• No results found

Multiplicity dependence of charged pion, kaon, and (anti)proton production at large transverse momentum in p–Pb collisions at √sNN=5.02 TeV

N/A
N/A
Protected

Academic year: 2022

Share "Multiplicity dependence of charged pion, kaon, and (anti)proton production at large transverse momentum in p–Pb collisions at √sNN=5.02 TeV"

Copied!
16
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Multiplicity dependence of charged pion, kaon, and (anti)proton production at large transverse momentum in p–Pb collisions at

s NN = 5 . 02 TeV

.ALICE Collaboration

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received16January2016

Receivedinrevisedform13July2016 Accepted20July2016

Availableonline22July2016 Editor:L.Rolandi

The productionofchargedpions,kaonsand(anti)protons hasbeenmeasuredatmid-rapidity(−0.5<

y<0) inp–Pbcollisions at√s

NN=5.02 TeV usingthe ALICEdetector atthe LHC. Exploitingparticle identification capabilitiesathightransversemomentum(pT),thepreviouslypublished pTspectrahave been extended toinclude measurements upto 20 GeV/cfor seven event multiplicity classes.The pT spectraforppcollisionsat√

s=7 TeV,neededtointerpolateappreferencespectrum,havealsobeen extendedupto20 GeV/ctomeasurethenuclearmodificationfactor(RpPb)innon-singlediffractivep–Pb collisions.

At intermediate transverse momentum (2<pT<10 GeV/c) the proton-to-pion ratio increases with multiplicityinp–Pbcollisions,asimilareffectisnotpresentinthekaon-to-pionratio.ThepTdependent structure ofsuchincreaseisqualitatively similar tothoseobserved inppandheavy-ion collisions.At high pT(>10 GeV/c),theparticleratiosareconsistentwiththosereportedforppandPb–Pbcollisions attheLHCenergies.

AtintermediatepTthe(anti)protonRpPbshowsaCronin-likeenhancement,whilepionsandkaonsshow littleornonuclearmodification.AthighpTthechargedpion,kaonand(anti)protonRpPb areconsistent withunitywithinstatisticalandsystematicuncertainties.

©2016TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

In heavy-ion collisions at ultra-relativistic energies, it is well establishedthatastronglycoupledQuark–Gluon-Plasma(sQGP)is formed[1–5].Someofthecharacteristicfeatures ofthesQGPare strongcollectiveflowandopacitytojets.Thecollectivebehavioris observedbothasanazimuthalanisotropyofproducedparticles[6], wherethemagnitudeisdescribed byalmostideal(reversible)hy- drodynamics,andasahardeningofpTspectraforheavierhadrons, such as protons,by radial flow [7].Jet quenchingis observed as a reduction of both high pT particles [8,9] and also fully recon- structedjets[10].TheinterpretationofthesesQGP propertiesre- quirescomparisonswithreferencemeasurementslikeppandp–A collisions. Recentmeasurements in highmultiplicity pp,p–A and d–Acollisions atdifferentenergies haverevealedstrongflow-like effects even in these small systems [11–20]. The origin of these phenomenaisdebated[21–29]andthedatareportedhereprovide furtherinputstothisdiscussion.

E-mailaddress:alice-publications@cern.ch.

In a previous work, we reported the evidence ofradial flow- like patternsin p–Pbcollisions [30].Thiseffect was foundto in- crease with increasing event multiplicity and to be qualitatively consistent with calculationswhich incorporatethe hydrodynami- cal evolution of the system. It was also discussed that in small systems, mechanisms like color-reconnection mayproduce radial flow-like effects. Thepresent paperreportscomplementary mea- surements coveringtheintermediate pT region(2–10 GeV/c)and thehigh-pTregion(10–20 GeV/c)exploitingthecapabilitiesofthe High MomentumParticle IdentificationDetector(HMPID)andthe Time ProjectionChamber (TPC). Inthis way,highprecision mea- surementsare achievedintheintermediate pT regionwherecold nuclear matter effects like the Cronin enhancement [31,32] have beenreportedbypreviousexperiments[33,34],andwherethepar- ticle ratios, e.g., the proton(kaon) production relative to that of pions,areaffectedbylargefinalstateeffectsincentralPb–Pbcol- lisions[35].Particleratiosareexpectedtobemodifiedbyflow,but hydrodynamicsistypicallyexpectedtobeapplicableonlyup toa few GeV/c [36].Athigher pT,ideas suchaspartonrecombination havebeenproposed leadingtobaryon–meson effects[37].Inthis waythenewdatasetcomplementsthelower pT results.

http://dx.doi.org/10.1016/j.physletb.2016.07.050

0370-2693/©2016TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

Inaddition,particleidentificationatlargetransversemomenta inp–Pbcollisions providesnewconstraintsonthenuclearparton distributionfunctions(nPDF) whicharekeyinputsininterpreting a large amount ofexperimental data like d–Au anddeep inelas- ticscattering [38]. Finally,the measurement is alsoimportant to studytheparticlespeciesdependencyofthenuclearmodification factor(RpPb),tobetterunderstandpartonenergylossmechanisms inheavy-ioncollisions.

In this paper, the charged pion, kaon and (anti)proton RpPb are reportedfor non-singlediffractive (NSD) p–Pb collisions. The pp reference spectra for this measurement were obtained us- ing interpolations of data at different collision energies. The al- ready published pT spectra for inelastic (INEL) pp collisions at

s=7 TeV [39] were extended up to 20 GeV/c andthe results are presented here for the first time. These measurements to- gether with the results for INEL pp collisions at √

2=2.76 TeV (pT<20 GeV/c)[35]wereusedtodetermineppreferencespectra at√

s=5.02 TeV usingtheinterpolationmethoddescribedin[40].

Thepaperisorganized asfollows.InSec.2theALICEdetector aswellastheeventandtrackselectionsarediscussed.Theanaly- sisprocedures forparticleidentificationusingtheHMPIDandTPC detectorsareoutlinedinSec. 3andSec. 4,respectively.Section5 presentstheresultsanddiscussions.Finally,Sec.6summarizesthe mainresults.

2. Datasample,eventandtrackselection

The results are obtained using data collected with the ALICE detectorduring the 2013 p–Pbrun at √

sNN=5.02 TeV. The de- taileddescription oftheALICEdetectorcanbe foundin [41] and the performance during run 1 (2009–2013) is described in [42].

Becauseofthe LHC 2-in-1 magnetdesign,it isimpossibleto ad- justtheenergy ofthe protonandlead-ionbeams independently.

Theyare 4 TeV per Z which gives different energies due to the differentZ/A ofthecollidingprotonsandleadions.Thenucleon–

nucleoncenter-of-masssystemismoving inthelaboratory frame with a rapidity of yNN= −0.465 in the direction of the proton beamrapidity.Inthefollowing, ylab(

η

lab)areusedtoindicatethe (pseudo)rapidityinthelaboratoryreferenceframe,whereas y (

η

) denotesthe (pseudo)rapidityin thecenter-of-massreferencesys- temwherethePbbeamisassignedpositiverapidity.

In the analysis of the p–Pb data, the event selection follows that used in the analysis of inclusive charged particle produc- tion[43].The minimumbias(MB)triggersignal wasprovided by theV0 counters[44],which contain two arraysof32 scintillator tileseach coveringthefullazimuthwithin 2.8<

η

lab<5.1 (V0A) and −3.7<

η

lab<1.7 (V0C). The signal amplitude and arrival timecollectedineachtilewererecorded.Acoincidenceofsignals inboth V0Aand V0Cdetectors was required to remove contam- inationfrom single diffractiveand electromagneticevents.In the offlineanalysis,backgroundeventswerefurthersuppressedbyre- quiring the arrival time of signals on the neutron Zero Degree CalorimeterA,whichispositionedinthePb-goingdirection,tobe compatiblewith a nominal p–Pbcollision occurringclose to the nominalinteractionpoint.Theestimatedmeannumberofinterac- tionsper bunch crossingwas below1% inthe sample chosenfor thisanalysis.Duetotheweakcorrelationbetweencollisiongeom- etryandmultiplicity,theparticleproductioninp–Pbcollisions is studiedineventmultiplicityclassesinsteadofcentralities[45].The multiplicity classes are defined using the total charge deposited in the V0A detector as in [30], where V0A is positioned in the Pb-going direction. The MB results have been normalized to the totalnumberofNSDeventsusingatriggerandvertexreconstruc- tionefficiencycorrection whichamountsto3.6%±3.1% [46].The multiplicitydependentresultshavebeennormalizedtothevisible

Table 1

Transverse momentum ranges(GeV/c)covered bythe individual and combined analysesforppcollisionsat

s=7 TeV andp–Pbcollisionsat

sNN=5.02 TeV.

Analysis π++π K++K p+ ¯p

pp Published[39]a 0.1–3.0 0.2–6.0 0.3–6.0

TPC dE/dxrel. rise 2–20 3–20 3–20

p–Pb Published[30]b 0.1–3.0 0.2–2.5 0.3–4.0

HMPID 1.5–4.0 1.5–4.0 1.5–6.0

TPC dE/dxrel. rise 2–20 3–20 3–20

a Includeddetectors:ITS,TPC,Time-of-Flight(TOF),HMPID.Theresultsalsoin- cludethekink-topologyidentificationoftheweakdecaysofchargedkaons.

b Includeddetectors:ITS,TPC,TOF.

(triggered) cross-section correcting for the vertex reconstruction efficiency (this was not done in [30]). This correction is of the order of 5% for the lowest V0A multiplicity class (80–100%) and negligiblefortheothermultiplicityclasses(<1%).

Inthe√

s=7 TeV ppanalysistheMB triggerrequireda hitin the two innermostlayers of the Inner TrackingSystem(ITS), the SiliconPixelDetector(SPD),orinatleastoneoftheV0scintilla- torarraysincoincidence withthe arrivalofprotonbunchesfrom both directions.The offline analysisto eliminate backgroundwas done usingthetime informationprovidedby theV0 detectorsin correlationwiththenumberofclustersandtracklets1intheSPD.

TracksarerequiredtobereconstructedinboththeITSandthe TPC.Additionaltrackselectioncriteriaarethesameasin[47]and basedonthe numberofspacepoints,thequality ofthetrackfit, and the distance of closest approach to the reconstructed colli- sionvertex. Chargedtracks wheretheidentityofthe particlehas changeddueto aweakdecay, e.g.,K

μ

+ ¯

ν

μ,areidentified bythetrackingalgorithmduetotheirdistinctkinktopologies[48]

andrejectedinthisanalysis. Theremainingcontaminationisneg- ligible (1%). In order to have the same kinematic coverage as used in the p–Pb low pT analysis [30], the tracks were selected in the pseudorapidity interval −0.5<

η

<0. In addition, for the HMPID analysisit isrequired that thetracks are propagated and matchedtoaprimaryionizationclusterintheMulti-WirePropor- tionalChamber(MWPC)gapoftheHMPIDdetector[39,47].

The published results of charged pion,kaon and(anti)proton production at low pT for pp [39] and p–Pb [30] collisions at

s=7 TeV and

sNN=5.02 TeV,respectively,useddifferentPar- ticleIDentification (PID) detectorsandtechniques.A summary of the pT rangescoveredbythepublishedanalysesandtheanalyses presentedinthispapercanbefoundinTable 1.

In the following, the analysis techniques used to obtain the identified particle pT spectra in the intermediate and high-pT rangesusingHMPIDandTPCwillbediscussed.

3. HMPIDanalysis

TheHMPID detector[49]islocated about5 mfromthebeam axis, covering a limited acceptance of |

η

lab|<0.5 and 1.2<

φ <58.5, that corresponds to ∼5% of the TPC geometrical ac- ceptance (2

π

in azimuthal angle and the pseudo-rapidity inter- val |

η

|<0.9 [50]) for high pT tracks. The HMPID analysis uses

9×107 minimum-bias p–Pb events at √

sNN=5.02 TeV. The eventandtrackselectionandtheanalysistechniquearesimilarto thosedescribedin[39,47].Itisrequiredthattracksarepropagated andmatchedtoaprimaryionizationclusterintheMulti-WirePro- portionalChamber(MWPC)gapoftheHMPIDdetector.ThePIDin theHMPIDisdonebymeasuringtheCherenkovangle,θCh[49]:

1 TrackletsarepairsofhitsfromthetwolayersoftheSPDwhichmakealine pointingbacktothecollisionvertex.

(3)

Fig. 1.(Coloronline.)CherenkovanglemeasuredintheHMPIDasafunctionofthe trackmomentuminp–Pbcollisionsat

sNN=5.02 TeV forthe0–5%V0Amultiplic- ityclass(seethetextforfurtherdetails).Thedashedlinesrepresenttheexpected curvescalculatedusingEq.(1)foreachparticlespecies.

cos

θ

Ch

=

1

n

β =⇒ θ

Ch

=

arccos

p2

+

m2 np

,

(1)

wheren istherefractive indexofthe radiatorused(liquid C6F14 withn=1.29 atEph=6.68 eV andtemperatureT=20C), pand m are the momentum and the mass of the given particle, re- spectively. The measurement of the single photon θCh angle in theHMPIDrequirestheknowledgeofthetrackparameters,which areestimatedbythetrackextrapolationfromthecentral tracking detectors up to the radiator volume, where the Cherenkov pho- tons are emitted. Only one charged particle cluster is associated to each extrapolatedtrack, selected as the closest cluster to the extrapolatedtrackpoint on thecathode plane. Toreject thefake cluster-matchassociations inthe detector,a selectionon thedis- tanced(track-MIP)computedonthecathodeplanebetweenthetrack extrapolationpointandthereconstructedcharged-particle cluster position is applied. The distance has to be less than 5 cm, in- dependent oftrack momentum. Starting fromthe photon cluster coordinates on the photocathode, a back-tracking algorithm cal- culatesthe correspondingemissionangle.TheCherenkovphotons areselectedbytheHoughTransformMethod(HTM)[51]thatdis- criminatesthe signal fromthe background.Foragiventrack, the Cherenkovangle θCh is then computed asthe weighted mean of the single photon angles selected by the HTM. Fig. 1 showsthe θCh asa function ofthe trackmomentum.The reconstructed an- gledistributionforagivenmomentuminterval isfittedbya sum ofthreeGaussiandistributions, correspondingto thesignalsfrom pions,kaons,andprotons.The fittingisdone intwosteps.Inthe firststeptheinitialvaluesoffitparametersaresettotheexpected values.Themeanvalues,θCh i,are obtainedfromEq.(1),tuning therefractiveindextomatchtheobservedCherenkovangles,and theresolutionvaluesare takenfromaMonteCarlosimulation of thedetectorresponse.Afterthisfirststep,the pT dependencesof themeanandwidtharefittedwiththefunctiongivenby Eq.(1) anda polynomialone,respectively. Inthesecondstep,the fitting isrepeatedwiththeyieldsastheonlyfreeparameters,constrain- ingthemeanandresolutionvaluestothefittedvalue.Thesecond iteration is particularly important at high pT where the separa- tionbetweendifferentspeciesisreduced.Fig. 2givesexamplesof fitstothereconstructedCherenkovangledistributionsintwonar- rowpTintervalsforthe0–5%multiplicityclass.Therawyieldsare then correctedby thetotal reconstructionefficiency givenbythe convolution of the tracking,PID efficiency, anddistance cut cor- rection. The tracking efficiency, convoluted with the geometrical

Fig. 2. (Color online.) Distributions of the Cherenkov angle measured in the HMPID for positivetracks having pT between2.5–2.6 GeV/c (left)and between 3.8–4.0 GeV/c(right),inp–Pbcollisionsat

sNN=5.02 TeV forthe0–5%V0Amul- tiplicityclass(seethetextforfurtherdetails).

acceptanceofthedetector,hasbeenevaluatedusingMonteCarlo simulations. Forall threeparticle speciesthisefficiencyincreases from ∼5% at1.5 GeV/c upto6%at high pT.The PIDefficiency isdetermined bytheCherenkovanglereconstruction efficiency.It has been computedby means of Monte-Carlo simulations and it reaches∼90%forparticleswithvelocityβ1,withnosignificant difference betweenpositive andnegative tracks.The distancecut correction,definedastheratiobetweenthenumberofthetracks that pass thecut ond(track-MIP) andall thetracksin thedetector acceptance, has been evaluated from data. It is momentum de- pendent,andit is equalto ∼53% at1.5GeV/c, reaches70%for particles withvelocityβ1.Asmalldifference betweenpositive and negative tracks is present; negative tracks having a distance correction ∼2%lower thanthepositiveones.Thiseffectiscaused by aradialresidualmisalignmentoftheHMPIDchambersandan imperfect estimation ofthe energyloss inthe materialtraversed by the track. Tracking efficiency, PID efficiency and distance cut correctiondonotshowvariationwiththeeventtrackmultiplicity.

3.1. Systematicuncertainties

ThesystematicuncertaintyontheresultsoftheHMPIDanaly- sishascontributionsfromtracking,PIDandtracksassociation[39, 47].Theuncertaintiesrelatedtothetrackinghavebeenestimated by changingthe trackselectioncutsindividually,e.g. thenumber of crossed readout rowsin the TPC and the value of the track’s

χ

2 normalizedtothenumberofTPCclusters.ToestimatethePID contribution,theparameters(meanandresolution)ofthefitfunc- tion used to extract the raw yields were varied by a reasonable quantity,leavingthemfreeinagivenrange;therangechosenfor the mean values is [θCh

σ

, θCh +

σ

] andfor the resolution [

σ

−0.1

σ

,

σ

+0.1

σ

].A variationof10% oftheresolutioncorre- sponds to its maximum expected variation when takinginto ac- countthedifferentrunningconditionsofthedetectorduringdata takingwhichhaveanimpactonitsperformance.Whenthemeans are changed,the resolution values are fixed to the defaultvalue andvice versa.The variation ofparameters isdone forthe three Gaussians(correspondingtothethreeparticlespecies)simultane- ously.Inaddition,theuncertaintyoftheassociationofthetrackto thechargedparticlesignalisobtainedbyvaryingthedefaultvalue ofthe distancecutrequiredforthematchby ±1 cm.Thesecon- tributions do notvary withthecollision multiplicity.A summary ofthedifferentcontributionstothesystematicuncertaintyforthe HMPIDp–PbanalysisisshowninTable 2.

4. TPCdE/dxrelativisticriseanalysis

The relativistic rise regime of the specific energyloss, dE/dx, measuredbytheTPCallowsidentificationofchargedpions,kaons,

(4)

Table 2

MainsourcesofsystematicuncertaintiesfortheHMPIDp–Pbanalysis.

Effect π++π K++K p+ ¯p

pTvalue (GeV/c) 2.5 4 2.5 4 2.5 4

PID 6% 12% 6% 12% 4% 5%

Tracking efficiency 6% 6% 7%

Distance cut correction 6% 2% 6% 2% 4% 2%

Fig. 3.(Coloronline.)Specificenergyloss,dE/dx,asafunctionofmomentumpin thepseudorapidityrange0.5<η<0.375 forminimumbiasp–Pbcollisions.In eachmomentumbinthedE/dxspectrahavebeennormalizedtohaveunitintegrals andonlybinswithmorethan2%ofthecountsareshown(makingelectronsnot visibleinthefigure,exceptatverylowmomentum).ThecurvesshowthedE/dx responseforpions,kaons,protonsandelectrons.

and(anti)protons up to pT=20 GeV/c. The results presentedin this paper were obtained using the method detailed in [47]. In thisanalysis, around 8×107 (4.107) p–Pb(pp) MB triggered eventswere used.Theeventandtrackselection hasalreadybeen discussedinSection2.

Asdiscussedin[47],thedE/dxiscalibratedtakingintoaccount chambergainvariations,trackcurvatureanddiffusion,toobtaina response that essentially only dependson β

γ

. Inherently, tracks atforwardrapiditywillhavebetterresolutionduetolongerinte- gratedtrack-lengths,soinordertoanalyzehomogeneoussamples theanalysisisperformedinfour

η

intervals.Samplesoftopolog- icallyidentified pions (fromK0S decays),protons (from decays) andelectrons (from

γ

conversions)wereusedtoparametrizethe Bethe–Blochresponse, dE/dx

γ

), andthe relative resolution,

σ

dE/dx (dE/dx) [47]. For the p–Pb data, these response func- tionsarefoundtobeslightlymultiplicitydependent(the dE/dx changes by ∼0.4% and the sigma by2.0%). However, a single setof functionsisused forall multiplicity intervals, andthe de- pendenceisincludedinthesystematicuncertainties.Fig. 3shows dE/dx asafunction ofmomentumforp–Pb events.The charac-

teristic separation power between particle species in number of standard deviations () as a function of p, is shown in Fig. 4 forminimumbiasp–Pbcollisions. Forexample, forpionsand kaonsiscalculatedas:

Sσ

=

dE

dx

π++π

dE dx

K++K 0

.

5

σ

π++π

+ σ

K++K

.

(2) Theseparationinnumberofstandarddeviationsisthe largest (smallest) betweenpions andprotons(kaonsandprotons)andit isnearlyconstantatlargemomenta.

Themainpartofthisanalysisisthedeterminationoftherela- tive particleabundances,hereafter calledparticlefractions,which are definedasthe

π

++

π

, K++K,p+ ¯p and e++e yields normalized to that for inclusive charged particles. Since the TPC dE/dxsignalisGaussiandistributedasillustrated in[47],particle fractions are obtainedusingfour-Gaussian fits to dE/dx distribu- tions in

η

and p intervals. The parameters (mean and width) of thefits arefixed usingtheparametrizedBethe–Blochandresolu- tioncurvesmentioned earlier.Examplesofthesefitscan beseen in Fig. 5 for two momentum intervals, 3.4<p<3.6 GeV/c and 8<p<9 GeV/c.Theparticlefractionsina pTrange,areobtained astheweightedaverageofthecontributingp intervals.Since the particlefractionsasafunctionof pT arefoundtobe independent of

η

,they are averaged. The particlefractions measured in p–Pb and pp collisions are corrected forrelative efficiency differences usingDPMJET[52] andPHOJET[53]MonteCarlo(MC) generators, respectively.Furthermore,therelativepionandprotonabundances werecorrectedforthecontaminationofsecondaryparticles(feed- down),moredetailsofthemethodcanbefoundin[47].

Theinvariantyields,1/(2

π

pT)d2N/dydpT,areconstructedus- ingtwo components:thecorrectedparticlefractionsandthecor- rected invariant charged particle yields. For the pp analysis at

s=7 TeV,thelattercomponentwastakendirectlyfromthepub- lished results forinclusive chargedparticles [40].However, anal- ogous resultsfor p–Pb data are neither available for neither the kinematic range −0.5<y<0 nor for the different multiplicity classes [54], they were therefore measured here and the results usedtodeterminetheinvariantyields.

4.1. Systematicuncertainties

Thesystematicuncertaintiesmainlyconsistoftwocomponents:

thefirstisduetotheeventandtrackselection,andthesecondone isduetothePID.Thefirstcomponentwasobtainedfromtheanal- ysisofinclusivechargedparticles[40,54].ForINELppcollisionsat 7TeV,thesystematicuncertaintieshavebeentakenfrom[40].For p–Pb collisions, thereare no measurements in the

η

interval re- portedhere(−0.5<

η

<0);however,it hasbeenshownthat the systematicuncertaintyexhibitsa negligibledependenceon

η

and multiplicity [45].Therefore, thesystematic uncertainties reported

Fig. 4.Separationinnumberofstandarddeviationsbetween:pionsandprotons(leftpanel),pionsandkaons(middlepanel),andkaonsandprotons(rightpanel).Resultsfor minimumbiasp–Pbdataandfortwospecificpseudorapidityintervalsareshown.Moredetailscanbefoundin[47].

(5)

Fig. 5.(Coloronline.)Four-Gaussianfits(lines)tothedE/dxspectra(markers)fortrackshavingmomentum3.4<p<3.6 GeV/c(toprow)and8.0<p<9.0 GeV/c(bottom row)within0.125<η<0.Allofthespectraarenormalizedtohaveunitintegrals.ColumnsrefertodifferentV0Amultiplicityclasses.Individualsignalsofchargedpions, kaons,and(anti)protonsareshownasred,green,andbluedashedareas,respectively.Thecontributionofelectronsisnotvisibleandisnegligible(<1%).

Table 3

Summaryofthesystematicuncertaintiesforthechargedpion,kaon,and(anti)protonspectraandfor theparticle ratios.NotethatK=(K++K)/(π++π)and p=(p+ ¯p)/(π++π).

pT(GeV/c) π++π K++K p+ ¯p K p

2.0 10 3.0 10 3.0 10 3.0 10 3.0 10

pp collisions Uncertainty

Eventandtrackselectiona 7.3% 7.3% 7.3%

Feed-downcorrection 0.2% 1.2% 0.2% 1.2%

Efficiencycorrection 3.2% 3.2% 3.2% 4.5% 4.5%

Correctionformuons 0.3% 0.5% 0.3% 0.5% 0.3% 0.5%

ParametrizationofBethe–Bloch andresolutioncurves

1.8% 1.9% 20% 6.9% 24% 15% 17% 9.0% 17% 19%

p–Pb collisions Uncertainty

Eventandtrackselectiona 3.3% 3.6% 3.3% 3.6% 3.3% 3.6%

Feed-downcorrection0.2% 2.6% 0.7%0.2% 2.6% 0.7%

Efficiencycorrection 3.2% 3.2% 3.2% 4.5% 4.5%

Correctionformuonsb 0.3% 0.4% 0.3% 0.4% 0.3% 0.4%

ParametrizationofBethe–Bloch andresolutioncurves Multiplicity

classes

0–5% 1.7% 1.9% 17% 8.0% 15% 13% 16% 10.4% 12% 11%

5–10% 1.7% 2.0% 17% 5.6% 16% 12% 18% 7.2% 14% 24%

10–20% 1.6% 1.9% 16% 7.2% 16% 12% 18% 9.5% 16% 15%

20–40% 1.6% 2.0% 16% 6.7% 17% 15% 18% 8.0% 17% 18%

40–60% 1.5% 1.9% 15% 6.5% 17% 12% 18% 8.3% 18% 13%

60–80% 1.6% 1.8% 16% 6.3% 20% 13% 21% 8.3% 22% 18%

80–100% 1.4% 1.5% 13% 5.9% 20% 13% 16% 7.3% 23% 21%

a Commontoallspecies,valuestakenfrom[40,54].

b Foundtobemultiplicityindependent.

in [54] have been assigned to the identified charged hadron pT spectraforalltheV0Amultiplicityclasses.

Thesecond componentwas measuredfollowingtheprocedure described in [47], where the largestcontribution is attributedto theuncertainties in theparameterization ofthe Bethe–Blochand resolutioncurvesusedtoconstrainthefits.Theuncertaintyiscal- culatedby varyingthedE/dx and

σ

dE/dx intheparticlefraction fits(Fig. 5)withintheprecisionofthedE/dxresponsecalibration,

1% and5%fordE/dx and

σ

dE/dx,respectively.Asmallfraction ofthisuncertaintywasfoundtobemultiplicitydependent,itwas estimatedasdoneinthepreviousALICEpublication[30].

A summary of the main systematic uncertainties on the pT spectraand theparticle ratios forp–Pb andpp collisions can be

found inTable 3fortwo pT intervals. Forpions,themaincontri- bution is related toevent andtrackselection andthe associated commoncorrections. Inthe caseofkaonsandprotonsthelargest uncertainty isattributedto the parametrizationof thedE/dx re- sponse.Forkaons,theuncertaintydecreaseswithpT andincreases withmultiplicitywhileforprotonsthemultiplicitydependenceis opposite.Thisvariationmainlyreflectsthechangesintheparticle ratioswithpT andmultiplicity.

5. Resultsanddiscussions

The totalsystematicuncertaintyforallthe spectraforagiven particlespeciesisfactorizedforeach pT interval intoamultiplic-

(6)

Fig. 6.(Coloronline.)TheratioofindividualspectratothecombinedspectrumasafunctionofpTforpions(left),kaons(middle),andprotons(right).Fromtop-to-bottom therowsshowtheV0Amultiplicityclass0–5%,20–40%and60–80%.Statisticalanduncorrelatedsystematicuncertaintiesareshownasverticalerrorbarsanderrorbands, respectively.OnlythepTrangeswhereindividualanalysisoverlapareshown.Seethetextforfurtherdetails.

Fig. 7.(Coloronline.) Transversemomentumspectraofchargedpions(left),kaons(middle),and(anti)protons(right)measuredinp–Pbcollisionsats

NN=5.02 TeV.

Statisticalandsystematicuncertaintiesareplottedasverticalerrorbarsandboxes,respectively.Thespectra(measuredforNSDeventsandfordifferentV0Amultiplicity classes)havebeenscaledbytheindicatedfactorsinthelegendforbettervisibility.

ityindependentandmultiplicitydependentsystematicuncertainty.

Thetransversemomentum distributionsobtainedfromthediffer- ent analyses are combined in the overlapping pT region using a weightedaverage.The weightforthe combinationswasdone ac- cordingtothetotalsystematicuncertaintytoobtainthebestover- allprecision.Sincethesystematicuncertaintiesduetonormaliza- tionandtrackingarecommontoalltheanalyses,theywereadded directly to the final combined results. The statistical uncertain-

tiesaremuchsmallerandthereforeneglectedinthecombination weights.Themultiplicitydependentsystematicuncertaintyforthe combinedspectrais alsopropagated usingthesameweights. For theresults showninthispaperthe fullsystematicuncertainty is always used,butthemultiplicitycorrelated anduncorrelatedsys- tematicuncertaintiesaremadeavailableatHepData.Fig. 6shows examples of the comparisons amongthe individual analyses and the combined pT spectra, focusingon the overlapping pT region.

(7)

Fig. 8.(Coloronline.)Transversemomentumspectraofchargedpions(left),kaons(middle),and(anti)protons(right)measuredinINELppcollisionsat

s=2.76 TeV andat

s=7 TeV.Statisticalandsystematicuncertaintiesareplottedasverticalerrorbarsandboxes,respectively.Thespectrumat

s=5.02 TeV representsthereferenceinINEL ppcollisions,constructedfrommeasuredspectraat

s=2.76 TeV andat

s=7 TeV.Seethetextforfurtherdetails.Panelsonthebottomshowtheratioofthemeasured yieldstotheinterpolatedspectra.Onlyuncertaintiesoftheinterpolatedspectraareshown.

Withinsystematicandstatisticaluncertaintiesthenewhigh-pT re- sults, measured with HMPID and TPC, agree with the published results [30]. Similar agreement is obtained forthe pT spectra in INELppcollisionsat7 TeV[39].

5.1. Transversemomentumspectraandnuclearmodificationfactor

Thecombined chargedpion,kaonand(anti)proton pT spectra inp–Pbcollisions fordifferentV0Amultiplicity classesare shown inFig. 7. Asreported in [30], for pT below2–3 GeV/c the spec- tra behave like in Pb–Pb collisions, i.e., the pT distributions be- comeharder asthemultiplicity increasesandthechangeismost pronounced forprotons andlambdas. Inheavy-ion collisions this effectiscommonlyattributedtoradial flow. Forlargermomenta, thespectrafollowapower-lawshapeasexpectedfromperturba- tiveQCD.

In order to quantify any particle species dependence of the nuclear effects in p–Pb collisions, comparisons to reference pT spectrain pp collisions areneeded. In theabsence ofpp data at

s=5.02 TeV,thereferencespectraareobtainedbyinterpolating datameasuredat√

s=2.76 TeV andat√

s=7 TeV.Theinvariant crosssectionforidentifiedhadronproductioninINELppcollisions, 1/(2

π

pT) d2

σ

ppINEL/dydpT, isinterpolated ineach pT interval, as- sumingapowerlawdependenceasafunctionof√

s.Themethod was cross-checked using events simulated by Pythia 8.201 [55], wherethedifference betweentheinterpolated andthesimulated referencewas found tobe negligible.The maximum relativesys- tematicuncertaintyofthespectraat √

s=2.76 TeV and at√ s= 7 TeV hasbeenassignedasa systematicuncertainty totherefer- ence.Inthetransversemomentuminterval3<pT<10 GeV/c,the totalsystematicuncertainties forpions andkaons arebelow8.6%

and10%,respectively.Whilefor(anti)protonsitis7.7%and18%at 3 GeV/c and10 GeV/c,respectively.Theinvariant yieldsareshown inFig. 8,wheretheinterpolated pTspectraarecomparedtothose measuredinINELppcollisionsat2.76TeVand7TeV.

Thenuclearmodificationfactoristhenconstructedas:

RpPb

=

d

2NpPb

/

dydpT

TpPb

d2

σ

ppINEL

/

dydpT

(3)

Fig. 9.(Coloronline.)Thenuclearmodificationfactor RpPbasafunctionoftrans- verse momentum pT for differentparticle species.Thestatisticalandsystematic uncertainties areshownas verticalerror barsandboxes, respectively. Thetotal normalization uncertainty is indicated bya verticalscale ofthe empty boxat pT=0 GeV/c and RpPb=1.Theresultforinclusivechargedhadrons[54]isalso shown.

where, for minimum bias (NSD) p–Pb collisions the average nu- clear overlap function, TpPb

, is 0.0983±0.0035 mb1 [43]. In absenceofnucleareffectstheRpPb isexpectedtobeone.

Fig. 9 showsthe identified hadron RpPb compared to that for inclusivechargedparticles (h±)[54] inNSDp–Pbevents.Athigh pT (>10 GeV/c), all nuclear modification factors are consistent withunity withinsystematicandstatisticaluncertainties. Around 4 GeV/c,where aprominent Croninenhancement hasbeen seen atlowerenergies[33,34],theunidentifiedchargedhadron RpPb is above unity, albeitbarely significantwithin systematicuncertain- ties [54]. Remarkably, the (anti)proton enhancement is ∼3 times largerthanthatforchargedparticles,whileforchargedpionsand kaons the enhancement is below that of charged particles. The STAR andPHENIXCollaborations have observeda similar pattern at RHIC,where thenuclear modification factorforMB d–Au col-

(8)

Fig. 10.(Coloronline.) Kaon-to-pion(upperpanel)andproton-to-pion(bottompanel)ratiosasafunctionofpT fordifferentV0Amultiplicityclasses.Resultsfor p–Pb collisions(fullmarkers)arecomparedtotheratiosmeasuredinINELpp collisionsat2.76TeV[35](emptycircles)andat 7TeV[39](fullcircles).Thestatisticaland systematicuncertaintiesareplottedasverticalerrorbarsandboxes,respectively.

lisions, RdAu, in the range 2<pT<5 GeV/c, is 1.24±0.13 and 1.49±0.17 forchargedpionsand(anti)protons,respectively[20].

Anenhancement of protons inthe same pT rangeis alsoob- served in heavy-ion collisions [35,47], whereit commonlyis in- terpretedasradial-flowandhasastrongcentralitydependence.In thenextsection, westudythemultiplicitydependenceofthein- variantyield ratiostoseewhetherprotonsaremoreenhancedas afunctionofmultiplicitythanpions.

5.2.Transversemomentumandmultiplicitydependenceofparticle ratios

The kaon-to-pion andthe proton-to-pion ratios asa function of pT fordifferent V0Amultiplicity classes are shownin Fig. 10.

The results for p–Pb collisions are compared to those measured forINELpp collisions at2.76 TeV [35] andat7TeV [39]. Within systematicandstatisticaluncertainties,thepTdifferentialkaon-to- pionratiosdonot show anymultiplicitydependence.In fact,the

resultsaresimilartothoseforINELppcollisionsatbothenergies.

The pT differentialproton-to-pionratiosshow aclearmultiplicity evolution at low and intermediate pT (<10 GeV/c). This multi- plicityevolutionisqualitativelysimilartothe centralityevolution observedinPb–Pbcollisions[35,47].

Itisworthnotingthattheaveragemultiplicitiesatmid-rapidity for peripheral Pb–Pb collisions (60–80%) and high multiplicity p–Pb collisions (0–5% V0A multiplicity class) are very similar, dNch/d

η

50.Evenifthephysicalmechanismsforparticlepro- duction could bedifferent, it seems interesting tocompare these systemswithsimilarunderlyingactivityasdoneinFig. 11,where INEL √

s=7 TeV ppresultsareincludedasanapproximatebase- line. Withinsystematic andstatistical uncertainties, the kaon-to- pion ratiosare the same forall systems. Onthe other hand,the proton-to-pionratiosexhibitsimilarflow-likefeaturesforthep–Pb andPb–Pb systems,namely,the ratiosare belowthepp baseline for pT<1 GeV/c andabove for pT>1.5 GeV/c.Quantitative dif- ferences areobserved betweenp–Pb andPb–Pb results,butthey

(9)

Fig. 11.(Coloronline.)Particleratiosasafunctionoftransversemomentum.Three differentcollidingsystemsarecompared,pp(opensquares),0–5%p–Pb(opencir- cles)and60–80%Pb–Pb(fulldiamonds)collisionsats

NN=7 TeV,5.02TeVand 2.76TeV,respectively.

Fig. 12.(Coloronline.)ParticleratiosasafunctionofdNch/dη ineachV0Amul- tiplicityclass(see[30]formoredetails).Threedifferentcollidingsystemsarecom- pared:pp,p–PbandperipheralPb–Pbcollisions.

canbeattributedtothedifferencesintheinitialstateoverlapge- ometryandthebeamenergy.

Theresultsfortheparticleratiossuggestthat themodification ofthe(anti)protonspectralshapegoingfrompptop–Pbcollisions couldplaythedominantroleintheCroninenhancementobserved forinclusivechargedparticleRpPbatLHCenergies.Toconfirmthis picture one would have to studythe nuclear modificationfactor asa functionof multiplicity aswe didin [45], where,thepossi- blebiasesintheevaluationofthemultiplicity-dependentaverage nuclearoverlap function TpPb

werediscussed. Theseresultswill becomeavailableinthefuture.

InFig. 12wecomparetheparticleratiosathighpT(10<pT<

20 GeV/c) measured inINEL√

s=7 TeV pp collisions,peripheral Pb–Pb collisions and the multiplicity dependent results in p–Pb collisions.Withinstatisticalandsystematicuncertainties,theratios donotshowanyevolutionwithmultiplicity.Moreover,sinceithas beenalreadyreportedthat inPb–Pb collisionsthey are centrality independent[47]we concludethatthey aresystem-sizeindepen- dent.

The strongsimilarity ofparticle ratios asa function of multi- plicityinp–PbandcentralityinPb–Pbcollisionsinthelow,inter- mediate,andhigh-pTregionsisstriking.Ingeneral,theresultsfor p–Pbcollisions appeartoraise questionsaboutthelong standing ideas ofspecificphysics modelsforsmallandlarge systems[56].

For example, in the low pT publication [30], hydrodynamic in- spired fits gave higher transverse expansion velocities (βT ) for p–PbthanforPb–Pbcollisions.Hydrodynamics,whichsuccessfully describesmanyfeatures ofheavy-ioncollisions, hasbeenapplied tosmall systemsandcan explain thiseffect [21],but careneeds to be taken since its applicability to small systemsis still under debate [56]. On the other hand, models like color reconnection, wherethesoftandhardcomponentsareallowed tointeract, pro-

duce this kindof effectsin pp collisions [29,57].Evenmore, the hard collisions which could be enhanced via the multiplicity se- lection insmallsystems, alsocontribute to increase βT [58].In general,colorreconnectioneffectsinp–PbandPb–Pbcollisionsare underinvestigationandmodelsfortheeffectofstrongcolorfields in small systems are in general underdevelopment [59]. Finally, ithasbeenproposedthatind–Aucollisions therecombinationof soft and shower partons in the final state could explain the be- havior ofthenuclear modificationfactoratintermediate pT [32].

The CMSCollaboration hasfound that thesecond-order (v2) and thethird-order(v3)anisotropyharmonicsmeasuredforK0S and showconstituentquarkscalinginp–Pbcollisions [60].

6. Conclusions

We havereportedon thechargedpion, kaonand(anti)proton productionuptolargetransversemomenta(pT20 GeV/c)inp–

Pb collisions at √

sNN=5.02 TeV. The pT spectra in √

s=7 TeV ppcollisionswerealsomeasuredupto20 GeV/ctoallowthede- terminationofthe√

s=5.02 TeV ppreferencecrosssectionusing theexistingdataat2.76 TeVandat7 TeV.

At intermediate pT (2<pT<10 GeV/c), the(anti)proton RpPb for non-singlediffractivep–Pb collisions was found tobe signifi- cantlylarger than thoseforpions andkaons, inparticularin the region where the Cronin peak was observed by experiments at lowerenergies.Hence,themodestenhancementwhichwealready reportedforunidentifiedchargedparticlescanbeattributedtothe modification ofthe protonspectral shape going fromppto p–Pb collisions. Athigh pT thenuclearmodificationfactorsforcharged pions, kaons and (anti)protons are consistent with unity within systematicandstatisticaluncertainties.

Theenhancement ofprotonswithrespecttopionsatinterme- diate pT showsastrongmultiplicitydependence.Thisbehavioris not observed for the kaon-to-pion ratio. At high transverse mo- menta (10<pT<20 GeV/c) the pT integratedparticleratios are system-size independent for pp, p–Pb and Pb–Pb collisions. For a similar multiplicity at mid-rapidity, the pT-differential particle ratios are alike for p–Pb andPb–Pb collisions over the broad pT rangereportedinthispaper.

Acknowledgements

The ALICECollaboration would like to thank all its engineers andtechniciansfortheirinvaluablecontributionstotheconstruc- tion ofperformanceofthe LHCcomplex.TheALICECollaboration gratefully acknowledges the resources and support provided by all Grid centresandthe WorldwideLHC ComputingGrid (WLCG) collaboration. The ALICE Collaboration acknowledges the follow- ing funding agencies for their support in building and running the ALICEdetector:State CommitteeofScience,WorldFederation of Scientists (WFS)and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq), Fi- nanciadora de Estudose Projetos(FINEP),Fundaçãode Amparoà Pesquisa do Estado de São Paulo (FAPESP); National Natural Sci- ence Foundation of China (NSFC), the Ministry of Education of the People’s Republic of China (CMOE) and the Ministry of Sci- ence and Technology of the People’s Republic of China (MSTC);

Ministry of Education, Youth and Sports of the Czech Republic;

Danish Natural Science Research Council, the Carlsberg Founda- tion andtheDanish NationalResearchFoundation;The European ResearchCouncilundertheEuropeanCommunity’sSeventhFrame- work Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS–IN2P3, the ‘Region Pays de Loire’, ‘Re- gion Alsace’, ‘Region Auvergne’ and CEA, France; German Bun- desministerium fur Bildung, Wissenschaft, Forschung und Tech-

Referanser

RELATERTE DOKUMENTER

General Secretariat for Research and Technology, Ministry of Educa- tion, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary;

National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE) and Council of Scientific and Industrial Research (CSIR),

Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi – Museo

&amp; Alice Wallenberg Foundation (KAW); Ukraine Ministry of Educa- tion and Science; United Kingdom Science and Technology Facili- ties Council (STFC); The United States

Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India

istry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE),

National Research, Development and Innovation Office, Hun- gary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of

ogy, Ministry of Education, Research and Religions, Greece; National Research, Develop- ment and Innovation Office, Hungary; Department of Atomic Energy Government of