NFAT transcription factors:

new roles for an old player.’, Cell death & disease. doi: 10.1038/cddis.2016.97.

Musarò, A. et al. (1999) ‘IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1’, Nature. doi: 10.1038/23060.

‘Muscle Fiber Types and Muscle Actions’ (no date). Available at:

https://www.nestacertified.com/muscle-fiber-types-and-muscle-actions/ (Accessed: 19 June 2018).

Nakayama, M. et al. (1996) ‘Common core sequences are found in skeletal muscle slow- and fast-fiber-type-specific regulatory elements.’, Molecular and cellular biology. doi:

10.1128/MCB.16.5.2408.

Naya, F. J. et al. (2000) ‘Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo’, Journal of Biological Chemistry. doi: 10.1074/jbc.275.7.4545.

Oh, M. et al. (2005) ‘Calcineurin is necessary for the maintenance but not embryonic

development of slow muscle fibers’, Mol.Cell Biol. doi: 10.1128/MCB.25.15.6629-6638.2005.

Parsons, S. A. et al. (2003) ‘Altered skeletal muscle phenotypes in calcineurin Aalpha and Abeta gene-targeted mice’, Mol.Cell Biol. doi: 10.1128/MCB.23.12.4331–4343.2003.

Parsons, S. A. et al. (2004) ‘Genetic loss of calcineurin blocks mechanical overload-induced skeletal muscle fiber type switching but not hypertrophy’, Journal of Biological Chemistry. doi:

10.1074/jbc.M313800200.

Perroud, J. et al. (2017) ‘Distinct roles of NFATc1 and NFATc4 in human primary myoblast differentiation and in the maintenance of reserve cells’, pp. 3083–3093. doi: 10.1242/jcs.198978.

Rana, Z. A., Gundersen, K. and Buonanno, A. (2008) ‘Activity-dependent repression of muscle genes by NFAT’, Proceedings of the National Academy of Sciences. doi:

10.1073/pnas.0801330105.

Rao, A., Luo, C. and Hogan, P. G. (1997) ‘Transcription factors of the NFAT family: regulation and function’, Annu Rev Immunol. doi: 10.1146/annurev.immunol.15.1.707.

Robbs, B. K. et al. (2008) ‘Dual roles for NFAT transcription factor genes as oncogenes and tumor suppressors.’, Molecular and cellular biology. doi: 10.1128/MCB.00256-08.

Rusnak, F. and Mertz, P. (2000) ‘Calcineurin: Form and Function’, Physiological Reviews. doi:

10.1152/physrev.2000.80.4.1483.

Sakuma, K. et al. (2008) ‘Cyclosporin A modulates cellular localization of MEF2C protein and blocks fiber hypertrophy in the overloaded soleus muscle of mice’, Acta Neuropathologica. doi:

6 References

59 10.1007/s00401-008-0371-5.

Schiaffino, S. and Reggiani, C. (1994) ‘Myosin isoforms in mammalian skeletal muscle’, Journal of Applied Physiology. doi: 10.1152/jappl.1994.77.2.493.

Schiaffino, S. and Reggiani, C. (1996) ‘Molecular diversity of myofibrillar proteins: Gene regulation and functional significance’, Physiol Rev.

Schiaffino, S. and Reggiani, C. (2011) ‘Fiber types in mammalian skeletal muscles.’, Physiological reviews. doi: 10.1152/physrev.00031.2010.

Scott, J. E., Ruff, V. A. and Leach, K. L. (1997) ‘Dynamic equilibrium between calcineurin and kinase activities regulates the phosphorylation state and localization of the nuclear factor of activated T-cells’, The Biochemical journal.

Serrano, A. L. et al. (2001) ‘Calcineurin controls nerve activity-dependent specification of slow skeletal muscle fibers but not muscle growth’, Proceedings of the National Academy of Sciences.

doi: 10.1073/pnas.231148598.

Shaw, J. P. et al. (1988) ‘Identification of a putative regulator of early T cell activation genes’, Science. doi: 10.1126/science.3260404.

Spangenburg, E. E. and Booth, F. W. (2003) ‘Molecular regulation of individual skeletal muscle fibre types’, in Acta Physiologica Scandinavica. doi: 10.1046/j.1365-201X.2003.01158.x.

Steinle, A. U. et al. (1999) ‘NF-κB/Rel activation in cerulein pancreatitis’, Gastroenterology. doi:

10.1016/S0016-5085(99)70140-X.

Stielow, B. et al. (2008) ‘SUMO-modified Sp3 represses transcription by provoking local heterochromatic gene silencing’, EMBO Reports. doi: 10.1038/embor.2008.127.

Swoap, S. J. et al. (2000) ‘The calcineurin-NFAT pathway and muscle fiber-type gene expression.’, American journal of physiology. Cell physiology.

Talmadge, R. J. et al. (2004) ‘Calcineurin activation influences muscle phenotype in a muscle-specific fashion’, BMC Cell Biology. doi: 10.1186/1471-2121-5-28.

Thomas, M. C. and Chiang, C. M. (2006) ‘The general transcription machinery and general cofactors.’, Critical reviews in biochemistry and molecular biology. doi:

10.1080/10409230600648736.

Thompson, J. F., Hayes, L. S. and Lloyd, D. B. (1991) ‘Modulation of firefly luciferase stability and impact on studies of gene regulation’, Gene. doi: 10.1016/0378-1119(91)90270-L.

Timmerman, L. A. et al. (1996) ‘Rapid shuttling of NF-AT in discrimination of Ca2+ signals and immunosuppression’, Nature. doi: 10.1038/383837a0.

Vihma, H., Pruunsild, P. and Timmusk, T. (2008) ‘Alternative splicing and expression of human and mouse NFAT genes’, Genomics. doi: 10.1016/j.ygeno.2008.06.011.

Wang, F., Marshall, C. B. and Ikura, M. (2013) ‘Transcriptional/epigenetic regulator CBP/p300

60

in tumorigenesis: Structural and functional versatility in target recognition’, Cellular and Molecular Life Sciences. doi: 10.1007/s00018-012-1254-4.

‘What is PCR?’ (no date). Available at: https://www.acsh.org/news/2016/10/11/what-pcr-molecular-biology-lesson-10267 (Accessed: 19 June 2018).

‘What is Real-Time PCR (qPCR)?’ (no date). Available at: https://www.bio-rad.com/en-no/applications-technologies/what-real-time-pcr-qpcr?ID=LUSO4W8UU (Accessed: 19 June 2018).

Wilkins, B. J. et al. (2004) ‘Calcineurin/NFAT Coupling Participates in Pathological, but not Physiological, Cardiac Hypertrophy’, Circulation Research. doi:

10.1161/01.RES.0000109415.17511.18.

Wu, H. et al. (2000) ‘MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type’, EMBO Journal. doi: 10.1093/emboj/19.9.1963.

Yang, T. T. C. et al. (2002) ‘Phosphorylation of NFATc4 by p38 Mitogen-Activated Protein Kinases’, Molecular and cellular biology, 22(11), pp. 3892–3904. doi:

10.1128/MCB.22.11.3892.

7 Appendix

DMEM Thermo Fisher Scientific 41965-039

Puromycin Thermo Fisher Scientific A11138-03

DPBS Thermo Fisher Scientific 14190-094

Trypsin-EDTA Thermo Fisher Scientific 25300-054 Trypan blue Thermo Fisher Scientific 15250061 Transfection reagent

(TransIT)

Mirus MIR 6010

TE buffer Qiagen 1018499

FBS Thermo Fisher Scientific A31608-01

PEN-STREP Lonza DE17-603E

LE Agarose (SeaKem) Lonza 50004

TAE-buffer Omega AC10088

Loading Dye Thermo Fisher Scientific R0611 GeneRuler 100 bp