On the Suitability of Connectivity-
Extended Local Embedding for Drawing Multivariate Graphs: An Evaluation
- Appendix
Appendix A Graph Visualizations 2
Appendix B Quantitative Results 9
B.1 Graph Aesthetics: Edge Crossings . . . 10
B.2 Graph Aesthetics: Even Edge Distribution . . . 11
B.3 Graph Aesthetics: Layout Energy . . . 12
B.3.1 Global Layout Energy . . . 12
B.3.2 Local Layout Energy Variance . . . 13
B.4 Similarity Representation: General Distance Preservation . . . 14
B.4.1 General Distance Preservation: Regulation Dataset . . . 14
B.4.2 General Distance Preservation: Households Dataset . . . 15
B.4.3 General Distance Preservation: Documents Dataset . . . 16
B.4.4 General Distance Preservation: Phone Calls Dataset . . . 17
B.4.5 General Distance Preservation: Amazon Dataset . . . 18
B.4.6 General Distance Preservation: Patents Dataset . . . 19
B.5 Graph Aesthetics versus Projection Quality . . . 20
Appendix C Impact of Varying Neighborhood Sizes 24
Appendix D Interactive Exploration of Graph Connectivity and Node Similarity 27
1
Appendix A
Graph Visualizations
2
(a) MEU Original (b) MEU Adjacency (c) MEU Graph Path (d) MEU Combined
(e) LLE Original (f) LLE Adjacency (g) LLE Graph Path (h) LLE Combined
(i) ISOMAP Original (j) ISOMAP Adjacency (k) ISOMAP Graph Path (l) ISOMAP Combined
(m) Weighted Kamada-Kawai (n) Kamada-Kawai MDS Init. (o) MDS classic
(p) Kamada-Kawai (q) ISOM
Figure A.1: Renderings of the extitRegulation dataset 3
(a) MEU Original (b) MEU Adjacency (c) MEU Graph Path (d) MEU Combined
(e) LLE Original (f) LLE Adjacency (g) LLE Graph Path (h) LLE Combined
(i) ISOMAP Original (j) ISOMAP Adjacency (k) ISOMAP Graph Path (l) ISOMAP Combined
(m) Weighted Kamada-Kawai (n) Kamada-Kawai MDS Init. (o) MDS classic
(p) Kamada-Kawai (q) ISOM
Figure A.2: Renderings of the extitHouseholds dataset 4
(a) MEU Original (b) MEU Adjacency (c) MEU Graph Path (d) MEU Combined
(e) LLE Original (f) LLE Adjacency (g) LLE Graph Path (h) LLE Combined
(i) ISOMAP Original (j) ISOMAP Adjacency (k) ISOMAP Graph Path (l) ISOMAP Combined
(m) Weighted Kamada-Kawai (n) Kamada-Kawai MDS Init. (o) MDS classic
(p) Kamada-Kawai (q) ISOM
Figure A.3: Renderings of the extitDocuments dataset 5
(a) MEU Original (b) MEU Adjacency (c) MEU Graph Path (d) MEU Combined
(e) LLE Original (f) LLE Adjacency (g) LLE Graph Path (h) LLE Combined
(i) ISOMAP Original (j) ISOMAP Adjacency (k) ISOMAP Graph Path (l) ISOMAP Combined
(m) Weighted Kamada-Kawai (n) Kamada-Kawai MDS Init. (o) MDS classic
(p) Kamada-Kawai (q) ISOM
Figure A.4: Renderings of the extitPhone Calls dataset 6
(a) MEU Original (b) MEU Adjacency (c) MEU Graph Path (d) MEU Combined
(e) LLE Original (f) LLE Adjacency (g) LLE Graph Path (h) LLE Combined
(i) ISOMAP Original (j) ISOMAP Adjacency (k) ISOMAP Graph Path (l) ISOMAP Combined
(m) Weighted Kamada-Kawai (n) Kamada-Kawai MDS Init. (o) MDS classic
(p) Kamada-Kawai (q) ISOM
Figure A.5: Renderings of the extitAmazon dataset 7
(a) MEU Original (b) MEU Adjacency (c) MEU Graph Path (d) MEU Combined
(e) LLE Original (f) LLE Adjacency (g) LLE Graph Path (h) LLE Combined
(i) ISOMAP Original (j) ISOMAP Adjacency (k) ISOMAP Graph Path (l) ISOMAP Combined
(m) Weighted Kamada-Kawai (n) Kamada-Kawai MDS Init. (o) MDS classic
(p) Kamada-Kawai (q) ISOM
Figure A.6: Renderings of the extitPatents dataset 8
Appendix B
Quantitative Results
9
B.1 Graph Aesthetics: Edge Crossings
(a)Regulation (b)Households
(c)Documents (d)Phone Calls
(e)Amazon (f)Patents
Figure B.1: Edge Crossings
ISOM Kamada-Kawai
Weighted KK KK MDS Init. MDS classic
MEU Original MEU Adjacency MEU Graph Path MEU Combined
LLE Original LLE Adjacency LLE Graph Path LLE Combined
ISOMAP Original ISOMAP Adjacency ISOMAP Graph Path ISOMAP Combined
10
B.2 Graph Aesthetics: Even Edge Distribution
(a)Regulation (b)Households
(c)Documents (d)Phone Calls
(e)Amazon (f)Patents
Figure B.2: Even Edge Distribution
ISOM Kamada-Kawai
Weighted KK KK MDS Init. MDS classic
MEU Original MEU Adjacency MEU Graph Path MEU Combined
LLE Original LLE Adjacency LLE Graph Path LLE Combined
ISOMAP Original ISOMAP Adjacency ISOMAP Graph Path ISOMAP Combined
11
B.3 Graph Aesthetics: Layout Energy
B.3.1 Global Layout Energy
(a)Regulation (b)Households
(c)Documents (d)Phone Calls
(e)Amazon (f)Patents
Figure B.3: Global Layout Energy
ISOM Kamada-Kawai
Weighted KK KK MDS Init. MDS classic
MEU Original MEU Adjacency MEU Graph Path MEU Combined
LLE Original LLE Adjacency LLE Graph Path LLE Combined
ISOMAP Original ISOMAP Adjacency ISOMAP Graph Path ISOMAP Combined
12
B.3.2 Local Layout Energy Variance
(a)Regulation (b)Households
(c)Documents (d)Phone Calls
(e)Amazon (f)Patents
Figure B.4: Local Layout Energy Variance
ISOM Kamada-Kawai
Weighted KK KK MDS Init. MDS classic
MEU Original MEU Adjacency MEU Graph Path MEU Combined
LLE Original LLE Adjacency LLE Graph Path LLE Combined
ISOMAP Original ISOMAP Adjacency ISOMAP Graph Path ISOMAP Combined
13
B.4 Similarity Representation: General Distance Preservation
B.4.1 General Distance Preservation: Regulation Dataset
(a) MEU Original (b) MEU Adjacency (c) MEU Graph Path (d) MEU Combined
(e) LLE Original (f) LLE Adjacency (g) LLE Graph Path (h) LLE Combined
(i) ISOMAP Original (j) ISOMAP Adjacency (k) ISOMAP Graph Path (l) ISOMAP Combined
(m) Weighted Kamada-Kawai (n) Kamada-Kawai MDS Init. (o) MDS classic
(p) Kamada-Kawai (q) ISOM
Figure B.5:Regulation dataset: node similarity preservation. X axis: attribute space distance, Y axis: layout space distance. Red dots: adjacent vertices, gray dots: all vertex pairs. Red and gray lines are smooth interpolations.
14
B.4.2 General Distance Preservation: Households Dataset
(a) MEU Original (b) MEU Adjacency (c) MEU Graph Path (d) MEU Combined
(e) LLE Original (f) LLE Adjacency (g) LLE Graph Path (h) LLE Combined
(i) ISOMAP Original (j) ISOMAP Adjacency (k) ISOMAP Graph Path (l) ISOMAP Combined
(m) Weighted Kamada-Kawai (n) Kamada-Kawai MDS Init. (o) MDS classic
(p) Kamada-Kawai (q) ISOM
Figure B.6:Households dataset: node similarity preservation. X axis: attribute space distance, Y axis: layout space distance. Red dots: adjacent vertices, gray dots: all vertex pairs. Red and gray lines are smooth interpolations.
15
B.4.3 General Distance Preservation: Documents Dataset
(a) MEU Original (b) MEU Adjacency (c) MEU Graph Path (d) MEU Combined
(e) LLE Original (f) LLE Adjacency (g) LLE Graph Path (h) LLE Combined
(i) ISOMAP Original (j) ISOMAP Adjacency (k) ISOMAP Graph Path (l) ISOMAP Combined
(m) Weighted Kamada-Kawai (n) Kamada-Kawai MDS Init. (o) MDS classic
(p) Kamada-Kawai (q) ISOM
Figure B.7:Documents dataset: node similarity preservation. X axis: attribute space distance, Y axis: layout space distance. Red dots: adjacent vertices, gray dots: all vertex pairs. Red and gray lines are smooth interpolations.
16
B.4.4 General Distance Preservation: Phone Calls Dataset
(a) MEU Original (b) MEU Adjacency (c) MEU Graph Path (d) MEU Combined
(e) LLE Original (f) LLE Adjacency (g) LLE Graph Path (h) LLE Combined
(i) ISOMAP Original (j) ISOMAP Adjacency (k) ISOMAP Graph Path (l) ISOMAP Combined
(m) Weighted Kamada-Kawai (n) Kamada-Kawai MDS Init. (o) MDS classic
(p) Kamada-Kawai (q) ISOM
Figure B.8:Phone Calls dataset: node similarity preservation. X axis: attribute space distance, Y axis: layout space distance. Red dots: adjacent vertices, gray dots: all vertex pairs. Red and gray lines are smooth interpolations.
17
B.4.5 General Distance Preservation: Amazon Dataset
(a) MEU Original (b) MEU Adjacency (c) MEU Graph Path (d) MEU Combined
(e) LLE Original (f) LLE Adjacency (g) LLE Graph Path (h) LLE Combined
(i) ISOMAP Original (j) ISOMAP Adjacency (k) ISOMAP Graph Path (l) ISOMAP Combined
(m) Weighted Kamada-Kawai (n) Kamada-Kawai MDS Init. (o) MDS classic
(p) Kamada-Kawai (q) ISOM
Figure B.9:Amazondataset: node similarity preservation. X axis: attribute space distance, Y axis: layout space distance. Red dots:
adjacent vertices, gray dots: all vertex pairs. Red and gray lines are smooth interpolations.
18
B.4.6 General Distance Preservation: Patents Dataset
(a) MEU Original (b) MEU Adjacency (c) MEU Graph Path (d) MEU Combined
(e) LLE Original (f) LLE Adjacency (g) LLE Graph Path (h) LLE Combined
(i) ISOMAP Original (j) ISOMAP Adjacency (k) ISOMAP Graph Path (l) ISOMAP Combined
(m) Weighted Kamada-Kawai (n) Kamada-Kawai MDS Init. (o) MDS classic
(p) Kamada-Kawai (q) ISOM
Figure B.10:Patents dataset: node similarity preservation. X axis: attribute space distance, Y axis: layout space distance. Red dots:
adjacent vertices, gray dots: all vertex pairs. Red and gray lines are smooth interpolations.
19
B.5 Graph Aesthetics versus Projection Quality Edge Crossing versus Projection Precision
MO MG
LO LC MDS
MC
IAISOM KKM
IO
IC
WKK
MA LG
LA IG
KK
0 10 20 30 40 50 60 70
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7
Regulation
MO
MG LO
LC
MDS MC
ISOM KKMIA IO
IC
WKK
MA LG
LA
IG KK 0
50 100 150 200 250
0 0,1 0,2 0,3 0,4 0,5
Households
MO
MG LOLC
MDSMC
IA ISOM KKM
IO
IC WKK
MA LG
LA
IG 0 KK
500 1000 1500 2000 2500 3000
0 5 10 15 20
Documents
MO
MG
LO LC
MDS
MC IA ISOM KKM
IC WKK
MA LG
LA IG
KK 0
20000 40000 60000 80000 100000 120000
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9
Phone Calls
MO
MG LO
LC MDS
MC
IA
ISOM KKM
IO
IC
WKK
MA LG
LA IG
KK 0
500 1000 1500 2000 2500 3000 3500 4000 4500
0 0,2 0,4 0,6 0,8 1
Amazon
MO
MG LO
MDSLC MC
IAISOM KKM IO IC WKK
MA LG
LA IG
KK 0
500 1000 1500 2000 2500 3000 3500 4000 4500
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8
Patents
Figure B.11: Edge Crossing versus Projection Precision
ISOM Kamada-Kawai
Weighted KK KK MDS Init. MDS classic
MEU Original MEU Adjacency MEU Graph Path MEU Combined
LLE Original LLE Adjacency LLE Graph Path LLE Combined
ISOMAP Original ISOMAP Adjacency ISOMAP Graph Path ISOMAP Combined
20
Edge Crossing versus Mean relative rank errors
MO MG LO
LC MDS
MC
IA ISOM
KKM IO
IC WKK
MA LG
LA IG
KK
0 10 20 30 40 50 60 70
0 0,1 0,2 0,3 0,4 0,5 0,6
Regulation
MO
MG LO MDSLC
MC
ISOMIA KKM
IO IC
WKK
MA LG
LA
IG
KK 0
50 100 150 200 250
0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45
Households
MO
MG LCLO
MDS MC
ISOM IA KKM IO
IC WKK
MA LG
LA
IG 0 KK
500 1000 1500 2000 2500 3000
0 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09
Documents
MO
MG LO LC
MDS
MC IA
ISOM KKM
IC WKK
MA LG
LA IG
KK 0
20000 40000 60000 80000 100000 120000
0 0,005 0,01 0,015 0,02 0,025 0,03 0,035
Phone Calls
MO
MG LO
LC MDS
MC
IA
ISOM KKM IO
IC WKK
MA LG
LA IG
KK 0
500 1000 1500 2000 2500 3000 3500 4000 4500
0 0,02 0,04 0,06 0,08 0,1
Amazon
MO
MG LO
MDS LC MC
IA ISOM KKM
IO IC
WKK
MA LG
LA IG
KK 0
500 1000 1500 2000 2500 3000 3500 4000 4500
0 0,02 0,04 0,06 0,08 0,1 0,12
Patents
Figure B.12: Edge Crossing versus Mean relative rank errors
ISOM Kamada-Kawai
Weighted KK KK MDS Init. MDS classic
MEU Original MEU Adjacency MEU Graph Path MEU Combined
LLE Original LLE Adjacency LLE Graph Path LLE Combined
ISOMAP Original ISOMAP Adjacency ISOMAP Graph Path ISOMAP Combined
21
Layout Energy versus Projection precision
MO MG
LC LO MDS
MC
IA
ISOM KKM
IO
IC WKK
MA
LG LA IG
KK
0 1 2 3 4 5 6
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7
Regulation
MG MO
LO LC
MDS
MC
IA ISOM
KKM ICIO
WKK
MA LG
LA
IG KK
0 0,5 1 1,5 2 2,5 3 3,5 4
0 0,1 0,2 0,3 0,4 0,5
Households
MO MG
LO LC MDS
MC
IA ISOM KKM IO IC
WKK
LG MA
LA
IG
KK
0 2 4 6 8 10 12 14 16 18
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8
Documents
MO MG
LO LC
MDS
MC IA ISOM KKM
IO IC
WKK LG MA
LA
IG
KK
0 100 200 300 400 500 600 700
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9
Phone Calls
MO
MG
LO
LC MDS
MC
IA
ISOM KKM
IO
IC WKK
MA
LG LA
IG KK
0 20 40 60 80 100 120
0 0,2 0,4 0,6 0,8 1
Amazon
MO
MG LO
MDS LC
MC
IA ISOM KKM IO IC
WKK
MA
LG LA
IG KK
0 10 20 30 40 50 60 70 80 90
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8
Patents
Figure B.13: Layout Energy versus Projection precision
ISOM Kamada-Kawai
Weighted KK KK MDS Init. MDS classic
MEU Original MEU Adjacency MEU Graph Path MEU Combined
LLE Original LLE Adjacency LLE Graph Path LLE Combined
ISOMAP Original ISOMAP Adjacency ISOMAP Graph Path ISOMAP Combined
22
Layout Energy versus Mean relative rank errors
MO MG
LO LC
MDS
MC
IA
ISOM KKM
IO
IC WKK
MA
LG LA
IG
KK
0 1 2 3 4 5 6
0 0,1 0,2 0,3 0,4 0,5 0,6
Regulation
MO MG
LO LC
MDS MC
IA ISOM
KKM ICIO
WKK
MA LG
LA
IG KK
0 0,5 1 1,5 2 2,5 3 3,5 4
0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45
Households
MO MG
LO LC
MDS MC
IA KKM ISOM IO IC
WKK
LG MA
LA
IG
KK
0 2 4 6 8 10 12 14 16 18
0 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09
Documents
MO MG
LO LC
MDS
IA MC ISOM KKM
IO
IC WKK
LG MA
LA
IG
KK
0 100 200 300 400 500 600 700
0 0,005 0,01 0,015 0,02 0,025 0,03 0,035
Phone Calls
MO
MG
LO
LC MDS
MC
IA
KKM ISOM
IC IO WKK
MA
LG LA
IG KK
0 20 40 60 80 100 120
0 0,02 0,04 0,06 0,08 0,1
Amazon
MO MG
LO
LC MDS
MC
IA KKMISOM
IO ICWKK
MA
LG LA
IG
KK
0 10 20 30 40 50 60 70 80 90
0 0,02 0,04 0,06 0,08 0,1 0,12
Patents
Figure B.14: Layout Energy versus Mean relative rank errors
ISOM Kamada-Kawai
Weighted KK KK MDS Init. MDS classic
MEU Original MEU Adjacency MEU Graph Path MEU Combined
LLE Original LLE Adjacency LLE Graph Path LLE Combined
ISOMAP Original ISOMAP Adjacency ISOMAP Graph Path ISOMAP Combined
23
Appendix C
Impact of Varying Neighborhood Sizes
24
(a) MEU combined, 3 neighbors (b) LLE combined, 3 neighbors (c) ISOMAP combined, 3 neighbors
(d) MEU combined, 4 neighbors (e) LLE combined, 4 neighbors (f) ISOMAP combined, 4 neighbors
(g) MEU combined, 5 neighbors (h) LLE combined, 5 neighbors (i) ISOMAP combined, 5 neighbors
(j) MEU combined, 6 neighbors (k) LLE combined, 6 neighbors (l) ISOMAP combined, 6 neighbors
(m) MEU combined, 10 neighbors (n) LLE combined, 10 neighbors (o) ISOMAP combined, 10 neighbors Figure C.1: Renderings of theDocuments dataset (combined)
25
(a) MEU original, 3 neighbors (b) LLE original, 3 neighbors (c) ISOMAP original, 3 neighbors
(d) MEU original, 4 neighbors (e) LLE original, 4 neighbors (f) ISOMAP original, 4 neighbors
(g) MEU original, 5 neighbors (h) LLE original, 5 neighbors (i) ISOMAP original, 5 neighbors
(j) MEU original, 6 neighbors (k) LLE original, 6 neighbors (l) ISOMAP original, 6 neighbors
(m) MEU original, 10 neighbors (n) LLE original, 10 neighbors (o) ISOMAP original, 10 neighbors Figure C.2: Renderings of theDocuments dataset (original)
26
Appendix D
Interactive Exploration of Graph Connectivity and Node Similarity
27
(a) Kamada-Kawai Pick 1 (b) ISOMAP Pick 1 (c) MDS Pick 1
(d) Kamada-Kawai Pick 2 (e) ISOMAP Pick 2 (f) MDS Pick 2
(g) Kamada-Kawai Pick 3 (h) ISOMAP Pick 3 (i) MDS Pick 3
(j) Kamada-Kawai Pick 4 (k) ISOMAP Pick 4 (l) MDS Pick 4
(m) Kamada-Kawai Pick 5 (n) ISOMAP Pick 5 (o) MDS Pick 5
Figure D.1: Feature Picks on theDocumentsdataset. Red vertex: picked vertex, Orange vertices: nearest neighbors to picked vertex (attribute-based euclidean distance).
28
(a) Kamada-Kawai Pick 1 (b) ISOMAP Pick 1 (c) MDS Pick 1
(d) Kamada-Kawai Pick 2 (e) ISOMAP Pick 2 (f) MDS Pick 2
(g) Kamada-Kawai Pick 3 (h) ISOMAP Pick 3 (i) MDS Pick 3
(j) Kamada-Kawai Pick 4 (k) ISOMAP Pick 4 (l) MDS Pick 4
(m) Kamada-Kawai Pick 5 (n) ISOMAP Pick 5 (o) MDS Pick 5
Figure D.2: Neighbor Picks on theDocumentsdataset. Red vertex: picked vertex, Orange vertices: adjacent vertices to picked vertex, Red edges: edges connecting picked vertex and its neighbors.
29