• No results found

Chromogenic in situ hybridization of topoisomerase 2 alpha in HER2 positive breast cancer ; a more specific probe

N/A
N/A
Protected

Academic year: 2022

Share "Chromogenic in situ hybridization of topoisomerase 2 alpha in HER2 positive breast cancer ; a more specific probe"

Copied!
19
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

Chromogenic  in  situ  hybridization  of  topoisomerase  2  alpha  in  HER2   positive  breast  cancer  –  a  more  specific  probe  

Stian  Wendelborg  

Medical  Student,  University  of  Oslo    

Abstract  

Anthracycline-­‐based  treatment  for  HER2-­‐positive  breast  cancer  is  associated  with   serious  side  effects.  The  topoisomerase  II  alpha  protein  is  the  mechanical  target  of   anthracyclines,  but  its  role  as  a  biomarker  has  yet  to  be  established.    Amplification  of   TOP2A  is  reported  in  24-­‐54%  of  HER2  positive  tumours.  Co-­‐amplification  has  been   proposed  as  one  explanation  due  to  the  close  proximity  of  the  two  genes,  but  it  is  also   possible  that  the  TOP2A  DNA  probes  are  too  large,  giving  false  positives.  Chromosome   17  anomalies  have  also  been  suggested.  In  this  study,  we  use  new,  smaller  DNA  probes   for  in  situ  hybridization  in  153  HER2-­‐positive  tumours.    33%  were  TOP2A-­‐amplified,   and  we  found  only  three  cases  of  CEP17  anomaly  (deletions).  A  smaller  DNA  probe  is   less  likely  to  overlap  with  adjacent  regions,  and  as  such  is  more  specific.  The  incidence   of  TOP2A  amplification  in  our  material  was  consistent  with  current  research,  indicating   that  DNA  probe  overlap  cannot  explain  the  amplification  of  TOP2A  seen  in  HER2-­‐

positive  tumours.  

 

Introduction  

Breast  cancer  patients  with  HER2-­‐amplified  tumours  are  usually  treated  with  

anthracycline-­‐based  chemotherapy.  Such  therapy  is  associated  with  serious  negative   side  effects  such  as  cardiotoxicity  (1),  acute  leukemia  and  myelodysplasia  (2).  Targeting   the  right  sub-­‐group  of  patients  has  been  the  topic  of  much  discussion.  This  is  partly   because  anthracyclines  are  inhibitors  of  DNA  topoisomerase,  a  cleavage-­‐  and  re-­‐ligation   enzyme,  and  not  HER2  itself.    

 

(2)

HER2  

HER2  (human  endothelial  growth  factor  receptor  2)  is  a  receptor  tyrosine  kinase  (RTK)   whose  gene  is  amplified  in  15-­‐45%  of  invasive  breast  cancers  (3-­‐13).  In  our  institution,   an  average  of  11  %  of  breast  cancers  are  HER-­‐2  positive  (unpublished  results).  An   oncogene,  located  on  the  long  arm  of  chromosome  17  (17q11.2-­‐12),  it  encodes  a  

transmembrane  glycoprotein  of  185  kD.    The  RTKs  are  a  family  of  receptors  involved  in   essential  cellular  processes  like  metabolism,  migration,  differentiation,  proliferation,   survival  and  intercellular  communication  during  development  (14).  

TOP2A  

Topoisomerase  II  alpha  (TOP2A),  located  on  chromosome  17q12-­‐21  (15),  encodes  an   ATP-­‐dependent  enzyme  crucial  in  DNA  replication.  The  170  kD  protein  cleaves  double-­‐

stranded  DNA,  releasing  the  torsional  stress  of  supercoiling  during  replication  by  letting   another  DNA-­‐duplex  pass  through  the  break,  and  subsequently  religating  the  cleavage   site.  Disturbance  of  the  activity  of  topoisomerase  II  alpha  leads  to  breaks  in  double   stranded  DNA,    and  to  cell  death  (16).  

Recent  studies  indicate  that  there  may  be  less  co-­‐amplification  of  HER2  and  TOP2A  than   previously  assumed,  and  that  the  over-­‐expression  of  TOP2A  in  HER2-­‐positive  breast   cancers  may  in  part  stem  from  probes  containing  the  DNA  sequences  of  both  genes,  and   in  part  from  polysomy  of  chromosome  17  (17,18).  

The  aim  of  this  study  was  to  validate  the  presumed  increased  specificity  of  a  new,   shorter  DNA  probe  for  TOP2A,  using  silver  in  situ  hybridization  (SISH).  

 

Materials  and  methods  

The  pathology  department  files  were  searched  for  HER2-­‐positive  breast  carcinomas   dating  from  2005  until  the  first  6  months  of  2011.  HER2-­‐positive  cases  were  

immunohistochemically  (IHC)  2+/3+  positive  and/or  amplified  by  in  situ  hybridisation.  

In  situ  hybridisation  was  done  either  as  FISH  (fluorescent  in  situ  hybridisation)  or  as   SISH.  Amplification  is  defined  as  a  minimum  HER2-­‐gene  to  CEP17  ratio  larger  than  2,0   as  according  to  the  Food  and  Drug  Administration  (19).    

(3)

A  total  of  265  cases  were  found.    73  were  omitted  due  to  sub-­‐optimal  tumour  material,   missing  paraffin  embedded  sections  or  failure  to  meet  the  HER2  positivity  criteria.  39   were  omitted  due  to  time  constraints.  153  cases  were  included  in  this  study.  

Data  concerning  subtype,  grading,  pTNM-­‐staging,  tumour  size,  estrogen-­‐  and  

progesterone  receptor  status,  axillary  lymph  node  status  (ALN)  and  patient  age  were   likewise  extracted  from  the  data  files.  Estrogen  and  progesterone  receptor  positivity   was  defined  as  nuclear  positivity  in  >  10  %  of  the  tumor  cell  nuclei  (cut-­‐off  for  ER   changed  to  >  1%  later)  

The  formalin-­‐fixed,  paraffin-­‐embedded  tissue  samples  underwent  in  situ  hybridization   for  chromosome  17  and  TOP2A  according  to  the  manufacturer’s  procedures.  

The  hybridized  slides  were  compared  to  their  hematoxylin-­‐eosin  counterparts  in  order   to  assure  that  signals  were  counted  from  cells  in  the  tumour  tissue.  An  average  number   of  signals  for  CEP17  and  TOP2A  for  each  tumor  were  calculated  counting  40  cells  in  a   bright  field  microscope  at  40x  magnification.  Single  signals  of  TOP2A  counted  as  1  (fig.  

1),  small  clusters  counted  as  5  (fig.  2)  whereas  larger  clusters  counted  as  10  signals  (fig.  

3).  Each  slide  was  primarily  examined  by  a  student  and  checked  by  an  experienced   pathologist.  Upon  discrepancy,  a  pathologist  would  do  another  full  signal  count  (3   cases).  The  TOP2A:CEP17  ratio  for  each  cell  was  calculated  to  determine  amplification,   deletion  or  polysomy.  The  cut-­‐offs  were  set  to  2.0  for  amplification  and  0.8  for  deletion   (17,20).  Ratios  of  >1,5  for  amplification  and  0,5-­‐1,0  for  deletion  have  also  been  used  in   other  studies  (ibid).  Defining  polysomy  is  complicated  by  a  number  of  factors,  nuclear   truncation  during  sectioning  being  an  important  one  (21).  Also,  chance  decides  wether   the  centromere  is  included  in  the  optical  section  or  not.  The  colour  points  using  SISH  are   less  distinct  from  each  other  than  those  seen  in  FISH,  making  it  easier  to  confuse  signals.  

Therefore,  we  used  a  relatively  low  threshold  in  order  to  increase  the  sensitivity  of   discovering  polysomies  on  behalf  of  decreased  specificity.  Many  studies  use  a  CEP17   copy  number  threshold  of  2-­‐5,  3  being  the  most  common,  to  define  polysomy  17  (7,22-­‐

24),  but  our  data  material  had  no  such  cases.  Polysomy  of  chromosome  17  was  therefore   defined  using  the  lowest  previously  reported  CEP17  copy  number  of  ≥1,86  (25).  

(4)

Silver  in  situ  hybridization  of  TOP2A  

A  dinitrophenol  (DNP)-­‐labelled  probe  (Ventana  Medical  Systems’  TOP2A  DNA  Probe)   spanning  67,400  base  pairs  of  the  TOP2A  gene  binds  to  the  target  DNA  and  subsequently   binds  to  rabbit  anti-­‐DNP  antibody.  Goat  anti-­‐rabbit  antibody  is  conjugated  to  

horseradish  peroxidase  (HRP)  which  functions  as    a  chromogenic  enzyme,  reducing   silver  ions  to  metallic  silver  atoms  by  the  addition  of  silver  acetate,  hydroquinone  and   hydrogen  peroxide  (ultraView  SISH  Detection  Kit,  see  fig.  4).  The  precipitate  is  deposited   in  the  nuclei,  and  after  counterstaining  the  TOP2A  gene  can  be  visualized  as  a  black   silver  dot  using  bright  field  microscopy.  

Red  in  situ  hybridization  of  chromosome  17  

The  Ventana  Medical  Systems'  INFORM  Chromosome  17  Probe  with  DNP  label  is  a  42   base-­‐pair  synthetic  oligonucleotide  that  binds  to  the  centromeric  region  of  chromosome   17.  Rabbit  anti-­‐DNP  antibody  is  used  as  with  SISH  for  TOP2A.    The  ultraViewTM  Alkaline   Phosphatase  Red  ISH  Detection  Kit  contains  an  alkaline  phosphate-­‐labelled  secondary   antibody.  The  complex  is  visualized  as  a  red  dot  in  the  microscope  after  utilization  of  the   naphtol  and  Fast  red  chromogens.  

 

Results   Patients  

All  patients  (n=153,  152  female,  1  male)  included  in  the  study  had  histopathologically   proven  invasive  breast  carcinoma.  Average  patient  age  at  diagnosis  was  57,5  years   (range  28-­‐92  years).  Average  tumour  size  was  23,6  mm  (range  3-­‐100  mm).    The  

majority  (144  cases,  93%)  were  of  ductal  subtype,  the  remainder  were  either  lobular  (7   cases,  5%),  mucinous  (1  case,  0,6%)  or  of  a  mixed  ductal  and  lobular  subtype  (1  case,   0,6%).  142  cases  tested  2+  or  3+  on  immunhistochemistry  for  HER2  (94%,  21  and  121   cases,  respectively).  127  cases  were  amplified  for  the  HER2  gene  (83%).  21  cases  (14%)   were  not  registered  with  ISH  for  HER2,  but  in  all  instances  there  was  a  3+  IHC  result  for   HER2.  3  cases  (2%)  showed  no  HER2  amplification  with  ISH  but  3+  on  IHC.    83  tumours   (54%)  were  estrogen  receptor  positive.  66  tumours  (43%)  were  progesterone  receptor   positive.  An  overview  of  SISH-­‐results,  HER2  status,  age,  tumour  size,  grade,  stage  and  

(5)

receptor  status  for  each  sample  is  shown  in  table  2.  A  summary  of  data  is  shown  in  table   1.  

SISH  

Of  the  153  HER2  positive  tumours  undergoing  dual  chromogenic  in  situ  hybridization,   we  found  that  33%  were  amplified  for  TOP2A  (51  cases)  using  a  cut-­‐off  ratio  of  ≥2,0.  5%  

had  TOP2A  deletion  (8  cases,  cut-­‐off  ratio  ≤0,8).  The  remaining  62%  had  normal  TOP2A   gene  copy  number  (TOP2A:CEP17  ratio  0,8-­‐2,0).  Using  a  cut-­‐off  of  CEP17>1,86  gives  a   total  of  3  tumours  polysomic  for  chromosome  17.  

 

Discussion  

Finding  valid  biomarkers  for  the  benefit  of  anthracycline-­‐based  chemotherapy  has  so  far   been  unsatisfactory.  Ongoing  research  concerning  the  role  of  TOP2A  and  chromosome   17  copy  number  aberrations  shows  no  clear  conclusion  yet,  but  there  are  indications   that  gene-­‐adjacent  regions  may  have  an  important  role  to  play.  Therefore,  we  wanted  to   investigate  the  specificity  of  a  new  TOP2A  DNA-­‐probe,  in  the  hope  that  better  tools   might  lead  to  more  consistent  results  in  future  research.  The  DNP-­‐labelled  SISH  probe   under  investigation  spans  a  considerably  shorter  segment  of  base  pairs,  respectively   30%  and  42%  the  size  of  those  targeted  by  two  well-­‐known  probes  used  in  FISH   analysis  of  TOP2A  (20).  

HER2  amplification  has  traditionally  been  regarded  as  a  useful  marker  in  identifying  the   subset  of  patients  who  may  benefit  from  anthracycline-­‐based  chemotherapy.  This  is,   however,  not  intuitively  comprehensible,  as  anthracyclines  do  not  target  the  receptor   coded  by  the  HER2  gene.  Rather,  the  topoisomerase  II  alpha  protein  is  one  of  the  

intracellular  targets  of  such  therapy,  and  the  TOP2A  gene  is  amplified  in  only  24-­‐54%  of   HER2-­‐amplified  tumors  (15,26,27),  creating  some  confusion  regarding  the  mechanism   of  action  of  the  hitherto  important  anthracyclines.  TOP2A  and  HER2  are  believed  to  have   been  co-­‐amplified  due  to  their  very  close  location  on  the  long  arm  of  chromosome  17   (20,28,29).  Studies  by  Arriola  and  Kauraniemi  have  observed  common  regions  of   amplification  around  HER2  spanning  280-­‐746  thousand  base  pairs,  containing  over  20   genes  (28,30),  with  even  more  additional  genes  located  next  to  these  regions  (29).  

(6)

TOP2A  may  be  one  such  gene,  potentially  influencing  amplification  and  expression  of   HER2  and  thus  its  clinical  phenotype  (14).    

Chromosome  17,  site  of  both  genes  in  question,  is  the  most  gene  dense  chromosome  in   our  genome.  Interestingly,  chromosome  17  also  contains  the  p53  and  BRCA1  genes,   which  are  important  in  cancerogenesis.  Some  investigations  have  highlighted  polysomy   17  as  a  possible  mechanism  of  increased  protein  expression,  including  that  of  increased   topoisomerase  II  alpha.  A  trial  published  in  2011  comparing  cyclophosphamide,  

epirubicin  (antracycline)  and  fluorouracil  (CEF)  against  cyclophosphamide,  

methotrexate  and  fluorouracil  (CMF)  suggested  that  tumours  with  duplication  of  CEP17   showed  borderline  responsiveness  to  anthracycline-­‐based  chemotherapy  (17),  whereas   eusomy  17  showed  no  apparent  benefit.  The  authors  proposed  that  CEP17-­‐duplication   may  indicate  changes  such  as  unbalanced  translocations,  sub-­‐chromosomal  

amplification  or  deletion,  or  duplication  of  the  entire  genome,  and  that  CEP17  may  be  a   more  reliable  marker  than  HER2  and  TOP2A.  This  remains  to  be  confirmed  by  further   research.  

Trying  to  determine  the  cause  of  increased  benefit  with  anthracyclines  depends  on  valid   techniques.  In  situ  hybridization  is  widely  accessible  and  has  been  the  preferred  method   for  identifying  changes  in  HER2  and  TOP2A  copy  number  (19,31,32).  The  close  

proximity  of  the  two  genes,  and  the  possible  modifying  regions  neighbouring  them,   postulates  that  a  very  specific  DNA  probe  is  necessary  –  one  that  overlaps  as  little  as   possible  with  bases  outside  the  gene  itself.  Moelans  et  al.  used  multiplex  ligation-­‐

dependent  probe  amplification-­‐based  copy  number  analysis  (MLPA)  as  a  control  when   evaluating  the  DAKO  pharmTM  probe  (228  kb  of  the  TOP2A  region)  and  the  

PathvysionTM  probe  (160  kb  of  the  TOP2A  region).  They  found  no  difference  in   detection  of  TOP2A  deletions,  but  discovered  that  the  larger  of  the  probes  resulted  in  

“overdetection”  of  HER2,  most  likely  because  of  TOP2A  overlap  with  the  adjacent  HER2   region  (20).  

Studies  by  Järvinen  show  that  overexpression  of  HER2  alone  does  not  influence  the   sensitivity  to  anthracyclines  (15).  Indeed,  patients  with  HER2-­‐positivity  who  also  have   TOP2A  amplification  have  shown  longer  survival  and  increased  response  to  

anthracyclines  than  those  without  TOP2A  amplification  (33-­‐36).  Moelans  et  al.  (20)   discuss  the  wide  variability  of  TOP2A  amplifications  (33-­‐60%  in  some  studies)  and  

(7)

deletions  (20-­‐42%)  (36-­‐39),  highlighting  that  although  changes  in  TOP2A  is  very  rare   when  there  is  no  HER2  amplification,  some  studies  report  a  10-­‐20%  TOP2A  

amplification  rate  in  HER2-­‐negative  breast  cancer.  According  to  Moelans,  this  variability   is  likely  related  to  the  FISH  technology  used  to  determine  gene  status,  a  technique   whose  reproducibility  is  questioned  by  other  authors  (18).  A  2011  study  of  1614  HER2-­‐

negative  cases  discovered  no  TOP2A  amplification,  but  3%  TOP2A  deletion  (19).  

Elsewhere,  results  indicate  that  a  significant  number  of  HER2-­‐negative  tumours   exhibited  high  levels  of  TOP2A  (40).  

The  predictive  value  of  HER2  and  TOP2A  for  anthracycline-­‐based  chemotherapy  is  still   the  subject  of  much  debate.  Some  retrospective  analyses  of  randomized  studies  

indicated  that  adjuvant  anthracycline  therapy  could  be  most  effective  when  TOP2A  was   amplified  (19,31,32).  In  2008,  the  results  of  two  meta-­‐analyses  indicated  that  only   HER2-­‐positive  patients  benefited  from  anthracycline-­‐based  chemotherapy  (41,42).  

However  the  same  year,  the  BR9601/NEAT  study  (n=1870)  (8,43)  showed  no  consistent   predictive  value  of  neither  HER2  nor  TOP2A.  Furthermore,  this  study  suggested  that   polysomy  17  might  have  a  part  to  play.  

In  a  meta-­‐analysis  of  four  trials  (n=1944),  Di  Leo  et  al.  showed  a  modest  and  borderline   statistical  predictive  value  using  HER2  and  TOP2A  as  biomarkers  (44,45).  In  a  new   meta-­‐analysis  in  Lancet  Oncology  in  2011,  Di  Leo  et  al.  once  again  compared  CMF  to   anthracycline-­‐based  therapy.  Although  HER2  amplification  and  combined  amplification   or  deletion  of  TOP2A  may  play  a  role  in  predicting  response  to  anthracycline-­‐based   therapy,  their  findings  did  not  support  the  use  of  this  therapy  in  only  these  two  groups   of  patients  (18).  

Two  studies  suggest  that  TOP2A  deletion  may  provide  increased  sensitivity  to   anthracyclines,  but  there  is  still  no  biological  rationale  for  this  (6,34).    

Another  problem  in  the  search  for  valid  biomarkers  for  breast  cancer  is  the  degree  of   correlation  between  gene  status  and  protein  levels.  Findings  by  O’Malley  et  al.  suggest   that  the  expression  of  the  topoisomerase  protein  is  not  regulated  by  the  copy  number  of   the  TOP2A  gene,  but  rather  at  an  RNA  or  post-­‐translational  level  (46,47).  Their  study   found  no  significant  correlation  between  TOP2A  gene  status  and  topoisomerase  protein   levels  (46).  Some  studies  favor  TOP2A  expression  over  amplification  as  a  positive  

(8)

predicitve  marker  of  anthracycline  benefit  (24,48).  It  would  be  both  convenient  and   logical  if  TOP2A  protein  expression  should  show  itself  a  valid  biomarker,  considering   the  mechanical  effect  of  protein  inhibition  believed  to  be  offered  by  anthracyclines   (47,49-­‐51).  

There  has  been  little  progress  regarding  biomarkers  that  predict  response  to  

chemotherapy  in  breast  cancer.  Results  are  inconsistent,  and  conclusions  differ  as  to  the   value  of  TOP2A  regarding  anthracyclines.  If  such  treatment  response  cannot  be  

routinely  predicted  by  HER2  and  TOP2A,  as  according  Di  Leo  and  his  associates  (18),   who  then  should  receive  this  widely  used  type  of  chemotherapy?  

CEP17  copy  number  aberration  was  not  often  seen  in  our  data.  Using  the  most  sensitive   criterion  reported,  we  found  only  3  tumours  polysomic  for  chromosome  17.  This  may   indicate  that  increased  number  of  TOP2A  signals  is  not  the  result  of  increased  number  of   chromosomes,  and  is  consistent  with  other  studies  that  show  that  polysomy  17  is  a  rare   event  in  breast  cancer  (52).  Abnormal  signals  of  CEP17  is  probably  due  to  

pericentromeric  gains  or  losses  on  chromosome  17  (53).  In  light  of  our  results,  CEP17   polysomy  does  not  seem  a  good  marker  of  anthracycline  responsiveness.  

A  euploid  human  cell  contains  two  chromosomes.  However,  in  our  material  the  average   number  of  CEP17  signals  was  1,21  (0,53-­‐2,55).  This  can  be  explained  by  the  cutting  of   nuclei  in  two,  leaving  only  one  chromosome  in  the  slide.  Alternatively,  it  can  be  

explained  by  an  underestimation  due  to  poor  signal  strength  or  partially  overlapping   cells  that  obscure  each  other,  combined  with  observer  lack  of  experience  in  evaluation  of   chromogenic  in  situ  hybridization.  

This  study  does  not  make  a  comparison  of  different  TOP2A  probes  on  the  same  tissue   samples.  Such  data  would  be  necessary  to  determine  with  confidence  any  increased   probe  specificity,  as  the  number  of  TOP2A-­‐amplified  tumours  in  our  data  (33%)  is   within  the  range  reported  (24-­‐54%)  in  the  literature  using  larger  DNA  probes.  With   such  differing  rates  of  amplification  of  TOP2A,  another  investigation  using  larger  probes   on  our  material  could  be  helpful.  However,  it  is  reasonable  to  assume  that  much  smaller   TOP2A  DNA  probes  will  overlap  less  with  adjacent  regions.    

The  majority  of  research  being  done  on  use  of  biomarkers  and  anthracyclines  compares   CEF  (with  anthracycline)  and  CMF  (without  anthracycline).  Such  a  study  was  beyond  the  

(9)

scope  of  our  investigation.  A  retrospective  analysis  of  treatment  results  in  our  study  is   theoretically  possible,  but  with  our  small  sample  size,  it  uncertain  wether  there  are   enough  patients  treated  with  anthracyclines  versus  non-­‐anthracycline  therapy  to  make   a  statistically  significant  comparison.  

In  conclusion,  a  new  TOP2A  DNA  probe  of  67,400  base  pairs  detects  amplification  of   TOP2A  in  HER2-­‐positive  breast  cancers  at  a  rate  comparable  to  that  reported  in  

previous  studies  using  larger  DNA  probes.  A  smaller  DNA  probe  is  less  likely  to  overlap   with  adjacent  regions,  and  would  be  considered  more  specific.  Our  results  suggest  that   the  amplification  of  TOP2A  seen  in  HER2-­‐positive  tumours  cannot  be  explained  by  DNA   probes  spanning  outside  their  designated  target  region.  Our  investigation  cannot  

conclude  wether  there  is  co-­‐amplifiation  or  not,  although  it  seems  more  likely  now  than   before.  Certainly,  a  more  specific  DNA  probe  is  no  step  backward.  

   

(10)

References    

1.   Ryberg  M,  Nielsen  D,  Cortese  G,  Nielsen  G,  Skovsgaard  T,  Andersen  PK.  New  insight  into  epirubicin   cardiac  toxicity:  competing  risks  analysis  of  1097  breast  cancer  patients.  J  Natl  Cancer  Inst.  2008  Aug.  

6;100(15):1058–67.    

2.   Diamandidou  E,  Buzdar  AU,  Smith  TL,  Frye  D,  Witjaksono  M,  Hortobagyi  GN.  Treatment-­‐related   leukemia  in  breast  cancer  patients  treated  with  fluorouracil-­‐doxorubicin-­‐cyclophosphamide   combination  adjuvant  chemotherapy:  the  University  of  Texas  M.D.  Anderson  Cancer  Center   experience.  J  Clin  Oncol.  1996  Oct.;14(10):2722–30.    

3.   Fritz  P,  Cabrera  C,  Dippon  J,  Gerteis  A,  Simon  W,  Aulitzky  W,  et  al.  c-­‐erbB2  and  topoisomerase  IIα   protein  expression  independently  predict  poor  survival  in  primary  human  breast  cancer:  a   retrospective  study.  Breast  Cancer  Research  2005  7:R374.  2005  Mar.  21;7(3):R374–84.    

4.   Nielsen  KV,  Ejlertsen  B,  Møller  S,  Jørgensen  JT,  Knoop  A,  Knudsen  H,  et  al.  The  value  of  TOP2A  gene   copy  number  variation  as  a  biomarker  in  breast  cancer:  Update  of  DBCG  trial  89D.  Acta  Oncol.  

2008;47(4):725–34.    

5.   Schindlbeck  C,  Mayr  D,  Olivier  C,  Rack  B,  Engelstaedter  V,  Jueckstock  J,  et  al.  Topoisomerase  IIalpha   expression  rather  than  gene  amplification  predicts  responsiveness  of  adjuvant  anthracycline-­‐based   chemotherapy  in  women  with  primary  breast  cancer.  J  Cancer  Res  Clin  Oncol.  2010  Jul.  

1;136(7):1029–37.    

6.   O'Malley  FP,  Chia  S,  Tu  D,  Shepherd  LE,  Levine  MN,  Bramwell  VH,  et  al.  Topoisomerase  II  alpha  and   responsiveness  of  breast  cancer  to  adjuvant  chemotherapy.  J  Natl  Cancer  Inst.  2009  May  

6;101(9):644–50.    

7.   Tubbs  R,  Barlow  WE,  Budd  GT,  Swain  E,  Porter  P,  Gown  A,  et  al.  Outcome  of  patients  with  early-­‐stage   breast  cancer  treated  with  doxorubicin-­‐based  adjuvant  chemotherapy  as  a  function  of  HER2  and   TOP2A  status.  J  Clin  Oncol.  2009  Aug.  20;27(24):3881–6.    

8.   Bartlett  JMS,  Munro  AF,  Dunn  JA,  McConkey  C,  Jordan  S,  Twelves  CJ,  et  al.  Predictive  markers  of   anthracycline  benefit:  a  prospectively  planned  analysis  of  the  UK  National  Epirubicin  Adjuvant  Trial   (NEAT/BR9601).  Lancet  Oncol.  2010  Mar.  1;11(3):266–74.    

9.   Durbecq  V,  Paesmans  M,  Cardoso  F.  Topoisomerase-­‐IIα  expression  as  a  predictive  marker  in  a   population  of  advanced  breast  cancer  patients  randomly  treated  either  with  single-­‐agent  doxorubicin   or  ….  Molecular  cancer  ….  2004.    

10.   Paik  S,  Bryant  J,  Tan-­‐Chiu  E,  Yothers  G,  Park  C,  Wickerham  DL,  et  al.  HER2  and  choice  of  adjuvant   chemotherapy  for  invasive  breast  cancer:  National  Surgical  Adjuvant  Breast  and  Bowel  Project   Protocol  B-­‐15.  J  Natl  Cancer  Inst.  2000  Dec.  20;92(24):1991–8.    

11.   Moliterni  A,  Ménard  S,  Valagussa  P,  Biganzoli  E,  Boracchi  P,  Balsari  A,  et  al.  HER2  overexpression  and   doxorubicin  in  adjuvant  chemotherapy  for  resectable  breast  cancer.  J  Clin  Oncol.  2003  Feb.  

1;21(3):458–62.    

12.   Colozza  M,  Sidoni  A,  Mosconi  AM,  Cavaliere  A,  Bisagni  G,  Gori  S,  et  al.  HER2  overexpression  as  a   predictive  marker  in  a  randomized  trial  comparing  adjuvant  cyclophosphamide/methotrexate/5-­‐

fluorouracil  with  epirubicin  in  patients  with  stage  I/II  breast  cancer:  long-­‐term  results.  Clin.  Breast   Cancer.  2005  Aug.;6(3):253–9.    

13.   Di  Leo  A,  Chan  S,  Paesmans  M,  Friedrichs  K,  Pinter  T,  Cocquyt  V,  et  al.  HER-­‐2/neu  as  a  predictive   marker  in  a  population  of  advanced  breast  cancer  patients  randomly  treated  either  with  single-­‐agent   doxorubicin  or  single-­‐agent  docetaxel.  Breast  Cancer  Res  Treat.  2004  Aug.;86(3):197–206.    

14.   Glynn  RW,  Miller  N,  Kerin  MJ.  17q12-­‐21  -­‐  the  pursuit  of  targeted  therapy  in  breast  cancer.  Cancer   Treat  Rev.  2010  May  1;36(3):224–9.    

15.   Järvinen  TA,  Tanner  M,  Rantanen  V,  Bärlund  M,  Borg  A,  Grénman  S,  et  al.  Amplification  and  deletion  of   topoisomerase  IIalpha  associate  with  ErbB-­‐2  amplification  and  affect  sensitivity  to  topoisomerase  II  

(11)

inhibitor  doxorubicin  in  breast  cancer.  Am  J  Pathol.  2000  Mar.  1;156(3):839–47.    

16.   DeVita  VT,  Lawrence  TS,  Rosenberg  SA.  DeVita,  Hellman,  and  Rosenberg's  cancer.  Lippincott  Williams  

&  Wilkins;  2008.  p.  3151.    

17.   Pritchard  KI,  Munro  A,  O'Malley  FP,  Tu  D,  Li  X,  Levine  MN,  et  al.  Chromosome  17  centromere  (CEP17)   duplication  as  a  predictor  of  anthracycline  response:  evidence  from  the  NCIC  Clinical  Trials  Group   (NCIC  CTG)  MA.5  Trial.  Breast  Cancer  Res  Treat.  2012;131(2):541–51.    

18.   Di  Leo  A,  Desmedt  C,  Bartlett  JMS,  Piette  F,  Ejlertsen  B,  Pritchard  KI,  et  al.  HER2  and  TOP2A  as   predictive  markers  for  anthracycline-­‐containing  chemotherapy  regimens  as  adjuvant  treatment  of   breast  cancer:  a  meta-­‐analysis  of  individual  patient  data.  Lancet  Oncol.  2011  Nov.  1;12(12):1134–42.    

19.   Press  MF,  Sauter  G,  Buyse  M,  Bernstein  L,  Guzman  R,  Santiago  A,  et  al.  Alteration  of  topoisomerase  II-­‐

alpha  gene  in  human  breast  cancer:  association  with  responsiveness  to  anthracycline-­‐based   chemotherapy.  J  Clin  Oncol.  2011  Mar.  1;29(7):859–67.    

20.   Moelans  CB,  de  Weger  RA,  Monsuur  HN,  Vijzelaar  R,  van  Diest  PJ.  Molecular  profiling  of  invasive  breast   cancer  by  multiplex  ligation-­‐dependent  probe  amplification-­‐based  copy  number  analysis  of  tumor   suppressor  and  oncogenes.  Mod  Pathol.  2010  May  14;23(7):1029–39.    

21.   Reinholz  MM,  Bruzek  AK,  Visscher  DW,  Lingle  WL,  Schroeder  MJ,  Perez  EA,  et  al.  Breast  cancer  and   aneusomy  17:  implications  for  carcinogenesis  and  therapeutic  response.  Lancet  Oncol.  2009  Mar.  

1;10(3):267–77.    

22.   Salido  M,  Tusquets  I,  Corominas  JM,  Suarez  M,  Espinet  B,  Corzo  C,  et  al.  Polysomy  of  chromosome  17  in   breast  cancer  tumors  showing  an  overexpression  of  ERBB2:  a  study  of  175  cases  using  fluorescence  in   situ  hybridization  and  immunohistochemistry.  Breast  Cancer  Research  2005  7:R374.  2005;7(2):R267.    

23.   Konecny  GE,  Pauletti  G,  Untch  M,  Wang  H-­‐J,  Möbus  V,  Kuhn  W,  et  al.  Association  between  HER2,   TOP2A,  and  response  to  anthracycline-­‐based  preoperative  chemotherapy  in  high-­‐risk  primary  breast   cancer.  Breast  Cancer  Res  Treat.  2010  Apr.  1;120(2):481–9.    

24.   Nikolényi  A,  Sükösd  F,  Kaizer  L,  Csörgo  E,  Vörös  A,  Uhercsák  G,  et  al.  Tumor  topoisomerase  II  alpha   status  and  response  to  anthracycline-­‐based  neoadjuvant  chemotherapy  in  breast  cancer.  Oncology.  

2011;80(3-­‐4):269–77.    

25.   Beser  AR,  Tuzlali  S,  Guzey  D,  Dolek  Guler  S,  Hacihanefioglu  S,  Dalay  N.  HER-­‐2,  TOP2A  and  chromosome   17  alterations  in  breast  cancer.  Pathol  Oncol  Res.  2007;13(3):180–5.    

26.   Slamon  DJ,  Press  MF.  Alterations  in  the  TOP2A  and  HER2  genes:  association  with  adjuvant   anthracycline  sensitivity  in  human  breast  cancers.  J  Natl  Cancer  Inst.  2009  May  6;101(9):615–8.    

27.   Kellner  U,  Sehested  M,  Jensen  P,  Gieseler  F.  Culprit  and  victim-­‐DNA  topoisomerase  II.  Lancet  Oncol.  

2002.    

28.   Kauraniemi  P,  Bärlund  M,  Monni  O,  Kallioniemi  A.  New  amplified  and  highly  expressed  genes   discovered  in  the  ERBB2  amplicon  in  breast  cancer  by  cDNA  microarrays.  Cancer  Res.  2001  Nov.  

15;61(22):8235–40.    

29.   Kauraniemi  P,  Kallioniemi  A.  Activation  of  multiple  cancer-­‐associated  genes  at  the  ERBB2  amplicon  in   breast  cancer.  Endocr.  Relat.  Cancer.  2006  Mar.;13(1):39–49.    

30.   Arriola  E,  Marchio  C,  Tan  DSP,  Drury  SC,  Lambros  MB,  Natrajan  R,  et  al.  Genomic  analysis  of  the   HER2/TOP2A  amplicon  in  breast  cancer  and  breast  cancer  cell  lines.  Lab  Invest.  2008  May   1;88(5):491–503.    

31.   Di  Leo  A,  Gancberg  D,  Larsimont  D,  Tanner  M,  Jarvinen  T,  Rouas  G,  et  al.  HER-­‐2  amplification  and   topoisomerase  IIalpha  gene  aberrations  as  predictive  markers  in  node-­‐positive  breast  cancer  patients   randomly  treated  either  with  an  anthracycline-­‐based  therapy  or  with  cyclophosphamide,  

methotrexate,  and  5-­‐fluorouracil.  Clin  Cancer  Res.  2002  May  1;8(5):1107–16.    

32.   Slamon  D,  Eiermann  W,  Robert  N,  Pienkowski  T,  Martin  M,  Rolski  J,  et  al.  Phase  III  Randomized  Trial   Comparing  Doxorubicin  and  Cyclophosphamide  Followed  by  Docetaxel  (AC-­‐>T)  with  Doxorubicin  and  

(12)

Cyclophosphamide  Followed  by  Docetaxel  and  Trastuzumab  (AC-­‐>TH)  with  Docetaxel,  Carboplatin   and  Trastuzumab  (TCH)  in  Her2neu  Positive  Early  Breast  Cancer  Patients:  BCIRG  006  Study.  Cancer   Res.  2010  Feb.  10;69(24  Supplement):62–2.    

33.   Järvinen  TAH,  Liu  ET.  Topoisomerase  IIalpha  gene  (TOP2A)  amplification  and  deletion  in  cancer-­‐-­‐

more  common  than  anticipated.  Cytopathology.  2003  Dec.;14(6):309–13.    

34.   Knoop  AS,  Knudsen  H,  Balslev  E,  Rasmussen  BB,  Overgaard  J,  Nielsen  KV,  et  al.  retrospective  analysis   of  topoisomerase  IIa  amplifications  and  deletions  as  predictive  markers  in  primary  breast  cancer   patients  randomly  assigned  to  cyclophosphamide,  methotrexate,  and  fluorouracil  or  

cyclophosphamide,  epirubicin,  and  fluorouracil:  Danish  Breast  Cancer  Cooperative  Group.  J  Clin  Oncol.  

2005  Oct.  20;23(30):7483–90.    

35.   Nielsen  KV,  Müller  S,  Møller  S,  Schønau  A,  Balslev  E,  Knoop  AS,  et  al.  Aberrations  of  ERBB2  and  TOP2A   genes  in  breast  cancer.  Mol  Oncol.  2010  Apr.  1;4(2):161–8.    

36.   Park  K,  Han  S,  Gwak  G-­‐H,  Kim  H-­‐J,  Kim  J,  Kim  K-­‐M.  Topoisomerase  II-­‐alpha  gene  deletion  is  not   frequent  as  its  amplification  in  breast  cancer.  Breast  Cancer  Res  Treat.  2006  Aug.  24;98(3):337–42.    

37.   Hicks  DG,  Yoder  BJ,  Pettay  J,  Swain  E,  Tarr  S,  Hartke  M,  et  al.  The  incidence  of  topoisomerase  II-­‐alpha   genomic  alterations  in  adenocarcinoma  of  the  breast  and  their  relationship  to  human  epidermal   growth  factor  receptor-­‐2  gene  amplification:  a  fluorescence  in  situ  hybridization  study.  Hum  Pathol.  

2005  Apr.  1;36(4):348–56.    

38.   Järvinen  TA,  Tanner  M,  Bärlund  M,  Borg  A,  Isola  J.  Characterization  of  topoisomerase  II  alpha  gene   amplification  and  deletion  in  breast  cancer.  Genes  Chromosomes  Cancer.  1999  Oct.;26(2):142–50.    

39.   Olsen  KE,  Knudsen  H,  Rasmussen  BB,  Balslev  E,  Knoop  A,  Ejlertsen  B,  et  al.  Amplification  of  HER2  and   TOP2A  and  deletion  of  TOP2A  genes  in  breast  cancer  investigated  by  new  FISH  probes.  Acta  Oncol.  

2004;43(1):35–42.    

40.   Glynn  RW,  Mahon  S,  Curran  C,  Callagy  G,  Miller  N,  Kerin  MJ.  TOP2A  amplification  in  the  absence  of  that   of  HER-­‐2/neu:  toward  individualization  of  chemotherapeutic  practice  in  breast  cancer.  Oncologist.  

2011;16(7):949–55.    

41.   Gennari  A,  Sormani  MP,  Pronzato  P,  Puntoni  M,  Colozza  M,  Pfeffer  U,  et  al.  HER2  status  and  efficacy  of   adjuvant  anthracyclines  in  early  breast  cancer:  a  pooled  analysis  of  randomized  trials.  J  Natl  Cancer   Inst.  2008  Jan.  2;100(1):14–20.    

42.   Pritchard  KI,  Messersmith  H,  Elavathil  L,  Trudeau  M,  O'Malley  F,  Dhesy-­‐Thind  B.  HER-­‐2  and  

topoisomerase  II  as  predictors  of  response  to  chemotherapy.  J  Clin  Oncol.  2008  Feb.  10;26(5):736–44.    

43.   Bartlett  JMS,  Munro  A,  Cameron  DA,  Thomas  J,  Prescott  R,  Twelves  CJ.  Type  1  receptor  tyrosine  kinase   profiles  identify  patients  with  enhanced  benefit  from  anthracyclines  in  the  BR9601  adjuvant  breast   cancer  chemotherapy  trial.  J  Clin  Oncol.  2008  Nov.  1;26(31):5027–35.    

44.   Di  Leo  A,  J  I,  F  P,  al  E.  A  meta-­‐analysis  of  phase  III  trials  evaluating  the  predictive  value  of  HER2  and   topoiso-­‐  merase  II  alpha  in  early  breast  cancer  patients  treated  with  CMF  or  anthracycline-­‐based   adjuvant  therapy  [abstract].  Breast  Cancer  Res  Treat.  2008  Mar.  8.    

45.   Di  Leo  A,  C  D,  JMS  B,  al  E.  Final  results  of  a  meta  analysis  testing  HER2  and  topoisomerase  II  genes  as   pre-­‐  dictors  of  incremental  benefit  from  anthracyclines  in  breast  can-­‐  cer  [abstract].  J  Clin  Oncol.  2010   Mar.  11.    

46.   O'Malley  FP,  Chia  S,  Tu  D,  Shepherd  LE,  Levine  MN,  Huntsman  D,  et  al.  Topoisomerase  II  alpha  protein   and  responsiveness  of  breast  cancer  to  adjuvant  chemotherapy  with  CEF  compared  to  CMF  in  the   NCIC  CTG  randomized  MA.5  adjuvant  trial.  Breast  Cancer  Res  Treat.  2011  Jul.  1;128(2):401–9.    

47.   Mueller  RE,  Parkes  RK,  Andrulis  I,  O'Malley  FP.  Amplification  of  the  TOP2A  gene  does  not  predict  high   levels  of  topoisomerase  II  alpha  protein  in  human  breast  tumor  samples.  Genes  Chromosomes  Cancer.  

2004  Apr.;39(4):288–97.    

48.   Mukherjee  A,  Shehata  M,  Moseley  P,  Rakha  E,  Ellis  I,  Chan  S.  Topo2α  protein  expression  predicts   response  to  anthracycline  combination  neo-­‐adjuvant  chemotherapy  in  locally  advanced  primary  

(13)

breast  cancer.  Br  J  Cancer.  2010  Dec.  7;103(12):1794–800.    

49.   Di  Leo  A,  Larsimont  D,  Gancberg  D,  Jarvinen  T,  Beauduin  M,  Vindevoghel  A,  et  al.  HER-­‐2  and  topo-­‐

isomerase  IIalpha  as  predictive  markers  in  a  population  of  node-­‐positive  breast  cancer  patients   randomly  treated  with  adjuvant  CMF  or  epirubicin  plus  cyclophosphamide.  Ann  Oncol.  2001  Aug.  

1;12(8):1081–9.    

50.   Tandon  AK,  Clark  GM,  Chamness  GC,  Ullrich  A,  McGuire  WL.  HER-­‐2/neu  oncogene  protein  and   prognosis  in  breast  cancer.  J  Clin  Oncol.  1989  Aug.;7(8):1120–8.    

51.   Mo  YY,  Beck  WT.  Heterogeneous  expression  of  DNA  topoisomerase  II  alpha  isoforms  in  tumor  cell   lines.  Oncol.  Res.  1997;9(4):193–204.    

52.   Yeh  I-­‐T,  Martin  MA,  Robetorye  RS,  Bolla  AR,  McCaskill  C,  Shah  RK,  et  al.  Clinical  validation  of  an  array   CGH  test  for  HER2  status  in  breast  cancer  reveals  that  polysomy  17  is  a  rare  event.  Mod  Pathol.  2009   Sep.;22(9):1169–75.    

53.   Bai  Y-­‐F,  Ren  G-­‐P,  Wang  B,  Teng  L-­‐S,  Liu  X.  [Comparison  between  analysis  of  HER2  gene  and  

chromosome  17  in  breast  cancer  by  dual-­‐probe  chromogenic  in  situ  hybridization  and  fluorescence  in   situ  hybridization].  Zhonghua  Bing  Li  Xue  Za  Zhi.  2010  Mar.;39(3):161–5.    

 

   

(14)

HER2 Ampl. No ampl. No ISH

IHC 3+ 95 3 23

IHC 2+ 21

IHC 1+ 2

IHC neg. 3

No IHC 6

Patient age Mean 57,5 (range 28-92) Tumour size Mean 23,6mm (range 3-100)

TOP2A Amplification Deletion Polysomy 51 (32,9%) 8 (5,2%) 3 (1,9%)

PgR pos. PgR neg.

Estrogen receptor + 83 (54%) ER pos. 57 26 Progesterone receptor + 66 (43%) ER neg. 6 66

Tx 7 N0 71

T1a 4 Nx 70

T1b 16 N+ 12

T1c 56 T2 53 T3 15 T4 2 Table  1:  Summary.  N=153.  

(15)

 

 

Figure  1:  No  TOP2A  amplification.  The  signals  can  be  counted  individually  as  dark  dots.  The  red   dots  represent  CEP17.  

 

Figure  2:  TOP2A  amplification  where  dark  clusters  count  as  five  signals.  

(16)

 

Figure  3:  TOP2A  amplification  where  dark  clusters  count  as  ten  signals.  

 

Figure  4:  SISH  reaction:  TOP2A  probe.  Courtesy  of  Ventana.  

   

(17)

SISH Subtype HER

CEP17 TOP2A ratio Type Grade Size IHC FISH TNM stage ER PR Age

0,85 6,40 7,53 D 3 40 3+ pT2 pN1 pMx neg neg 71

0,90 6,15 6,83 D 3 18 3+ amplified pT1c pN0 pMx pos pos 60

0,95 6,40 6,74 D 2 35 2+ amplified pT2 pN1 pMx pos pos 46

1,00 6,70 6,70 D 2 12 3+ amplified pT1c pN1a pMx pos neg 54

0,98 6,50 6,67 D 3 17 3+ amplified pT1c pN0 pMx pos neg 56

1,03 6,60 6,44 D 3 25 3+ amplified pT2 pN0 pMx neg neg 65

1,05 6,50 6,19 D 2 23 3+ pT2 pN1 pMx pos pos 46

0,93 5,68 6,14 D 3 20 3+ amplified pT1c pN1m pMx pos pos 53

1,18 7,13 6,06 D 2 17 2+ amplified pTx pN0 pMx pos pos 57

0,95 5,58 5,87 D 3 34 3+ amplified pT2 pN0 pMx neg neg 81

0,90 5,00 5,56 D 2 10 3+ amplified pT1c pN0 pMx pos pos 42

1,05 5,55 5,29 D 2 15 3+ pT1c pN0 pMx pos neg 48

1,13 5,88 5,22 D 2 11 3+ amplified pT1c pN0 pMx pos neg 61

1,03 5,18 5,05 L 2 18 2+ amplified pT1c pN1 pMx pos pos 47

1,05 5,28 5,02 L 3 15 3+ amplified pT1c pN0 pMx pos pos 70

1,15 5,75 5,00 L 2 22 2+ amplified pT2 pNx pMx pos pos 65

1,75 8,68 4,96 D 2 15 3+ amplified pT1c pN0 pMx pos pos 43

1,45 6,90 4,76 D 2 15 3+ amplified pT1c pN1a pMx pos pos 83

0,98 4,45 4,56 M 3 30 3+ amplified pT3 pN3 pMx pos pos 64

1,38 6,25 4,55 D 1 17 3+ amplified pT1c pN0 pMx pos neg 62

1,13 5,05 4,49 D 3 13 3+ pT1c pN0 pMx neg neg 63

0,53 2,30 4,38 D 1 20 3+ amplified pT1a pNx pMx pos pos 92

0,95 4,13 4,34 D 3 12 3+ amplified pT2 pN0 pMx pos pos 56

1,08 4,35 4,05 D 2 15 3+ amplified pT1c pN0 pMx neg pos 52

0,83 3,30 4,00 D 3 27 3+ pT2 pN0 pMx neg neg 74

1,35 5,33 3,94 D 3 15 3+ not amp. pT1c pN1a pMx neg neg 60

1,30 5,08 3,90 L 2 24 3+ pT2 pN0 pMx pos pos 75

0,95 3,60 3,79 L 3 90 3+ amplified pT4 pN3 pMx pos neg 76

0,63 2,35 3,76 D 2 8 2+ amplified pT1b pN0 pMx pos pos 35

0,90 3,35 3,72 D 2 28 2+ amplified pT2 pN3 pMx pos neg 42

1,90 6,93 3,64 D 2 35 3+ amplified pT2 pN1 pMx neg neg 78

1,13 4,05 3,60 D+L 3 20 2+ amplified pT2 pN0 pMx pos pos 42

1,38 4,73 3,44 D 3 36 3+ amplified pT1c pN1 pMx neg neg 50

3,60 12,20 3,39 D 3 40 3+ amplified pT2 pN1 pMx neg neg 42

0,98 3,10 3,18 D 3 38 1+ amplified pT2 pN0 pMx neg neg 60

1,30 3,95 3,04 D 2 12 3+ amplified pT1c pNx pMx neg neg 32

1,20 3,38 2,81 D 2 13 3+ amplified pT1c pN0 pMx neg neg 45

1,25 3,43 2,74 D 2 11 amplified pT1c pN0 pMx pos pos 64

1,08 2,93 2,72 D 3 15 2+ amplified pT1c pNx pMx pos pos 37

1,35 3,35 2,48 D 3 9 3+ amplified pTx pN0 pMx pos pos 41

4,10 10,10 2,46 D 3 60 3+ pT3 pN1 pMx neg neg 83

1,10 2,68 2,43 D 3 30 3+ amplified pT2 pN2 pMx neg neg 48

1,00 2,38 2,38 D 2 60 2+ amplified pT3 pN3 pMx pos pos 43

1,10 2,50 2,27 D 2 18 3+ amplified pT1c pNx pMx pos neg 57

1,30 2,93 2,25 D 2 18 2+ amplified pT1c pNx pMx pos neg 53

1,13 2,40 2,13 D 2 23 3+ pT2 pN0 pMx pos neg 57

1,15 2,45 2,13 D 3 18 3+ pT1c pN0 pMx pos pos 38

1,33 2,75 2,08 D 2 14 3+ amplified pT1c pN0 pMx pos pos 58

0,88 1,80 2,06 D 3 30 3+ amplified pT2 pN1 pMx neg neg 65

1,10 2,25 2,05 D 2 17 3+ amplified pT1c pNx pMx pos neg 86

1,05 2,13 2,02 D 3 18 2+ amplified pT1c pN0 pMx neg neg 74

0,60 1,20 2,00 D 3 20 3+ amplified pT1c pN3 pMx neg neg 32

0,85 1,65 1,94 D 2 30 amplified pT2 pN1 pMx pos pos 50

1,18 2,28 1,94 D 25 2+ amplified pTx pN1 pMx pos pos 50

1,28 2,45 1,92 D 2 3 3+ amplified pT2 pN1 pMx pos neg 56

0,90 1,70 1,89 D 3 50 neg amplified pTx pN2 pMx pos pos 40

Referanser

RELATERTE DOKUMENTER

This literature review examines the effects physical activity have on cancer-related fatigue in patients receiving chemotherapy as treatment of breast-, lung- and colorectal

In addition, HER2-directed CAR NK cells engineered from healthy donors and breast cancer patients have been shown to selectively kill HER2 + tumour cells while avoiding healthy cells

Number and distribution (n,%) of mammographic features for recalled women with positive (invasive breast cancer and/or ductal carcinoma in situ) and negative (benign after

Effect of the Walking Exercise Program on Cancer-Related Fatigue in Patients with Acute Myeloid Leukemia Undergoing Chemotherapy.. Fatemeh Gheyasi 1 , Shahram Baraz 1 *, Amal

To study how breast cancer cell lines with different FV expression and p53 mutation status responded to increasing concentrations of doxorubicin on cell growth, the p53 mutant cell

5.2.1 BRCA1 and TP53 related response to cytostatic treatment in breast cancer cells Investigation of breast cancer cell line response to the cytostatic drug Doxorubicin revealed a

 Involvement  of  chemokine  receptors  in   breast  cancer

Finally, some of the gender difference observed in cancer-related mortality might be due to the relative contribution of specific cancer sites: breast cancer, the most common