• No results found

Actin Post-translational Modifications: The Cinderella of Cytoskeletal Control

N/A
N/A
Protected

Academic year: 2022

Share "Actin Post-translational Modifications: The Cinderella of Cytoskeletal Control"

Copied!
15
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

Review

Actin Post-translational Modifications: The Cinderella of Cytoskeletal Control

Sylvia Varland,

1,2,3

Joël Vandekerckhove,

4

and Adrian Drazic

1,

*

Actin is oneof themostabundant proteins in eukaryoticcells andthe main componentofthemicrofilamentsystem.Itplaysessentialrolesin numerous cellularactivities,includingmusclecontraction,maintenanceofcellintegrity, and motility, as well as transcriptional regulation. Besides interacting with various actin-binding proteins (ABPs), proper actin function is regulated by post-translationalmodifications(PTMs),suchasacetylation,arginylation,oxi- dation,andothers.Here,weexplainhowactinPTMscancontributetofilament formation and stability, and may have additional actin regulatory functions, whichpotentiallycontributetodisease development.

TheFundamentalsofActinFunctionality

Actin(seeGlossary)accountsforupto15%ofthetotalproteinlevelinmusclecellsand1– 3%innonmusclecells.Itexistsinbothamonomericglobularstate(G-actin)andpolymerized filamentousstate(F-actin;Figure1A),andtheswitchbetweenthetwostatesishighlydynamic.

Theactinfilamentsplaycrucialrolesincountlesscellularfunctions,includingmusclecontrac- tion,cellsignaling,aswellascellintegrityandmotility[1].Themultifunctionalityofactinisbased onthreepillars(Figure1B):chaperonin-assistedfolding[2],interactionswithactin-binding proteins(ABPs)[1],andpost-translationalmodifications(PTMs;Figure1C)[3].Numer- ousstudiesandreviewsdescribetheinfluenceABPshaveontheactincytoskeleton.Inthis review,however, wedescribethe mostrecent findingsonactinPTMsshedding lightona crucial,butoftenoverlooked,aspectofactinbiology.

Actinsrepresentafamily ofisoformswhich arehighlysimilarinsequence(93%sequence identity)andeachconservedthroughoutevolution.Basedontheiraminoacidsequences,six isoformsweredescribedandclassifiedaccordingtothetissuesinwhichtheywerefoundin mammalsandbirds:fourmuscleforms;a-skeletal,a-cardiac,a-smooth,g-smooth,andtwo nonmusclecytoplasmicactins:b-cytoplasmicandg-cytoplasmic[4].a,b,andgrefertotheir respectivemobilityduringisoelectricfocusing,whichisexclusivelyduetothenumber(3/4)and nature(Asp/Glu)oftheN-terminalacidicresidues.Forexample,theNterminusofb-cytoplasmic actinisAc-DDDIAALVV-whilethatofg-cytoplasmicactinisAc-EEEIAALVI-.Thefourunderlined residuesconstitutetheonlydifferencesinatotalof375residuespresentinthesetwoisoforms, emphasizingtheirconservednature.Despite theirsequenceandstructuralsimilarities, actin isoformsdisplaybothoverlappinganduniquecellularroles(reviewedin[5]).Thishasbeenclearly demonstratedinmicewhereknockoutofb-actinresultsinembryoniclethality[6,7],whileg-actin- deficient miceshowdevelopmentaldefects,butareviable [8,9].Althoughtheseremarkably differenteffectsarenotyetfullyunderstood,itisknownthatthesetwoisoactinsdisplaydistinct intracellularlocalizationpatterns[5].Furtherinvitroexperimentsrevealthatmixturesofisoactinsin filaments couldaffect polymerizationdynamics,stability,andinteractions withABPs[5,10].Ontop ofthesesubtledifferences,PTMscouldcontributebyaffectingactinstructure,localization,and function.Most PTMs willaffect the isoactinsina similarmanner, giventhe actinsequence

Highlights

Post-translational modications of actinaffectitsfoldingandstructure, aswellasinteractionwithactin-bind- ing proteins,and thus interferewith cytoskeletondynamics.

TheactinN-terminalacetyltransferase, NAA80,wasrecentlyidentified,thus solvinga30-year-oldmysteryonthe nalstepofactinsuniqueandcon- servedN-terminalmaturationprocess.

Acetylationandarginylationcompete foractin’sNterminus,bothaffecting lament formation, interaction with actin-binding proteins, and cell motility.

ActinoxidationofMet44andMet47by the MICAL enzymes promotes, in synergywithcolin,thedisassembly ofactinlamentsandislinkedtocan- cerdevelopment.

Toxin-mediatedmodicationsofactin mayleadtoactinlamentaggregation, andinsomecasescelldeath.

1DepartmentofBiomedicine, UniversityofBergen,JonasLiesvei 91,N-5020Bergen,Norway

2DepartmentofBiologicalSciences, UniversityofBergen,

Thormøhlensgate53A,N-5020 Bergen,Norway

3DonnellyCentreforCellularand BiomolecularResearch,Universityof Toronto,160CollegeStreet,Toronto, ONM5S3E1,Canada

4DepartmentofBiochemistry,UGent CenterforMedicalBiotechnology, GhentUniversity,AlbertBaertsoenkaai 3,9000Gent,Belgium

*Correspondence:

adrian.drazic@uib.no(A.Drazic).

502 TrendsinBiochemicalSciences,June2019,Vol.44,No.6 https://doi.org/10.1016/j.tibs.2018.11.010

(2)

Glossary

Actin:familyofmultifunctional globularproteinsthatareableto polymerizeintolamentsandinteract withamultitudeofactin-binding proteins.Thefamilyconsistsofat leastsixisoformsinhumans (a-skeletal,a-cardiac,a-smooth muscle,g-smoothmuscle, b-cytoplasmic,andg-cytoplasmic).

Actin-bindingproteins(ABPs):

ABPsaresignalingpathway- controlledactininteractors,which regulatethepolymerizationand depolymerizationofactinfilamentsas wellastheirorganizationinthe cytoskeletonnetwork.KnownABPs include:theArp2/3complex, prolins,gelsolin,formins,andcolin.

ATE1:arginyl-tRNA-protein transferase1catalyzesthe attachmentofargininetotheN terminusofanacceptorproteinorto internalaminoacidsidechains.

Cytoskeleton:highlyorganized proteinnetworkinalldomainsoflife (prokaryotes,archaea,and eukaryotes),consistingofhundreds ofproteinswhichareinterconnected byfilaments(actins),tubules (tubulins),andthecytokeratin network.

F-actin:polymeric,lamentousform ofactin.

G-actin:monomeric,globularform ofactin.

MICAL:MICALs(molecule interactingwithCasL)arecytosolic, multidomainenzymesthatbelongto afamilyfeaturingmonooxygenase activity.Theyreversiblyoxidize Met44andMet47ofF-actin.

NAA80/NatH:Na-acetyltransferase protein80/N-terminalacetylation complexHbelongtotheN-terminal acetyltransferase(NAT)familythat, togetherwiththeNatBcomplex,are involvedintheuniqueN-terminal maturationprocessofactinby acetylatingitsNterminus.TheNAT enzymefamilyprovidesNt- acetylationforabout80%ofthe humanproteome.

Nt-acetylation:additionofanacetyl group(Ac)totheNterminusofa protein.Nt-acetylationiscatalyzedby N-terminalacetyltransferasesusing acetyl-CoAasdonor.

Nt-arginylation:additionofan arginineresidue(Arg/R)totheN- terminusofaprotein.Nt-arginylation

similarities.However,asdescribedlaterinthisreview,thereareclearcasesofisoform-specific PTMscontributingtodifferentiatedfunctions.

Post-translationalModifications:TheUnderratedPlayersofActin CytoskeletonDynamics

ThefirstactinPTM,N-terminal(Nt)acetylation,wasreportedforskeletalmuscleactinin1966 byGaetjensandBárány[11],andlateridentifiedinallotheractinisoforms.Today,morethan 140 PTMs have been described in eukaryotic actin sequences ([3] and http://www.

phosphosite.org). Some actin PTMs are quantitative and reversible, whereas others are rare,affectingonlyaminorityofthemoleculesthatmakeupthe cellularactinpool.Thus, manyactinPTMsshouldbeconsideredaspartialmodifications.ActinPTMsarefoundon94 differentsidechains(Table1,KeyTable)whichconstituteabout45%oftheresiduesthatcan bemodified.Specifically,newphosphorylation,ubiquitination,andSUMOylationsiteshave beenidentifiedbyglobalproteomicsanalysesinrecentyears[12–19].Interestingly,wehave noticedregionswherethefrequencyofPTMsissignificantlylowerthanaverage(regions:95– 145,240–256,and331–354).Thisfollowstheoverallaccessibilityofthesidechainresidues intheactinstructure,thoughlossofATP/ADPorinternalcleavagescouldalsoinducepartial denaturation,resultinginunspecificlow-levelmodifications.Itiscurrentlynotcleartowhich extentthelattercontributetoactin’scellularrole,orwhethertheyshouldbeconsideredas structural noise. Furthermore, our knowledge about the regulation, reversibility, and the interplaybetweenindividualPTMsremainslimited.Giventhehighnumberofreportedactin PTMsandtheabsenceofdetailedstudiesformostofthem,wefocusherepredominantlyon recentreportscoveringNt-acetylation,Nt-arginylation,andoxidationofactin.Wedis- cusstheir molecular and physiologicalconsequences, and theirpotential roleindisease development.

StructuralandRegulatoryImplicationsofActinPTMs

AlthoughnotallactinPTMsappearatthesametimeonthesamemolecule,andsomePTMs haveonlybeenreportedinparticularorganisms,theirsheernumberposesaseriouschallenge foraglobalunderstandingoftheirregulatory mechanisms.Forinstance,howcanan actin molecule,whose primaryroleis togeneratedynamicfilaments composedofgeometrically conservedbuildingblocksrepeatedoverseveralthousandtimes,giverisetothesestructures whendecorated withpotentiallystructuredisturbing PTMs?Howcanboth G-and F-actin interactinadynamicandrigorouslycontrolledmannerwithaplethoraofABPswhencarrying thislargenumberofmodifications?PTMscanhoweverparticipateinthestructuralarchitecture ofactinandmodifytheirfilaments.Oneofthebestknownexamplesisthestructureofarthrin,a 55-kDaheavyformofactinfirstobservedininsectmusclethinfilaments[20].Thisinsectactin, whichismonoubiquitinatedatLys118(Table1),appearsateveryseventhsubunitalongthe filamentlongpitchhelices.Itwassuggestedthatarthrinregulatesmusclecontractileactivity [20].AmorerecentreportonstructuralregulationoftheactinfilamentnetworkreferstoNt- arginylationofb-actinbyarginyl-tRNAproteintransferase1(ATE1).Inthiscase,Nt-arginylated actinsformnormalfilamentstructures.Non-Nt-arginylatedactinisolatedfromATE1knockout (KO)cells,ontheotherhand,formsbundlesandaggregates,resultinginshorterfilaments.Ona cellular level this leads to disorganization of lamellipodia and filopodia, an effect which is attributedtoalteredinteractionswithABPs[21].

Giventhemultifunctionalnatureofactin,onecanexpectthatthefinaloutcomeofthishigh numberofPTMscouldbeextremelycomplex.SomePTMswillaffectsteady-statefilament growthbyblockingoneofthefilamentendsorreducingtheconcentrationofpolymerization competentmonomers.SomePTMsmayinterferewiththeactin-ABPequilibriumordriveactin

TrendsinBiochemicalSciences,June2019,Vol.44,No.6 503

(3)

moleculestowardsdegradationpathways.Andifthisisnotyetsufficientlycomplex,PTMsmay enhanceorswitchoffeachother’seffectsbycrosstalkingmechanisms.Thecircuitsthatare producedcouldfunctionvialoopsthatontheirturnactivatenovelcircuits.Thesequantumbits ofmodificationsaremostlikelynotsimplynoise,butcouldpushthecellfollowingstochastic mechanismstowardsareversibleorirreversibledestiny.Forinstance,Tyr53canbeatargetfor phosphorylation, but also for nitration during oxidative stress. Similarly, Cys374 is highly reactiveandcanacceptdifferenttypesofmodifications(Table1).Itisnotclearwhetherthese modificationswillresultinthesameeffectbecausetheydisplayadifferentchemicalnature.An interestingexampleofthecomplexityinvolvessomeprominentABPslikeADF/cofilin,gelsolin (Figure1D),profilin,andDNaseI(Figure1E).Profilinbindstotworegionsinactin(Figure1E), whilecofilininteractswithactinviathreesites(Figure1D)[1,22].Partofthesesitesoverlapwith eachother.Thus,modificationsinactincouldtiltthebalancebywhichthesetwoABPsexert theircontrolonactinassembly.N-terminalmaturationofactinisanelegantexamplewherea particularproteinmodificationdependsonthepreviousone.Here,thesuccessiveactionsof methionine aminopeptidases,N-terminal acetyltransferases,and ATE1 result inmost actin moleculesbeingNt-acetylated, whereasaminorityisNt-arginylated (discussedlaterinthis review).

N-TerminalProcessingofActin:AUniqueMaturationMechanism

ActinsarefirstsynthesizedasprecursormoleculeswhicharefurtherNterminallyprocessedby successiveactionsofN-terminalacetyltransferasesandaminopeptidases.Thisprocesswas firstdescribed byRedmanandRubensteinintheearly1980s [23],andonlyrecently more detailsontheplayershavebecomeavailable.Thesixexpressedmammalianactinisoformsare divided intotwo categories basedprimarily onthe natureof theirunprocessed N-terminal sequences(Figure2A)[4].ForclassIactins(nonmuscleb-andg-actin)theinitiatormethionine (Met1)isdirectlyfollowedbythreeacidicaminoacids(MDDD-/MEEE-).Theactinmaturation processbeginswhenthenascentNterminusiscotranslationallyNt-acetylatedbyNatB,which alsoacetylatesothereukaryoticproteinsbeginningwithMD-/ME-[26].Normally,acetylationof acidicNterminiensuresthatMet1isretained,butinanunusualtwistfromnature’ssidetheNt- acetylatedMet1isremovedbyastillunidentifiedaminopeptidase.Theneo-Nterminus(DDD-/

EEE-)isthenNt-acetylatedbytherecentlyidentifiedNAA80/NatHgeneratingthematureactin protein[27–29].ForclassIIactins(striatedandsmoothmuscleactins)anadditionalcysteine residue(MCD/E-)complicatestheN-terminalprocessing.Inthiscase,Met1iscotranslationally removedbymethionineaminopeptidasefollowedbyNt-acetylationoftheexposedcysteine, presumablybyNatA.Finally,anunknownaminopeptidaseremovestheacetylatedcysteine and the processed acidicN terminusis then reacetylated, most likely by NAA80 [27,28], therebycompletingthematurationprocess.

N-terminalactinmaturationgainednewattentionwhenitwasdiscoveredthattheprocessedN terminusofb-actin(DDD-)caneitherbeacetylatedbyNAA80orarginylatedbyATE1[30].Nt- arginylationofb-actinisfoundtooccuronAsp3aftertheproteinhasundergonesequential removalofboththefirstandsecondaminoacid(RDD-)(Figure2A)[30].Thismodificationprofile has notbeen observed on any other actinisoforms. However, it would beinteresting to understandwhyAsp3isnotfurtherNt-acetylated,whichshouldbethermodynamicallyamore favorablereactionoverthearginylationstep.A recentstructuralanalysisindicatesthatDD- startingactinformsapoorsubstrateforNAA80[29].Alternatively,subcellularvariationsinthe substrateconcentrations, aswellas theenzymeamountsandactivities,couldleadtolocal competitions.Indeed,arecentstudysuggeststhatNt-arginylatedb-actininmouseembryonic fibroblast(MEF)cellsisconcentratedattheleadingedgeoflamellipodia,andisthusmainly linked to active migration [31]. Moreover, non-Nt-arginylated actin forms filamentous

iscatalyzedbythearginyltransferase ATE1usingarginyl-tRNAasdonor.

Nterminus:startofaproteinora polypeptide,whichhasafreeamino group(-NH2).Theaminogroupis usuallypositivelychargedat physiologicalpH(7.4).N-terminal modicationswillmaskorchange thischarge.

Post-translationalmodications (PTMs):proteinmodificationsthat areaddedaftertheproteinhasbeen fullytranslatedand/orfolded.

Modicationsolecules,suchas oxidationandacetylation,tothe additionofpolypeptidessuchas SUMOylationandubiquitination.

ROS:reactiveoxygenspeciesare highlyreactivemoleculesandfree radicalsderivedfromoxygenthat contributestooxidativestress,which leadstovariousdiseases.

(4)

N terminus N terminus

(A) (B)

(C)

(D) (E)

PolymerizaƟon DepolymerizaƟon

Barbed

end (+) Pointed

end (-)

MethylaƟon AcetylaƟon ArginylaƟon SUMOylaƟon UbiquiƟnaƟon

ADP-ribosylaƟon Met-oxidaƟon Cys-oxidaƟon PhosphorylaƟon Tyr-nitraƟon

Subdomain 2 Subdomain 2

Subdomain 1 Subdomain 1

Subdomain 3 Subdomain 3

Subdomain 4 Gelsolin G3 interacƟon site Subdomain 4

Gelsolin G1 interacƟon site Profilin interacƟon site

Cofilin interacƟon site

Cofilin interacƟon site

DNase I interacƟon site

AcƟn

Chaperone assisted folding AcƟn binding proteins AcƟn modificaƟons

SUMO

ADP-ribose

UbiquiƟn

Figure1.Post-translationalModicationsofActin.(A)ActincanbepresentasfreemonomerscalledG-actin(redcircles),orpolymerizeintomicrolamentsknown asF-actin(redchains).Theswitchbetweenthetwostatesishighlydynamicandpartlyregulatedbypost-translationalmodications(PTMs).(B)Thethreepillars supportingthemultifunctionalityofactin:chaperone-assistedfolding,actinbindingproteins,andPTMs.(C)StructuralformulaeofmajoractinPTMs.Actinmolecules canbepost-translationallymodifiedby,forexample:methylation,acetylation,arginylation,SUMOylation,ubiquitination,ADP-ribosylation,methionineoxidation, cysteineoxidation,phosphorylation,andtyrosinenitration(attachmentshowninred).(D)and(E)b-actinstructure(PDB:2BTF)[85]showingATP(magenta)and selectedaminoacidresidues(colorcodeforatoms:carbon,green;nitrogen,blue;oxygen,red;cysteines,yellow)carryingPTMs.Interactioninterfacesfor(D)the gelsolinsubunitsG1andG3(greenbox)andcolin(burgundybox),aswellas(E)DNaseI(pinkbox)andprolin(bluebox)arehighlighted,demonstratingthatmany aminoacidresiduesthatarepartoftheseinterfacesaresubjectsofmodifications,andthusPTMscaninterferewithABPbinding.

TrendsinBiochemicalSciences,June2019,Vol.44,No.6 505

(5)

aggregatesinvitro,whileATE1KOcellsshowimpairedlamellaformationandcellmigration (Figure2B)[30].AcetylationenhancesthenegativenatureoftheNterminus,byneutralizingthe free a-amino group, while arginylation on the other hand decreases the negative charge density. It is therefore not surprising that both modifications play a role in cytoskeleton morphologyandaffectactin’spolymerizationkinetics[27,30].NAA80specificallyNt-acetylates b- andg-actin, and presumably also acetylates the N terminus of class II actins [27–29].

Furthermore,NAA80’sactivityregulatesactincytoskeletondynamicsandcellmorphologyby reducing actin filament assembly as well as filopodia and lamellipodia formation, which ultimatelydeceleratescellmigration(Figure2B)[27,32].Mostofthedataonactin’sstructure reveallargefluctuationsintheNterminus(aminoacidresidues1–6),indicatingdisorder.The Nt-acetylationeffectobservedonactinfilamentelongationisthereforedifficulttoexplain.TheN terminusisalsonotpositionedincloseproximitytothemonomer–monomerinterface,makinga direct effect less likely. However, the introduction of conformational changes cannot be excluded.Mostlikely theeffectisinducedbycontactswithABPs,sincetheN terminusof bothmonomericandfilamentousactinisexposedonthesurfacewhereitcaninteractwitha numberofregulatoryproteins,suchasmyosin[33],andpotentiallyformins[27,34].Indeed, earlystudiesongeneticallyengineeredyeastactindemonstratedthatthenegativenatureof actin’sNterminusenhancestheactivationofmyosin’sATPaseactivity[35].

KeyTable

Table 1. Major Post-translational Modi fi cations of Actin Where Modi fi ed Residues Are Numbered According to Class I Actins (b/g-Actin)

ActinPTM Modifiedresiduesa

Acetylation Met1,Asp2,Glu2,Cys2d,Asp3d,Lys50b,Lys52d,Lys61,Lys68,Lys113b,Lys191b,Lys193d,Lys213b,Lys315b,Lys326b,Lys328b ADP-ribosylation Arg28c,Arg95c,Thr148b,Arg177b,Arg206c,Arg372c

Arginylation Asp3,Ser52b,Ser54d,Ile87b,d,Phe90,Gly152d,Leu295d,Asn299b,d Carbonylation His40,His87b,His173,Cys374b

Crosslinking Lys50/Glu270b Disuldebond Cys285b,Cys374b Glutathionylation Cys217b,Cys374b

Methylation Lys18b,Lys68b,His73b,Lys84,Ile87b,d,Asn299b,d,Lys326b,c Tyrosinenitration Tyr53b,Tyr69b,Tyr91b,Tyr198b,Tyr218b,Tyr240b,Tyr294b,Tyr362b S-nitrosylation Cys217b,Cys257b,Cys285b,Cys374b

Oxidation Cys17,Met44,Met47,Trp81d,Met82,Trp88d,Met178,Met190,Cys217b,Met227,Cys257b,Met269,Cys272b,Cys285b,Met235, Trp342d,Met355,Trp358d,Cys374b

Phosphorylation Ser14,Ser33,Ser52b,Tyr53b,Ser60,Thr66,Tyr69b,Thr77,Thr89,Tyr91b,Tyr143,Thr148b,S155,Thr160,Thr162,Tyr166,Tyr169, Thr186,Tyr198b,Ser199b,Thr201,Ser201d,Thr202,Thr203,Tyr218b,Thr229,Ser233,S235,Ser239,Tyr240b,Thr249,Thr262d,S265, S271,Tyr294b,Thr297,S300,Tyr306,Thr318,Ser323,Thr324,Ser324cTyr362b,Ser365

SUMOylation Lys61b,Lys68b,Lys84b,Lys113b,Lys284b,Lys291b,Lys315b,Lys326b,Lys328b

Ubiquitination Lys18b,Lys50b,Lys61b,Lys68b,Lys84b,Lys113b,Lys118cLys191b,Lys213b,Lys215,Lys238,Lys284b,Lys291b,Lys315b,Lys326b, Lys328b,Lys359

aHighlightedinbold:aminoacidmodicationsdescribedinthisreview.

bAminoacidresidesknowntobemodifiedbytwoormorePTMs.

cOnlydescribedinnon-mammalianactins.

dModifiedresiduesthatareobservedinclassIIactins(a-cardiac,a-smooth,a-skeletal,andg-smooth)wheretheNterminusstartswithMC-.

(6)

(A)

(B)

Class I acƟn

Class II acƟn

α-cardiac α-skeletal α-smooth γ-smooth β-cyto γ-cyto

↓ Cell size

↓ Lamella forma on

↓ Cell spreading

↑ Filament forma on

↓ Reduced G/F ra o

↑ Nt-arginyla on?

↑ Lamellipodia and filopodia

↑ Cell mo lity

Filament aggrega on

↑ Nt-acetyla on?

NAA80 NAA80

NAA80 NAA80

ATE1 ATE1

ATE1

Ac R

R

Ac

MetAP NatA? AP?

AP?

AP?

NatB

Figure2.ActinsUniqueN-TerminalMaturationProcessandFunctionalConsequencesofNt-ModicationsontheActinCytoskeleton.(A)Actinsare firstsynthesizedasprecursormoleculeswhicharerarelydetectedintheirnativestateowingtoauniqueN-terminalmaturationprocess.ForclassIactins(b/g-actin)the nascentNterminiarecotranslationallyacetylatedbyNatB,followedbyremovaloftheacetylatedMet1byastillunidentifiedaminopeptidase(AP).Finally,thenewly exposedacidicNtermini(DDD-/EEE-)areacetylatedbyNAA80/NatH(Ac-DDD-/Ac-EEE-).Afewb-actinNterminiwillnotbeNt-acetylated,insteadtheyundergo furtherproteolyticprocessing,andthenewNtermini(DD-)arethenNt-arginylatedbyarginyl-tRNAproteintransferase1(ATE1)(RDD-).InthecaseofclassIIactins (a-actinsandg-smoothmuscleactin),methionineaminopeptidase(MetAP)removesMet1attheribosomefollowedbyacetylationofCys2presumablybyNatA(Ac-CD/

E-).Subsequently,theacetylatedCysresidueisremovedbyanunknownaminopeptidaseandtheresultingacidicNterminusisfinallyacetylatedbyNAA80(Ac-D/E-).

(B)Acetylationandarginylation(top)changestheN-terminalchargedensityandaffectsactinstructureandfunction.IntheabsenceofNAA80-mediatedacetylationof actinsNterminus(middle),actinlamentelongationanddepolymerizationareaccelerated.Moreover,NAA80HAP1knockoutcellsshowincreasedlamellipodiaand lopodiaformation,andcomparedtocontrolcellshaveincreasedcellmotility,asshownbyscratchwoundassayandchemotaxismigration.Consequently,NAA80acts asanaturalbrakeforcellmovement.Nt-arginylationpreventsactinfromaggregatinginvitro(bottom).ATE1knockoutmouseembryonicbroblasts(MEFs)appear smallerthancontrolcells,andfailtoformnormallamella,causingimpairedcellmovement.ATE1isthoughttoregulateactivemigrationattheleadingedge.Ac,acetyl;

R,arginine.

TrendsinBiochemicalSciences,June2019,Vol.44,No.6 507

(7)

StressedActin:ARegulatoryPathway

For a long time, actin modifications caused by oxidative stress were considered to be exclusively destructive. Oxidative stress is caused by reactive oxygen species (ROS;

Figure3A),including:hydrogenperoxide(H2O2),hypochlorousacid(HOCl),andreactivenitrogen species(RNS),suchasnitricoxide(NO).ROSarebyproductsofphysiologicalredoxregulation, butarealsoactivelyproducedbyneutrophilsoftheinnateimmunesystem[36].AtlowROS concentrationsthethiolgroups(SH)ofcysteinescanbeoxidizedtosulfenicacidorbegluta- thionylated(Figure 3B,C). Thesemodificationscan bereversed byredox proteins,suchas thioredoxinandglutaredoxin.Moreover,theaccessiblemethionineresiduescanbereversibly oxidizedtotwomethioninesulfoxidediastereomers(Met-S-SOandMet-R-SO;Figure3C).Met- (S/R)-SOcanbereducedinhumansbyfourstereoselectivemethioninesulfoxidereductases:one MsrA,andthreeMsrBs(B1,B2,B3)[37].ItshouldbenotedthattheoxidationofMettoMet–SO convertsits hydrophobicside chainintoa hydrophilic moiety.Consequently, theoxidation/

reductionprocesscouldhavea profoundeffectonactin’s structuresandABP-interactions.

Oxidativestressfurtherleadstotheformationofdisulfidebridgesormixeddisulfidebondswith glutathione(Figure 3C). Themost vulnerabletarget in actin is Cys374,which canform an intramoleculardisulfidebondwithCys285(Figure3B),thelattercausingdelayeddissociation betweenactinandspectrin[38,39],andreducedactin filament dynamics[40].However,S- glutathionylationofCys374appearscrucialforthedisassemblyoftheactomyosincomplex,thus promotingcontractionofthecytoskeletonduringcellspreadingandtheformationofstressfibers [41].H2O2/HOClmainlytargetaccessiblecysteineandmethionineresiduesinG-actin,(Cys272, Cys285,Cys374, Met44, Met47, Met190,Met227, Met269,andMet355), which are more solvent-exposed than others (Figure 3B), especially when notburied inside actin filaments [42].WhenapplyinghighROSconcentrations,cysteineandmethionineresiduescanbecome irreversiblymodified(sulfinicandsulfonicacid,andmethioninesulfone).Inaddition,newmod- ificationsoccur,suchastyrosinenitration(Tyr294)[43]andhistidinecarbonylation(His40,His87, andHis173)[38,44,45].ThesemodificationsusuallyimpairactinpolymerizationanddestabilizeF- actin bundles [40,46]. Especially inthe case ofsevere oxidative stress, actin carbonylation accumulatesandleads toaggregationof actin[47].Consequently, theseirreversible modifications inhibitcellproliferation,motility,andreducecellviability.Itisnoteworthythatthemanystudiesthat identifiedactinmodificationsuponROStreatmentwereperformedinvitro,andthusthephysio- logicalrelevanceisnotalwaysobvious.

Despitetheirdestructivenature,ROS haveinrecent yearsbeenshownto actassignaling moleculesunderphysiologicalconditions,andtheirinducedmodificationsarekeyregulatorsin certaincellularpathways.MICAL-mediatedmethionineoxidationwasdiscoveredtoinitiateF- actindepolymerization[48].TheMICAL enzymesbelongtotheclass offlavoproteinmono- oxygenases,usingNADPHandH2O2tostereoselectivelyoxidizeMet44andMet47(Met44/47) ofactintoMet-R-SO[48–50].MICALsbinddirectlytoF-actin,enhancingitscatalyticactivity [48,51].TheoxidationofMet44/47,whichdependsontheADP/ATPnucleotide-bindingstate ofF-actin,destabilizesactinfilamentsandinitiatestheirdisassembly.Itfurthercausesconfor- mationalchangesofF-actin,whichincreasesthesusceptibilityforcofilin(anF-actindepoly- merizingfactor),andthusacceleratesfilamentdisassembly(Figure3D)[52].

Anothersignalingmolecule,NO,whichisenzymaticallygeneratedbytheendothelialnitricoxide synthase (eNOS), has important functions in T-cell regulation and activation [53]. eNOS colocalizeswithF-actinneartheGolgi,andmodifiesCys374byS-nitrosylation.Thisimpairs bindingtoprofilin-1,resultinginreducedactinpolymerizationandrelocalizationinsidethecell (Figure3E)[54].Theseexamplesdemonstratetheimportanceofactinoxidationasaregulatory factorandnotonlyasa‘killer’modification.

(8)

(A) (B)

(C) (D)

(E)

Oxygen

Superoxide

Hydrogen peroxide

Hydroxyl radical

Water

Neutrophil

Myeloperoxidase

Hypochlorite acid

Suscep bility towards ROS

Intra- and intermolecular

disulfide bond Sulfinic

acid

Sulfenic

acid Sulfonic

acid Free thiol

S-nitrosothiol

Methionine

Methionine sulfone

Methionine-(R) sulfoxide Methionine-(S)

sulfoxide Trx / Grx

Trx / Grx Oxida on

Oxida on Oxida

on Oxidaon

Oxida on

Oxida on Oxida

on

Glutathionyla on Glut

athion yla

on GSH

MsrA MsrB

Polymeriza on Cofilin

T-cell regula on T-cell regula on via eNOS

Ac n Ac n Ac n Ac n

Profilin-1

Profilin-1

Profilin-1 eNOS

Low High

His40 His173

Tyr294 His87

Cys374

Met190 Met227

Cys217 Cys257

Met44 Met47

Met355

Cys272

Cys285 180°

ROS concentraƟon

→ Reduced polymeriza on

→ Normal polymeriza on

L-citrulline

Figure3.

(Figurelegendcontinuedonthebottomofthenextpage.) ROS-MediatedActinModicationsandRegulationbyMICALEnzymes.(A)Reactiveoxygenspecies(ROS)areproductsofredoxreactionsandare generatedwhenmolecularoxygen(O2)isnotcompletelyreducedtowater(H2O),resultinginsuperoxide(O2 ),hydrogenperoxide(H2O2),andhydroxylradicals(OH).

TrendsinBiochemicalSciences,June2019,Vol.44,No.6 509

(9)

PhysiologicalConsequences ofActin PTMs

ActinPTMsplayacentralroleinmanybiologicalprocesses,includingneurodevelopment.Neurons haveanelaborate networkofactinfilaments,especiallyindendritic spinesandgrowthcones.

Dynamic phosphorylation of Tyr53regulates F-actin turnover rates by destabilizinglong actin filaments.Moreover,itpromotes thestabilityofshorteractinfilaments,whichfacilitatesafaster reorganizationofthecytoskeletonindendriticspinematuration[55],aprocesscrucialforlearningand memoryformation.NeuronaldevelopmentalsodependsontheactivityofNADPHoxidase2(Nox2), whichregulatesthedistributionofH2O2inneurons[56].Nox2colocalizeswithF-actinbundlesinthe periphery of neuronal growth cones where its H2O2-producing activity regulates F-actin dynamics and neuriteoutgrowth[57].Furthermore,ATE1wasrecentlyshowntobecrucialfornormalneuronal outgrowthandmigrationinmice[58].ItwassuggestedthatATE1’sroleinbraindevelopmentarises fromcotargetingofATE1andb-actinmRNAstothegrowthcones,resultinginalocalsynthesisof arginylatedb-actinthatregulatesneuriteoutgrowth.Moreover,ATE1-/-micedieduringembryogen- esis,mostlikelyduetodefectiveheartandvasculardevelopment[59].Theexactunderlyingmolecular mechanism(s)fortheroleofarginylationincellmotility[30],embryogenesis[59],andtissuedevelop- ment[58,60]isnotcompletelyunderstood,giventhatATE1hasmorethanoneproteintarget.

ActinPTMsarealsoessentialforeffectivecytokinesisandpropercelldivision.Thedioxygenase ALKBH4localizestothecontractileringwhereitdemethylatesK84me1ofactin,thuscreatinga bindingsitefornonmusclemyosinII.ALKBH4-deficientcellsdisplaydefectivecleavagefurrow organization,resulting incytokinesis failure andformation of multinucleatedcells [61]. After cleavagefurrowingressionandmidbodyformation,actinmustbeclearedfromtheabscission sitetoenablemembranescissionbytheESCRTmachinery.ThisisachievedbyGTPaseRab35 activationofMICAL1,which isthenrecruitedtotheabscissionsitewhereit promotesrapid depolymerizationof F-actin from both ends,leading to an efficient clearing ofF-actin [62].

CytoskeletalreorganizationcanbealsoinitiatedbytheAblkinase,whichphosphorylatesthe Tyr500of MICAL1,enhancingitsactivity[63].SincetheAblkinaseresponds toanumber of stimuli, suchasthesemaphorin/plexincomplex,orthegrowthfactorsEFGandPDGF,MICALactivation andsubsequentactinoxidationhasabroadspectrumofphysiologicalconsequences[64,65].

Actin shuttles between the cytoplasm and nucleus in an ABP-dependent manner. In the nucleus,actinisthoughttofacilitatechromatinremodelingandgenetranscription.MICAL2 inducesF-actindepolymerizationinthenucleus,enablingnewlyrestoredG-actintoactasa transcriptionalregulatorinserumresponsefactorsignaling[66].Moreover,nuclearactincanbe SUMOylatedinaprocessthatrequiresLys68andLys284[67,68].Ithasbeenspeculatedthat SUMOylationregulatesnucleartraffickingandactinstructure[67].

Duetoactin’sabundanceandroleinmusclecells,itisnotsurprisingthatactinPTMsparticipatein thecontractilemachinerybymodulatingtheelectrostaticinteractionsbetweenF-actin,tropomy- osin,andmyosin.Forexample,acetylationofLys326andLys328maskspositivechargesthatare crucialforproperthinfilamentregulation[69,70].Expressionofpseudo-acetylatedcardiacactin

Hypochloriteacidisactivelyproducedbytheenzymemyeloperoxidaseinneutrophilsoftheinnateimmunesystemasdefensemechanismstowardsinvading pathogens.(B)b-actinstructure(PDB:2BTF)[85]highlightingsurfaceexposedCys,Met,His,andTyrresiduesthataresusceptibletowardsROS-mediated modifications.(C)ROStargetmainlyCysandMetresiduesofactininaconcentration-dependentmanner,resultinginavarietyofPTMs(disulfidebondformation, nitrosylation,glutathionylation,multilevelcysteineoxidation,andstereoselectivemethionineoxidation).MostofthesePTMsarereversedbyredoxenzymes(Trx, thioredoxin;Grx,glutaredoxin;MsrA,methioninesulfoxidereductaseA;MsrB,methioninesulfoxidereductaseB).HighROSconcentrationsleadtoirreversible modications(sulnicandsulfonicCysoxidation,Metsulfone).(D)MICALenzymesbindtoF-actinandcatalyzeinanNADPH-dependentreactiontheoxidationof Met44andMet47toMet-R-SO,initiatingdepolymerization.Inaddition,thisattractstheF-actinseveringproteincofilin,therebyacceleratingthedepolymerizationeffect.

Met-R-SOcanbereducedtoMetbyMsrB,whichallowsactintoenteranewpolymerizationcycle.(E)Nitricoxide(NO)isinvolvedinT-cellregulationandactivation.

eNOSS-nitrosylatesCys374ofactin,impairingprolin-1binding,andthusreducingactinpolymerizationrates.

(10)

(K326Q,K328Q,andK326Q/K328Q)inindirectflightmusclesofDrosophilamelanogasterleads toperturbedmusclestructureandfunctionaswellasdisruptingflightperformance[71].Masking ofLys326andLys328isthoughttoaltertheelectrostaticinteractionswithtropomyosin(Glu181) and/or myosin (Glu286), destabilize the inhibitory positioning of tropomyosin, and thereby enhanceactomyosinformationcausingmusclehypercontractility[71].Actinacetylationmight thereforebe crucial for proper musclefunction. Indeed, the K328Q actin mutation causes nemalinemyopathywithmusclestiffnessandhypertonia[72].

TheRole ofActin PTMsin Diseases

Theactincytoskeletonhasanindisputableroleinhumandevelopmentandfailuretoorches- tratethedynamicinterplaybetweenactinandABPscouldleadto actin-relateddiseases,a conceptwhichwasfurtherelaboratedbyRubensteinandWen(Box1)[73].Theydescribeda regulatoryallostericsysteminhumanactinsthatappearpronetodisease-causingmutations.

SomeofthemosteffectivemutationscolocalizewithaPTMhotspotinanotherwisepoorly modifiedregion.Wethereforesuggestsimilarmolecularpathophysiologyupondysfunctional actinmodifications,especiallywithregardtoABPinteractions(Box1).

Abnormalcellinvasionandmetastasisisahallmarkofcancer,twoprocessesinwhichtheactin cytoskeletonplaysadominantrole.Therefore,itisnotsurprisingthatactinPTMshavebeenlinked tocancerdevelopmentandtumorigenesis.BothNAA80andATE1KOcellsdisplaydefectivecell motility[27,30],whichisacommonfeatureamongcancercellsandcontributestoinvasionand metastasis. Reduced ATE1 expression has been reported in varioushuman cancers [74].

Moreover,ATE1KOMEFsexhibitdefectivecontactinhibitionwhichisthoughttosupportthe uncontrolledgrowthindenseculturesandinvasivebehaviorinMatrigels[74].Thedirecttumori- genicpotentialofNAA80-deficientcellshasyettobeinvestigated.Nevertheless,severalsomatic mutationsinNAA80andATE1arereportedintheCOSMICcancerdatabase(v86,released14 Aug2018)[75].Forexample,the mutationprofile ofNAA80inhumancancersincludes 45 missensemutations andtwo frameshiftmutations that,as faras we know,have notbeen characterized.Theframeshiftdeletionmutationp.E92fs*5(resultingin92outof308aminoacid residues)should,intheory,giverisetoacatalytic-inactiveformofNAA80.Furthermore,severalof theresiduesthatareaffectedbymissensemutations(W105R,R107H,R112H,F123S,G190D, L194Q, P258A, P266L,P267S, P283L,G298W, andI308M) are evolutionarily conserved, implyingthatthese residuesmaybeimportantforNAA80’sstructureandfunction[29].Itis currentlynotknownwhetheranyoftheseNAA80mutationshavedisease-causingeffect(s).But onecouldspeculatethatsomeofthemaffectNAA80’sactivityandactinNt-acetylation,thus alteringcytoskeletondynamicsandpromotingtumorprogression.

TheemergingroleoftheMICALenzymefamilyinF-actindisassembly,akeyelementofcell motilityandmigration,hasplacedtheMICALsatthenewhorizonofcancerresearch.MICAL1 expressionwasdirectlylinkedtoincreasedcellmigrationandinvasivenessinvariousmelanoma andbreastcancermodels[76–78].ROSproductionbyMICAL1,whichpromotesepithelial– mesenchymaltransition (EMT),and thusmetastasis formation, was linkedto typical EMT- dependentsignalingcascades,suchassemaphorin/plexin[76]andRab35signaling,aswellas thePI3K/AKTpathway[77]andtheEGF-inducedMAPK/ERKpathway[78].RegulationofEMT was also linked to MICAL2 expression. Gastric and renal epithelial cancer cells show an increaseinEMTuponMICAL2expression,andareducedviability,motility,andinvasiveness whenMICAL2isdepletedfromthesecells[79].

ActinPTMs also play exceptionalrolesin the developmentof infectiousdiseases. Several bacterialpathogensrelease toxins that induceADP-ribosylation and crosslinking, of actin,

TrendsinBiochemicalSciences,June2019,Vol.44,No.6 511

(11)

whichinterferewiththe hostcells’ability to polymerizeactin(Box 2). Althoughothertoxic effectorsaresecretedbypathogensintothehostcell,theactin-modifyingtoxinstakeakeyrole inalteringthehostcellcytoskeletontotheadvantageofthepathogen(Box2).

CompetitionforActin’sNTerminus:Nt-Acetylationversus Nt-Arginylation Nt-arginylationwasonlyreportedforb-,butnotg-actin,inwhichtheDDD-actinN-terminal sequencewasconvertedintoan RDD-actinsequence,turninga 3chargedNterminus

Box1.PathogenicActinAllostericRegulatorySystem:ANewConcept

Bartlett,Rubenstein,andtheircolleagues,hypothesizedtheexistenceofapathogenicactinallostericregulatorysystem wherethebindingofABPsinitiatesconformationalchangesinstructuralnetworks,affectingactinlamentformationand stability[73,86,87].Centraltothehypothesisisactinspathogenichelix(Lys113Thr126),whichextendsfromthe lamentsurfacetothestrandstrandinterphase,andtheC-terminalhelix(Val370Phe375;FigureI).Thetwohelixesare interconnectedviainteractionsbetweenGlu117andHis371.Moreover,Lys113inthepathogenichelixextendstowards theactin–actininterfacewhereitformsanionicbridgewithGlu195ofanactinsubunitintheopposingstrand.This lament-stabilizinginteractionismodulatedbyArg256onthecross-strandmonomer,givingrisetoatriangularunit.

Together,theseinteractingstructuralelementsarethoughttoconstituteanallostericsystemwheresurfacebindingof ABPsmayinduceconformationalchangesthatpropagatethroughouttheactinmoleculeandaffectlamentdynamics.

Thepathogenichelixisamutationalhotspotandimplicatedinseveralactinopathies,includingnemalinemyopathy, Baraitser–Wintersyndrome,anddeafness(reviewedin[73]).Forexample,twomissensemutationsing-actin(K118M andK118N)cangiverisetononsyndromicdeafness.Astudyusingyeastactinrevealedthatbothmutationsaffectthe structureandfunctionoftheDNaseIbindingloop,andinthecaseofK118Nresultedinfasterlamentformation[88].

TheK113Emutationina-actinisassociatedwithnemalinemyopathy[89]andwasrecentlyreportedtosuppressactin catch-slipbonds[90].Inyeast,expressionofK113Eactinleadstogrowthdefectsanddefectiveactinpolymerization [91].WithinthebroadrepertoireofactinPTMswenoticethatbothLys113andLys118,whicharemembersofthe pathogenichelix,arelocatedwithinaregionthatishighlyPTMsilent.Residues96142donotcarryPTMs,exceptfor Lys113whichcanundergoacetylation,SUMOylation,orubiquitination.WeassumethatunintendedLys113modica- tionscouldinduceeffectssimilartothedifferentphenotypesdescribedforthemutationsatthissite.Anotherexampleis Cys257,whichishighlysusceptibletoROS-inducedmodifications[3].Missensemutationsintheneighboringresidue Arg256areimplicatedinseveraldiseases[73].Interestingly,differentmutationsofArg256causevarioussymptoms whereR256CandR256HareassociatedwithTAADaneurysms,whileonlytheR256Cmutationcausescerebral aneurysms.Finally,wenotethatseveralresidueswithintheC-terminalhelixaremodied,includingCys374whichis highlyreactive.Together,theseeffectsemphasizethefunctionalimportanceofthisregionforproperactinfunction.

Monomer 2

Monomer 1

FigureI.ActinsPathogenicHelix.Shownisamodelstructureoftwoa-skeletalactinmonomers(PDB:2ZWH)[92].

Theinteractionbetweentwoprotomersinanactinlamentisdependentonthepathogenichelix(magenta,Lys113 Thr126)andtheC-terminalhelix(orange,Ala365Phe375)ofmonomer1(cyan),andtheresiduesGlu195(redspheres) andArg256(pinkspheres)ofmonomer2(green).

Referanser

RELATERTE DOKUMENTER

A free market for phar- maceuticals was established, foreign companies entered the Baltic States, govern- ment institutions were set up to register medications, laws were passed, and

Although, particularly early in the 1920s, the cleanliness of the Cana- dian milk supply was uneven, public health professionals, the dairy indus- try, and the Federal Department

311 Nabil Abu-Stayt, “Egypt's islamic jihad group rises,” Al-Sharq Al-Awsat 06 February 2000, via FBIS. 312 Muhammad al-Shafi, “Al-Zawahiri's Secret Papers--Al-Jihad

While we managed to test and evaluate the MARVEL tool, we were not able to solve the analysis problem for the Future Land Power project, and we did not provide an answer to

In April 2016, Ukraine’s President Petro Poroshenko, summing up the war experience thus far, said that the volunteer battalions had taken part in approximately 600 military

This report documents the experiences and lessons from the deployment of operational analysts to Afghanistan with the Norwegian Armed Forces, with regard to the concept, the main

Overall, the SAB considered 60 chemicals that included: (a) 14 declared as RCAs since entry into force of the Convention; (b) chemicals identied as potential RCAs from a list of

Bars show the relative mRNA expression of actin and Integrin β 1 in SDC4 RNAi treated cells compared to negative control cells. The data in A-C is presented as the average mean of