• No results found

Stochastic modeling of scrape-off layer fluctuations

N/A
N/A
Protected

Academic year: 2022

Share "Stochastic modeling of scrape-off layer fluctuations"

Copied!
35
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

Stochastic modeling of scrape-off layer fluctuations

R. Kube1 O. E. Garcia1 A. Theodorsen1 D. Brunner2 A. Kuang2 B. LaBombard2 J. Terry2

1Department of Physics and Technology, UiT - The Arctic University of Norway and2MIT Plasma Science and Fusion Center

August 24, 2017

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 1 / 33

(2)
(3)

Bursts in single point measurements correspond to traversing blobs

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 3 / 33

(4)

1 Stochastic model of data time series

2 Comparison to experimental measurements

3 Conclusions

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 4 / 33

(5)

Superpose uncorrelated pulses to model data time series

Superposition of K pulses in a time interval [0 :T]

ΦK(t) =

K(T)

X

k=1

Akφ

t−tk τd

where k labels a pulse and

Ak denotes the pulse amplitude tk denotes pulse arrival time φdenotes a pulse shape τd denotes pulse duration time Intermittency parameter: γ =τdw

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 4 / 33

(6)

Pulses arrive uncorrelated and form a Poisson process

Choose distribution for all random variables PK(K|T) gives the number of bursts in time interval [0;T] PA(Ak)→ distribution of pulse Amplitudes.

Pt(tk)→ distribution of pulse arrival times.

Consider a Poisson process:

1 Pulses arrive uncorrelated: Pt(tk) = 1/T

2 Avg. rate of pulse arrival is 1/τw

PK(K|T) = exp −T

τw T τw

K

1 K!

Exponentially distributed pulse amplitudes: hAiPA(Ak) = exp (Ak/hAi) We often normalize the process as

Φ =e Φ− hΦi Φrms

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 5 / 33

(7)

Intermittency parameter governs pulse overlap

100 105 110 115 120 125 130 135 140

t/ d

2 0 2 4

(t)

2 = 1 0 2 4

(t)

2 = 2 0 2 4

(t)

= 5

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 6 / 33

(8)

Model experimental data with double-exponential pulses

Experimental data is approximated by a double-exponential pulse shape

φ(θ) = Θ (−θ) exp θ

λ

+ Θ (θ) exp

− θ 1−λ

In physical units: θ= (t−tk)/τdd≈10µs.

λdefines pulse asymmetry:

τr=λτd τf = (1−λ)τd

Notation: In= R

−∞

dθ[φ(θ)]n

Normalization: I1 = 1 4 2 0 2 4

0.0 0.2 0.4 0.6 0.8 1.0

()

= 0.00

= 0.25

= 0.50

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 7 / 33

(9)

Correlation and power spectral density depend on pulse asymmetry

Correlation function of the pulse shape is given by

ρφ(θ) = 1 I2

Z

−∞

dχφ(χ)φ(χ+θ)

= 1

1−2λ

(1−λ) exp

− |θ|

1−λ

−λexp

−|θ|

λ

Wiener-Khinchin theorem states that the power spectral density is the Fourier-transform of the autocorrelation function

σφ(ω) = Z

−∞

dθρφ(θ) exp (−iωθ)

= 2

[1 + (1−λ)2ω2][1 +λ2ω2]

O.E. Garcia and A. Theodorsen, Phys. Plasmas24032309 (2017).

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 8 / 33

(10)

The mean of the process can be computed analytically

Averaging the process over all random variables and neglect finite box effects by extending time integration to the entire real axis:

Ki= Z

−∞

dA1PA(A1) Z

−∞

dt1

T . . . Z

−∞

dAKPA(AK) Z

−∞

dtK

T

K

X

k=1

Akφ

t−tk

τd

= K TτdhAi

Average over number of pulsesK:

hΦi= τd τwhAi

Mean value of the process increases with pulse overlap and average pulse amplitude.

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 9 / 33

(11)

The variance can be computed analytically

2Ki= Z

−∞

dA1PA(A1) Z

−∞

dt1

T . . . Z

−∞

dAKPA(AK) Z

−∞

dtK

T

K

X

k=1

Akφ

t−tk τd

K

X

l=1

Alφ

t−tl τd

This results in K(K −1) terms withk 6=l,K terms with k =l.

2Ki=τdI2hA2iK

T +τd2I12hAi2K(K −1) T2

⇒ hΦ2i= τd

τwI2hA2i+hΦi2 where hK(K −1)i=hKi2 has been used.

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 10 / 33

(12)

Auto-correlation is determined by the pulse shape

Auto-correlation function is computed from hΦ(t)Φ(t+k)i

RΦ(r) =hΦi2+ Φ2rmsρφ r

τd

=hΦi2+ Φ2rms 1−2λ

(1−λ) exp

− |r|

(1−λ)τd

−λexp

−|r|

τd

0 1 2 3 4 5

r/d

0.0 0.2 0.4 0.6 0.8 1.0

(r)

= 0= 0.1

= 0.5

O.E. Garcia and A. Theodorsen, Phys. Plasmas24032309 (2017).

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 11 / 33

(13)

Power spectral density

Φ(ω) = 2πhΦi2δ(ω) + Φ2rmsτdσφdω)

= 2πhΦi2δ(ω) + 2Φ2rms τd h

1 + (1−λ)2τd2ω2i

1 +λ2τd2ω2

101 100 101 102 103

d

106 105 104 103 102 101 100

()/2d

= 0= 0.1

= 0.5

λ= 0: Power law tail, ∼ω2 λ= 1/2: Power law tail,∼ω4 Else: broken power law, curved spectrum.

O.E. Garcia and A. Theodorsen, Phys. Plasmas24032309 (2017).

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 12 / 33

(14)

Probability distribution function

For exponentially distributed amplitudes and exponential wave forms is the process Gamma distributed:

hΦiPΦ(Φ) = γ Γ(γ)

γΦ hΦi

γ1

exp

−γΦ hΦi

0 1 2 3

/ 106

105 104 103 102 101 100

P

= 1.0

= 5.0 = 10.0

= 50.0

O.E. Garcia, Phys. Rev. Lett.108265001 (2012).

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 13 / 33

(15)

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 14 / 33

(16)

SOL fluctuations measured in a density scan

Ohmic L-mode plasma

Lower single-null magnetic geometry Density varied fromne/nG= 0.12..0.62 Probe head dwelled at the limiter radius 4 electrodes with Mirror Langmuir probes Approximately 1s long data time series in steady state

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 15 / 33

(17)

Mirror Langmuir Probe allows fast I

s

, T

e

, and V

f

sampling

0.0 2.5 5.0 7.5 10.0

t/ s 10

V/Vf 0

20 30 Te/eV 20

30 40 Isat/mA

50 0

Iprobe/mA 50

0

Vprobe/V asp_mlp_show_mlp_uifit.py

MLP biases electrode to 3 voltages per microsecond.

Voltage range is dynamically adjusted

Probe current measured in each voltage state Fit input voltage and current is subject to 12pt smoothing (running average)

Fit U-I characteristic on (U,I) samples Largest error onTe.

Resolves fluctuations on µs time scale

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 16 / 33

(18)

Low density discharge, n

e

/n

G

= 0.12

0.02 0.04 Is/A

0.5 1.0 1.5

ne/1019m3

10 15 Te/eV

0.0 0.2 0.4 0.6 0.8 1.0

time/ms

20

10 0

Vf/V

Intermittent, large amplitude bursts in Is.

Bursts in ne andTe appear correlated

Timescale approximately 25µs Irregular potential waveform

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 17 / 33

(19)

High density discharge, n

e

/n

G

= 0.62

0.25 0.50 0.75

Is/A

5 10 15

ne/1019m3

10 20 30

Te/eV

0.0 0.2 0.4 0.6 0.8 1.0

time/ms

20 0 20

Vf/V

Bursts appear more isolated Average density larger by factor of 10

Average electron temperature approx. 8eV

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 18 / 33

(20)

Ion saturation current histograms are well described by a Gamma distribution

4 2 0 2 4 6 8 10

Is

104 103 102 101 100

PDF(Is)

ne/nG= 0.12 : = 2.68, = 0.032 ne/nG= 0.28 : = 1.60, = 0.048 ne/nG= 0.59 : = 0.68, = 0.059

A.

Theodorsen, O.E. Garcia, and M. Rypdal, Phys. Scr.92054002 (2017)

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 19 / 33

(21)

Electron temperature histograms are well described by a Gamma distribution

4 2 0 2 4 6 8 10

Te

104 103 102 101 100

PDF(Te)

ne/nG= 0.12 : = 11.82, = 0.048 ne/nG= 0.28 : = 6.07, = 0.000 ne/nG= 0.59 : = 0.75, = 0.077

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 20 / 33

(22)

PSD of I

s

shows broken power law

103 102 101 100

f/MHz 105

104 103 102 101 100 101 102

PSD(Is)

f 2

ne/nG= 0.12 : d= 15.91 s = 0.0 ne/nG= 0.28 : d= 12.14 s = 0.0 ne/nG= 0.59 : d= 15.64 s = 0.0

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 21 / 33

(23)

PSD of T

e

shows broken power law

103 102 101 100

f/MHz 105

104 103 102 101 100 101 102

PSD(Te)

f 2

ne/nG= 0.12 : d= 15.43 s = 0.0 ne/nG= 0.28 : d= 13.20 s = 0.1 ne/nG= 0.59 : d= 23.41 s = 0.0

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 22 / 33

(24)

I

s

shows exponential autocorrelation function

0 5 10 15 20 25

/ s 0.0

0.2 0.4 0.6 0.8 1.0

Is()

ne/nG= 0.12 : d= 15.02 s = 0.0 ne/nG= 0.28 : d= 11.33 s = 0.0 ne/nG= 0.59 : d= 12.81 s = 0.0

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 23 / 33

(25)

T

e

shows exponential autocorrelation function

0 5 10 15 20 25

/ s 0.0

0.2 0.4 0.6 0.8 1.0

Te()

ne/nG= 0.12 : d= 14.86 s = 0.0 ne/nG= 0.28 : d= 12.57 s = 0.1 ne/nG= 0.59 : d= 16.67 s = 0.0

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 24 / 33

(26)

Bursts in I

s

are approximated by double-exponential waveform

20 10 0 10 20

/ s 0.0

0.2 0.4 0.6 0.8 1.0

Is()|Is(0)>2.5

ne/nG= 0.12 : d= 13.21 s, = 0.4 ne/nG= 0.28 : d= 10.28 s, = 0.4 ne/nG= 0.59 : d= 8.24 s, = 0.4

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 25 / 33

(27)

Bursts in T

e

are approximated by double-exponential waveform

20 10 0 10 20

/ s 0.0

0.2 0.4 0.6 0.8 1.0

Te()|Is(0)>2.5

ne/nG= 0.12 : d= 17.31 s, = 0.4 ne/nG= 0.28 : d= 14.16 s, = 0.4 ne/nG= 0.59 : d= 12.24 s, = 0.4

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 26 / 33

(28)

Time between bursts in I

s

signal is exponentially distributed

Exponential distribution describes the time between events in a Poisson process.

250 500 750 1000 1250 1500

w/ s 105

104 103 102

PDF(w)

ne/nG= 0.12 : w= 233.7 s ne/nG= 0.28 : w= 169.4 s ne/nG= 0.59 : w= 171.3 s

asp_mlp_mp800_tauwait_burstamp_scan.py

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 27 / 33

(29)

Time between bursts in T

e

signal is exponentially distributed

250 500 750 1000 1250 1500

w/ s 105

104 103 102

PDF(w)

ne/nG= 0.12 : w= 279.6 s ne/nG= 0.28 : w= 240.7 s ne/nG= 0.59 : w= 198.1 s

asp_mlp_mp800_tauwait_burstamp_scan.py

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 28 / 33

(30)

Burst amplitude distribution - Isat

2.5 5.0 7.5 10.0 12.5 15.0

A 103

102 101 100

PA(A)

ne/nG= 0.12 : A = 1.0 ne/nG= 0.28 : A = 1.1 ne/nG= 0.59 : A = 2.1

asp_mlp_mp800_tauwait_burstamp_scan.py

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 29 / 33

(31)

Burst amplitude distribution - Te

2.5 5.0 7.5 10.0 12.5 15.0

A 103

102 101 100

PA(A)

ne/nG= 0.12 : A = 0.8 ne/nG= 0.28 : A = 0.8 ne/nG= 0.59 : A = 1.8

asp_mlp_mp800_tauwait_burstamp_scan.py

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 30 / 33

(32)

Conclusions

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 31 / 33

(33)

Overview of estimated parameters

ne

nG γ (PDF) γ

Φrms hΦi

τd (PSD) τd,R τd(CA) τw hAi

Is 0.12 2.68 8.0 15.0µs 15.0µs 13.2µs 234µs 1.0

Is 0.28 1.60 5.7 12.1µs 11.3µs 10.3µs 169µs 1.1

Is 0.59 0.68 4.4 15.6µs 12.8µs 8.24µs 171µs 2.1

Te 0.12 11.82 25 15.4µs 14.9µs 17.3µs 280µs 0.8

Te 0.28 6.07 13 13.2µs 12.6µs 14.2µs 241µs 0.8

Te 0.59 0.75 4.6 23.4µs 16.7µs 12.2µs 198µs 1.8

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 32 / 33

(34)

Conclusions

Theory Experimental data

Process is Gamma distributed Is andTe time series are Gamma distributed Pulses arrive uncorrelated Waiting time between bursts in

IsandTe is exponential distributed Exponential distributed pulse amplitude Burst amplitudes inIs

andTe are expon. distributed Double-exponential pulse shape PSD, autocorrelation function and

cond. avg. ofIsandTe time series agree

Less burst overlap at high densities

Burst duration time changes little with ne/nG. Burst amplitude increases with ne/nG

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 33 / 33

(35)

Thank you for your attention.

R. Kube et al. (UiT) Stochastic modeling of scrape-off layer fluctuations August 24, 2017 34 / 33

Referanser

RELATERTE DOKUMENTER

Etter gjeldende rett kan den som så vidt mulig og i det vesentlige har forebygget eller gjenopprettet de skadelige følgene av sin handling før han vet at han er mistenkt, få

Applied Research with Emphasis on Women (TARPII – SUA) The Food Security and Household Income programme was launched in September 2000 as a fully NORAD funded pro- gramme

Samtidig må vi heller ikke bli naive den andre veien og tro at det bare er å sette opp noen kameraer, og så er alt i orden, sier Kaufmann.. – Det å virkelig øke sikkerheten,

”fire- og rescue vehicle” var til stede da Harrieren landet. Kommisjonen har også merket seg NRKs re- ferat fra telefonsamtalen med Bragstad 6. august 2001, hvor Bragstad

– Det sier seg selv at det er en del solskinns- historier, ellers ville jeg ikke ha holdt på med dette i tjue år, sier beathe Rønningen, hovedkontakt i Akan ved ullevål.. FoTo:

– De som opplever at fagmiljøet som man har vært med på å bygge opp blir endret uten at de får ha kontroll på prosessen opplever en reell følelse av det som ble bygget opp ikke

– Fordi at dette er veldig vanskelig å konkre- tisere. Og utvalget er kanskje ikke engang sammensatt sånn. Her legges noen føringer som skal gjennom en bred debatt – noe blir

[r]