• No results found

Biomass potential for sustainable aviation fuels in the Nordics

In document Nordic Sustainable Aviation (sider 34-37)

Next steps

E- jet fuels

3. Overview of aviation in the Nordic countries

3.4 Biomass potential for sustainable aviation fuels in the Nordics

The two main energy sources for producing SAF at large scale are residual biomass and hydrogen generated from renewable based electricity by electrolysis, also labelled “Power-to-X”. Whereas renewable energy sources for producing electricity (e.g. by wind turbines at sea) and, hence, hydrogen are not considered to be limited,8the same is not true for sustainable biomass. Biomass is globally a scarce resource and will in the future increasingly also be needed in other sectors, including other parts of the transport sector, to replace coal, gas and oil. Increased use in aviation will limit the use in another sector. According to one analysis sustainable biomass may only cover somewhat more than 10% of jet fuel demand (Interview consultant, 2020; T&E, 2018). For an ambitious Nordic policy for sustainable aviation to be considered as "leading by example", it should be justifiable that the chosen path is also sustainable on a global scale. This could be very difficult to verify if substitution of fossil jet fuel with SAFs is predominantly based on imported biofuels or biomass.

Only relying on renewable energy sources that can be provided from within the Nordics/EEA can be a way to secure sustainability for production of bio-jet fuels at a scale that can significantly reduce CO2-emissions from Nordic aviation. From this perspective it is relevant to get an idea of the potential Nordic biomass potential as feedstock for SAF production in comparison with total jet fuel consumption in the Nordics.

8. But the renewables technologies also face sustainability challenges, that have to be dealt with, e.g. with practices used in industries that will supply the metals and minerals (Sovacool et al., 2020).

Tunberg and Hansson (2020) estimates, based on Pöyry 2019, that the total available sustainable biomass for energy in the Nordics is currently about 500 TWh (1700 PJ), and can possibly be raised to about 650 TWh (2300 PJ). Forest biomass accounts for around 70% of the total biomass supply, primarily from Sweden and Finland, and some from Norway. Agro biomass accounts for about 20%, and consists of energy crops, straw, husk, grasses, and manure. Waste delivers the remaining 10%, and includes biological material from consumers (such as municipal solid waste), waste water sludge, cooking oil, and waste from fisheries and

slaughter. In Denmark, SAFs may primarily be produced from agro biomass and waste.

Figure 3.3Nordic biomass potential (PJ)

Iceland Denmark Norway Finland Sweden

Current Future

0 500 1000 1500 2000 2500

Source:Thunberg M. & Hansson P. (2020)

For economic reasons, almost all Nordic energy biomass is used as feedstock in the energy and industrial sectors for electricity and heat production. In a long-term perspective, it will be technically and economically feasible to use other renewable energy sources, e.g. solar, wind and hydro power, to replace biomass to an even larger extent than what has been the case so far. Still, aviation will in the future compete for the available resources of sustainable fuels with other applications, e.g.

other modes of transport, which will also have to phase out fossil energy. Currently, the costs of utilising biomass for SAF is higher than for many other applications, due to the need for conversion to liquid fuels to fulfil very high safety standards, and due to the fact that production is very small compared to production of biofuel for road transport.

In addition, the figures for biomass potentials cannot be directly compared to the consumption of jet fuel. Only a fraction of the energy is maintained during the conversion of the biomass into liquid fuels. There are significant energy losses and/or heat generation as well as side products from all pathways.

To conclude: While biomass availability in the Nordics might, at first sight, appear abundant compared to current demand for SAF, biomass for energy purposes will undoubtedly be a scarce resource over the next decades. This will in particular be the case globally, not least if aviation continues to grow as expected, but the scarcity will most likely also play out in a Nordic context. This might not be an issue in early phases of the transformation, where SAF will only constitute a smaller share of total fuel consumption. However, full phase out of fossil fuels in aviation solely based on advanced biofuels might be challenged by availability of biomass that can be used sustainably. Therefore, the required biomass might come at a very high cost needed to attract it from other competing applications. Thus, aviation cannot rely on

biofuels alone but needs other sources of sustainable energy. The currently promising alternative is e-jet fuel (Interview NISA, 2020; T&E, 2018) and electric propulsion for some applications (see Section 5.4).

The technology readiness levels for electrofuels are currently lower and costs are higher than for advanced biofuels. Still, increasing prices on biomass and cost reductions in power-to-X can indicate that electrofuels will turn out to be an important element in decarbonising aviation because of the limited availability of biomass. This could either be by boosting the energy from biofuels through hydrogenation, or by combining hydrogen and carbon capture from flue gases or from the air. The cost estimates for e-fuels in the coming years vary widely and are very sensitive to assumptions about the price on the electricity input (see Mortensen et al., 2019).

In document Nordic Sustainable Aviation (sider 34-37)