• No results found

On the Suitability of Connectivity- Extended Local Embedding for Drawing Multivariate Graphs: An Evaluation - Appendix

N/A
N/A
Protected

Academic year: 2022

Share "On the Suitability of Connectivity- Extended Local Embedding for Drawing Multivariate Graphs: An Evaluation - Appendix"

Copied!
29
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

On the Suitability of Connectivity-

Extended Local Embedding for Drawing Multivariate Graphs: An Evaluation

- Appendix

Appendix A Graph Visualizations 2

Appendix B Quantitative Results 9

B.1 Graph Aesthetics: Edge Crossings . . . 10

B.2 Graph Aesthetics: Even Edge Distribution . . . 11

B.3 Graph Aesthetics: Layout Energy . . . 12

B.3.1 Global Layout Energy . . . 12

B.3.2 Local Layout Energy Variance . . . 13

B.4 Similarity Representation: General Distance Preservation . . . 14

B.4.1 General Distance Preservation: Regulation Dataset . . . 14

B.4.2 General Distance Preservation: Households Dataset . . . 15

B.4.3 General Distance Preservation: Documents Dataset . . . 16

B.4.4 General Distance Preservation: Phone Calls Dataset . . . 17

B.4.5 General Distance Preservation: Amazon Dataset . . . 18

B.4.6 General Distance Preservation: Patents Dataset . . . 19

B.5 Graph Aesthetics versus Projection Quality . . . 20

Appendix C Impact of Varying Neighborhood Sizes 24

Appendix D Interactive Exploration of Graph Connectivity and Node Similarity 27

1

(2)

Appendix A

Graph Visualizations

2

(3)

(a) MEU Original (b) MEU Adjacency (c) MEU Graph Path (d) MEU Combined

(e) LLE Original (f) LLE Adjacency (g) LLE Graph Path (h) LLE Combined

(i) ISOMAP Original (j) ISOMAP Adjacency (k) ISOMAP Graph Path (l) ISOMAP Combined

(m) Weighted Kamada-Kawai (n) Kamada-Kawai MDS Init. (o) MDS classic

(p) Kamada-Kawai (q) ISOM

Figure A.1: Renderings of the extitRegulation dataset 3

(4)

(a) MEU Original (b) MEU Adjacency (c) MEU Graph Path (d) MEU Combined

(e) LLE Original (f) LLE Adjacency (g) LLE Graph Path (h) LLE Combined

(i) ISOMAP Original (j) ISOMAP Adjacency (k) ISOMAP Graph Path (l) ISOMAP Combined

(m) Weighted Kamada-Kawai (n) Kamada-Kawai MDS Init. (o) MDS classic

(p) Kamada-Kawai (q) ISOM

Figure A.2: Renderings of the extitHouseholds dataset 4

(5)

(a) MEU Original (b) MEU Adjacency (c) MEU Graph Path (d) MEU Combined

(e) LLE Original (f) LLE Adjacency (g) LLE Graph Path (h) LLE Combined

(i) ISOMAP Original (j) ISOMAP Adjacency (k) ISOMAP Graph Path (l) ISOMAP Combined

(m) Weighted Kamada-Kawai (n) Kamada-Kawai MDS Init. (o) MDS classic

(p) Kamada-Kawai (q) ISOM

Figure A.3: Renderings of the extitDocuments dataset 5

(6)

(a) MEU Original (b) MEU Adjacency (c) MEU Graph Path (d) MEU Combined

(e) LLE Original (f) LLE Adjacency (g) LLE Graph Path (h) LLE Combined

(i) ISOMAP Original (j) ISOMAP Adjacency (k) ISOMAP Graph Path (l) ISOMAP Combined

(m) Weighted Kamada-Kawai (n) Kamada-Kawai MDS Init. (o) MDS classic

(p) Kamada-Kawai (q) ISOM

Figure A.4: Renderings of the extitPhone Calls dataset 6

(7)

(a) MEU Original (b) MEU Adjacency (c) MEU Graph Path (d) MEU Combined

(e) LLE Original (f) LLE Adjacency (g) LLE Graph Path (h) LLE Combined

(i) ISOMAP Original (j) ISOMAP Adjacency (k) ISOMAP Graph Path (l) ISOMAP Combined

(m) Weighted Kamada-Kawai (n) Kamada-Kawai MDS Init. (o) MDS classic

(p) Kamada-Kawai (q) ISOM

Figure A.5: Renderings of the extitAmazon dataset 7

(8)

(a) MEU Original (b) MEU Adjacency (c) MEU Graph Path (d) MEU Combined

(e) LLE Original (f) LLE Adjacency (g) LLE Graph Path (h) LLE Combined

(i) ISOMAP Original (j) ISOMAP Adjacency (k) ISOMAP Graph Path (l) ISOMAP Combined

(m) Weighted Kamada-Kawai (n) Kamada-Kawai MDS Init. (o) MDS classic

(p) Kamada-Kawai (q) ISOM

Figure A.6: Renderings of the extitPatents dataset 8

(9)

Appendix B

Quantitative Results

9

(10)

B.1 Graph Aesthetics: Edge Crossings

(a)Regulation (b)Households

(c)Documents (d)Phone Calls

(e)Amazon (f)Patents

Figure B.1: Edge Crossings

ISOM Kamada-Kawai

Weighted KK KK MDS Init. MDS classic

MEU Original MEU Adjacency MEU Graph Path MEU Combined

LLE Original LLE Adjacency LLE Graph Path LLE Combined

ISOMAP Original ISOMAP Adjacency ISOMAP Graph Path ISOMAP Combined

10

(11)

B.2 Graph Aesthetics: Even Edge Distribution

(a)Regulation (b)Households

(c)Documents (d)Phone Calls

(e)Amazon (f)Patents

Figure B.2: Even Edge Distribution

ISOM Kamada-Kawai

Weighted KK KK MDS Init. MDS classic

MEU Original MEU Adjacency MEU Graph Path MEU Combined

LLE Original LLE Adjacency LLE Graph Path LLE Combined

ISOMAP Original ISOMAP Adjacency ISOMAP Graph Path ISOMAP Combined

11

(12)

B.3 Graph Aesthetics: Layout Energy

B.3.1 Global Layout Energy

(a)Regulation (b)Households

(c)Documents (d)Phone Calls

(e)Amazon (f)Patents

Figure B.3: Global Layout Energy

ISOM Kamada-Kawai

Weighted KK KK MDS Init. MDS classic

MEU Original MEU Adjacency MEU Graph Path MEU Combined

LLE Original LLE Adjacency LLE Graph Path LLE Combined

ISOMAP Original ISOMAP Adjacency ISOMAP Graph Path ISOMAP Combined

12

(13)

B.3.2 Local Layout Energy Variance

(a)Regulation (b)Households

(c)Documents (d)Phone Calls

(e)Amazon (f)Patents

Figure B.4: Local Layout Energy Variance

ISOM Kamada-Kawai

Weighted KK KK MDS Init. MDS classic

MEU Original MEU Adjacency MEU Graph Path MEU Combined

LLE Original LLE Adjacency LLE Graph Path LLE Combined

ISOMAP Original ISOMAP Adjacency ISOMAP Graph Path ISOMAP Combined

13

(14)

B.4 Similarity Representation: General Distance Preservation

B.4.1 General Distance Preservation: Regulation Dataset

(a) MEU Original (b) MEU Adjacency (c) MEU Graph Path (d) MEU Combined

(e) LLE Original (f) LLE Adjacency (g) LLE Graph Path (h) LLE Combined

(i) ISOMAP Original (j) ISOMAP Adjacency (k) ISOMAP Graph Path (l) ISOMAP Combined

(m) Weighted Kamada-Kawai (n) Kamada-Kawai MDS Init. (o) MDS classic

(p) Kamada-Kawai (q) ISOM

Figure B.5:Regulation dataset: node similarity preservation. X axis: attribute space distance, Y axis: layout space distance. Red dots: adjacent vertices, gray dots: all vertex pairs. Red and gray lines are smooth interpolations.

14

(15)

B.4.2 General Distance Preservation: Households Dataset

(a) MEU Original (b) MEU Adjacency (c) MEU Graph Path (d) MEU Combined

(e) LLE Original (f) LLE Adjacency (g) LLE Graph Path (h) LLE Combined

(i) ISOMAP Original (j) ISOMAP Adjacency (k) ISOMAP Graph Path (l) ISOMAP Combined

(m) Weighted Kamada-Kawai (n) Kamada-Kawai MDS Init. (o) MDS classic

(p) Kamada-Kawai (q) ISOM

Figure B.6:Households dataset: node similarity preservation. X axis: attribute space distance, Y axis: layout space distance. Red dots: adjacent vertices, gray dots: all vertex pairs. Red and gray lines are smooth interpolations.

15

(16)

B.4.3 General Distance Preservation: Documents Dataset

(a) MEU Original (b) MEU Adjacency (c) MEU Graph Path (d) MEU Combined

(e) LLE Original (f) LLE Adjacency (g) LLE Graph Path (h) LLE Combined

(i) ISOMAP Original (j) ISOMAP Adjacency (k) ISOMAP Graph Path (l) ISOMAP Combined

(m) Weighted Kamada-Kawai (n) Kamada-Kawai MDS Init. (o) MDS classic

(p) Kamada-Kawai (q) ISOM

Figure B.7:Documents dataset: node similarity preservation. X axis: attribute space distance, Y axis: layout space distance. Red dots: adjacent vertices, gray dots: all vertex pairs. Red and gray lines are smooth interpolations.

16

(17)

B.4.4 General Distance Preservation: Phone Calls Dataset

(a) MEU Original (b) MEU Adjacency (c) MEU Graph Path (d) MEU Combined

(e) LLE Original (f) LLE Adjacency (g) LLE Graph Path (h) LLE Combined

(i) ISOMAP Original (j) ISOMAP Adjacency (k) ISOMAP Graph Path (l) ISOMAP Combined

(m) Weighted Kamada-Kawai (n) Kamada-Kawai MDS Init. (o) MDS classic

(p) Kamada-Kawai (q) ISOM

Figure B.8:Phone Calls dataset: node similarity preservation. X axis: attribute space distance, Y axis: layout space distance. Red dots: adjacent vertices, gray dots: all vertex pairs. Red and gray lines are smooth interpolations.

17

(18)

B.4.5 General Distance Preservation: Amazon Dataset

(a) MEU Original (b) MEU Adjacency (c) MEU Graph Path (d) MEU Combined

(e) LLE Original (f) LLE Adjacency (g) LLE Graph Path (h) LLE Combined

(i) ISOMAP Original (j) ISOMAP Adjacency (k) ISOMAP Graph Path (l) ISOMAP Combined

(m) Weighted Kamada-Kawai (n) Kamada-Kawai MDS Init. (o) MDS classic

(p) Kamada-Kawai (q) ISOM

Figure B.9:Amazondataset: node similarity preservation. X axis: attribute space distance, Y axis: layout space distance. Red dots:

adjacent vertices, gray dots: all vertex pairs. Red and gray lines are smooth interpolations.

18

(19)

B.4.6 General Distance Preservation: Patents Dataset

(a) MEU Original (b) MEU Adjacency (c) MEU Graph Path (d) MEU Combined

(e) LLE Original (f) LLE Adjacency (g) LLE Graph Path (h) LLE Combined

(i) ISOMAP Original (j) ISOMAP Adjacency (k) ISOMAP Graph Path (l) ISOMAP Combined

(m) Weighted Kamada-Kawai (n) Kamada-Kawai MDS Init. (o) MDS classic

(p) Kamada-Kawai (q) ISOM

Figure B.10:Patents dataset: node similarity preservation. X axis: attribute space distance, Y axis: layout space distance. Red dots:

adjacent vertices, gray dots: all vertex pairs. Red and gray lines are smooth interpolations.

19

(20)

B.5 Graph Aesthetics versus Projection Quality Edge Crossing versus Projection Precision

MO MG

LO LC MDS

MC

IAISOM KKM

IO

IC

WKK

MA LG

LA IG

KK

0 10 20 30 40 50 60 70

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

Regulation

MO

MG LO

LC

MDS MC

ISOM KKMIA IO

IC

WKK

MA LG

LA

IG KK 0

50 100 150 200 250

0 0,1 0,2 0,3 0,4 0,5

Households

MO

MG LOLC

MDSMC

IA ISOM KKM

IO

IC WKK

MA LG

LA

IG 0 KK

500 1000 1500 2000 2500 3000

0 5 10 15 20

Documents

MO

MG

LO LC

MDS

MC IA ISOM KKM

IC WKK

MA LG

LA IG

KK 0

20000 40000 60000 80000 100000 120000

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Phone Calls

MO

MG LO

LC MDS

MC

IA

ISOM KKM

IO

IC

WKK

MA LG

LA IG

KK 0

500 1000 1500 2000 2500 3000 3500 4000 4500

0 0,2 0,4 0,6 0,8 1

Amazon

MO

MG LO

MDSLC MC

IAISOM KKM IO IC WKK

MA LG

LA IG

KK 0

500 1000 1500 2000 2500 3000 3500 4000 4500

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

Patents

Figure B.11: Edge Crossing versus Projection Precision

ISOM Kamada-Kawai

Weighted KK KK MDS Init. MDS classic

MEU Original MEU Adjacency MEU Graph Path MEU Combined

LLE Original LLE Adjacency LLE Graph Path LLE Combined

ISOMAP Original ISOMAP Adjacency ISOMAP Graph Path ISOMAP Combined

20

(21)

Edge Crossing versus Mean relative rank errors

MO MG LO

LC MDS

MC

IA ISOM

KKM IO

IC WKK

MA LG

LA IG

KK

0 10 20 30 40 50 60 70

0 0,1 0,2 0,3 0,4 0,5 0,6

Regulation

MO

MG LO MDSLC

MC

ISOMIA KKM

IO IC

WKK

MA LG

LA

IG

KK 0

50 100 150 200 250

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45

Households

MO

MG LCLO

MDS MC

ISOM IA KKM IO

IC WKK

MA LG

LA

IG 0 KK

500 1000 1500 2000 2500 3000

0 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09

Documents

MO

MG LO LC

MDS

MC IA

ISOM KKM

IC WKK

MA LG

LA IG

KK 0

20000 40000 60000 80000 100000 120000

0 0,005 0,01 0,015 0,02 0,025 0,03 0,035

Phone Calls

MO

MG LO

LC MDS

MC

IA

ISOM KKM IO

IC WKK

MA LG

LA IG

KK 0

500 1000 1500 2000 2500 3000 3500 4000 4500

0 0,02 0,04 0,06 0,08 0,1

Amazon

MO

MG LO

MDS LC MC

IA ISOM KKM

IO IC

WKK

MA LG

LA IG

KK 0

500 1000 1500 2000 2500 3000 3500 4000 4500

0 0,02 0,04 0,06 0,08 0,1 0,12

Patents

Figure B.12: Edge Crossing versus Mean relative rank errors

ISOM Kamada-Kawai

Weighted KK KK MDS Init. MDS classic

MEU Original MEU Adjacency MEU Graph Path MEU Combined

LLE Original LLE Adjacency LLE Graph Path LLE Combined

ISOMAP Original ISOMAP Adjacency ISOMAP Graph Path ISOMAP Combined

21

(22)

Layout Energy versus Projection precision

MO MG

LC LO MDS

MC

IA

ISOM KKM

IO

IC WKK

MA

LG LA IG

KK

0 1 2 3 4 5 6

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

Regulation

MG MO

LO LC

MDS

MC

IA ISOM

KKM ICIO

WKK

MA LG

LA

IG KK

0 0,5 1 1,5 2 2,5 3 3,5 4

0 0,1 0,2 0,3 0,4 0,5

Households

MO MG

LO LC MDS

MC

IA ISOM KKM IO IC

WKK

LG MA

LA

IG

KK

0 2 4 6 8 10 12 14 16 18

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

Documents

MO MG

LO LC

MDS

MC IA ISOM KKM

IO IC

WKK LG MA

LA

IG

KK

0 100 200 300 400 500 600 700

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Phone Calls

MO

MG

LO

LC MDS

MC

IA

ISOM KKM

IO

IC WKK

MA

LG LA

IG KK

0 20 40 60 80 100 120

0 0,2 0,4 0,6 0,8 1

Amazon

MO

MG LO

MDS LC

MC

IA ISOM KKM IO IC

WKK

MA

LG LA

IG KK

0 10 20 30 40 50 60 70 80 90

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

Patents

Figure B.13: Layout Energy versus Projection precision

ISOM Kamada-Kawai

Weighted KK KK MDS Init. MDS classic

MEU Original MEU Adjacency MEU Graph Path MEU Combined

LLE Original LLE Adjacency LLE Graph Path LLE Combined

ISOMAP Original ISOMAP Adjacency ISOMAP Graph Path ISOMAP Combined

22

(23)

Layout Energy versus Mean relative rank errors

MO MG

LO LC

MDS

MC

IA

ISOM KKM

IO

IC WKK

MA

LG LA

IG

KK

0 1 2 3 4 5 6

0 0,1 0,2 0,3 0,4 0,5 0,6

Regulation

MO MG

LO LC

MDS MC

IA ISOM

KKM ICIO

WKK

MA LG

LA

IG KK

0 0,5 1 1,5 2 2,5 3 3,5 4

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45

Households

MO MG

LO LC

MDS MC

IA KKM ISOM IO IC

WKK

LG MA

LA

IG

KK

0 2 4 6 8 10 12 14 16 18

0 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09

Documents

MO MG

LO LC

MDS

IA MC ISOM KKM

IO

IC WKK

LG MA

LA

IG

KK

0 100 200 300 400 500 600 700

0 0,005 0,01 0,015 0,02 0,025 0,03 0,035

Phone Calls

MO

MG

LO

LC MDS

MC

IA

KKM ISOM

IC IO WKK

MA

LG LA

IG KK

0 20 40 60 80 100 120

0 0,02 0,04 0,06 0,08 0,1

Amazon

MO MG

LO

LC MDS

MC

IA KKMISOM

IO ICWKK

MA

LG LA

IG

KK

0 10 20 30 40 50 60 70 80 90

0 0,02 0,04 0,06 0,08 0,1 0,12

Patents

Figure B.14: Layout Energy versus Mean relative rank errors

ISOM Kamada-Kawai

Weighted KK KK MDS Init. MDS classic

MEU Original MEU Adjacency MEU Graph Path MEU Combined

LLE Original LLE Adjacency LLE Graph Path LLE Combined

ISOMAP Original ISOMAP Adjacency ISOMAP Graph Path ISOMAP Combined

23

(24)

Appendix C

Impact of Varying Neighborhood Sizes

24

(25)

(a) MEU combined, 3 neighbors (b) LLE combined, 3 neighbors (c) ISOMAP combined, 3 neighbors

(d) MEU combined, 4 neighbors (e) LLE combined, 4 neighbors (f) ISOMAP combined, 4 neighbors

(g) MEU combined, 5 neighbors (h) LLE combined, 5 neighbors (i) ISOMAP combined, 5 neighbors

(j) MEU combined, 6 neighbors (k) LLE combined, 6 neighbors (l) ISOMAP combined, 6 neighbors

(m) MEU combined, 10 neighbors (n) LLE combined, 10 neighbors (o) ISOMAP combined, 10 neighbors Figure C.1: Renderings of theDocuments dataset (combined)

25

(26)

(a) MEU original, 3 neighbors (b) LLE original, 3 neighbors (c) ISOMAP original, 3 neighbors

(d) MEU original, 4 neighbors (e) LLE original, 4 neighbors (f) ISOMAP original, 4 neighbors

(g) MEU original, 5 neighbors (h) LLE original, 5 neighbors (i) ISOMAP original, 5 neighbors

(j) MEU original, 6 neighbors (k) LLE original, 6 neighbors (l) ISOMAP original, 6 neighbors

(m) MEU original, 10 neighbors (n) LLE original, 10 neighbors (o) ISOMAP original, 10 neighbors Figure C.2: Renderings of theDocuments dataset (original)

26

(27)

Appendix D

Interactive Exploration of Graph Connectivity and Node Similarity

27

(28)

(a) Kamada-Kawai Pick 1 (b) ISOMAP Pick 1 (c) MDS Pick 1

(d) Kamada-Kawai Pick 2 (e) ISOMAP Pick 2 (f) MDS Pick 2

(g) Kamada-Kawai Pick 3 (h) ISOMAP Pick 3 (i) MDS Pick 3

(j) Kamada-Kawai Pick 4 (k) ISOMAP Pick 4 (l) MDS Pick 4

(m) Kamada-Kawai Pick 5 (n) ISOMAP Pick 5 (o) MDS Pick 5

Figure D.1: Feature Picks on theDocumentsdataset. Red vertex: picked vertex, Orange vertices: nearest neighbors to picked vertex (attribute-based euclidean distance).

28

(29)

(a) Kamada-Kawai Pick 1 (b) ISOMAP Pick 1 (c) MDS Pick 1

(d) Kamada-Kawai Pick 2 (e) ISOMAP Pick 2 (f) MDS Pick 2

(g) Kamada-Kawai Pick 3 (h) ISOMAP Pick 3 (i) MDS Pick 3

(j) Kamada-Kawai Pick 4 (k) ISOMAP Pick 4 (l) MDS Pick 4

(m) Kamada-Kawai Pick 5 (n) ISOMAP Pick 5 (o) MDS Pick 5

Figure D.2: Neighbor Picks on theDocumentsdataset. Red vertex: picked vertex, Orange vertices: adjacent vertices to picked vertex, Red edges: edges connecting picked vertex and its neighbors.

29

Referanser

RELATERTE DOKUMENTER

With the approach, an in-between mesh contains only the vertices from the input meshes and so the in-between vertex count does not exceed the sum of source and target vertex

The refinement pro- ceeds by subjecting NLD edges to an edge split, which inserts a new vertex along an original edge of the input mesh and con- nects the newly inserted vertex with

Then an energy is minimized under the constraint, so that each vertex of the surface mesh remains within the eight vox- els adjacent to the initial position of the vertex.. Since

For each initial vertex of the mesh, generate a new vertex point that is a weighted interpolation of the average F of all i face points touching the vertex with the

Connectivity Data Structure Vertex Quadrics Quadric Error Optimization Parallel Edge Collapses Connectivity Update Edge Buffer Compaction LOD Creation. Figure 6: Relative time of

Vertex-Adjacencies Table: maps a cell case and a particu- lar cell vertex to a set of tuples (V zyx , e) identifying the adjacent vertices with V zyx the offset to the adjacent cell

It extends local dimension reduction techniques (esp. LLE, MEU, or ISOMAP) with graph connectivity information encoded in techniques’ local neighborhood function1. We evaluate

A bad boundary vertex is a (non-deleted) boundary vertex such that at least one of the following conditions is satisfied: a) the valence of the vertex is equal to 2; b) there exist