• No results found

Dynamic interfacial tension measurement method using axisymmetric drop shape analysis

N/A
N/A
Protected

Academic year: 2022

Share "Dynamic interfacial tension measurement method using axisymmetric drop shape analysis"

Copied!
8
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

Method Article

Dynamic interfacial tension measurement

method using axisymmetric drop shape analysis

Nikhil Bagalkot, Aly A. Hamouda*, Ole Morten Isdahl

DepartmentofEnergyandPetroleumEngineering,UniversityofStavanger,Norway

ABSTRACT

Thecurrentmethoddescribesasimplemodificationtothedynamicandequilibriuminterfacialtension(IFT) measurementinamultiphasesystem(gas-liquid/liquid-liquid)bytheAxisymmetricDropShapeAnalysis(ADSA) pendantdroptechnique.TheprimarydifficultyassociatedwithdynamicIFTmeasurementbyADSAisproviding theappropriatephasedensities,especiallyinasystemconsistingofgas(CO2,methane,andpropane)andliquids (waterandhydrocarbon).Thedensityofthephasesiscalculatedusinga,consideringthesolubilityoggasesin liquids,asafunctionoftime.Thecalculateddensitiesofthephasesarethenusedasinputsintheexperimentto measuretheIFTathighpressureandtemperaturePVT-cell.

Themethodoffersbenefitsuchas:

Straightforwardandcosteffectiveasitdoesnotrequireadditionalexperimentalsetup(likedensitymeter)ora complicatedequationofstate.

Thecompositionofthebinarymixtures(moleandmass)andthedensitychangesofthebinarymixturedueto masstransfermaybeobtainedasafunctionoftimeatfixedpressureandtemperature.

IFTasafunctionoftimeismeasuredbytakingintoconsiderationofcorrectphasedensity.

©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://

creativecommons.org/licenses/by/4.0/).

ARTICLE INFO

Methodname:DynamicIFTmeasurement

Keywords:DynamicIFT,Pendantdropmethod,Multiphase,Dynamicdensity Articlehistory:Received13June2018;Accepted21June2018;Availableonline23June2018

*Correspondingauthor.

E-mailaddress:aly.hamouda@uis.no(A.A. Hamouda).

https://doi.org/10.1016/j.mex.2018.06.012

2215-0161/©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://

creativecommons.org/licenses/by/4.0/).

ContentslistsavailableatScienceDirect

MethodsX

journalhomepage: www.elsevier.com/locate/mex

(2)

SpecificationsTable

Subjectarea Selectoneofthefollowingsubjectareas:

ChemicalEngineering Engineering Mathematics

Morespecificsubjectarea Masstransferandinterfacialscience Methodname DynamicIFTmeasurement Nameandreferenceof

originalmethod

Bagalkot,Nikhil,andAlyA.Hamouda.“Experimentalandnumericalmethodforestimating diffusioncoefficientofthecarbondioxideintolightcomponents.”Industrial&Engineering ChemistryResearch56.9(2017):2359–2374.

Zolghadr,Ali,MehdiEscrochi,andShahabAyatollahi.“Temperatureandcompositioneffect onCO2miscibilitybyinterfacialtensionmeasurement.”JournalofChemical&Engineering Data58.5(2013):1168–1175.

Resourceavailability Equipmenttheory:https://www.kruss-scientific.com/services/education-theory/glossary/

pendant-drop/

Equipment:https://www.kruss-scientific.com/products/contact-angle/dsa100/drop- shape-analyzer-dsa100/

Software:https://www.kruss-scientific.com/products/advance-software/overview/

Methodbackgroundanddescription

Interfacialtensionplaysasignificantroleinnumerousengineeringapplicationsinvolvingmultiphase flow.MeasuringtheIFTisacrucialpartofmultiphasesystems,thereareseveralmethodsavailablelikering method,dropvolumemethod,spinningdropmethod,bubblepressuremethodandpendantdropmethod.

Inrecentyears,thependantdropmethodhasbeenwidelyusedasaneffectivemethodwithhighaccuracy (0.05mN/m2) [1,2],especially at elevatedpressure andtemperature.There are severaltypes ofequipment available that rely onpendant drop method to estimate the IFT, few ofthem are IFT-700 (Vinci Technologies), IFT-10-P(Corelaboratories),DSA-00(KRÜSS),andModel-190(ramé-hartinstrument).Mostoftheseuse imageprocessingcombinedwithYoung-LaplaceequationtoestimatetheIFT.

TheprimarydifficultyassociatedwithIFTmeasurementbypendantdropmechanismisprovidingthe appropriatedensitiesofthetwophases,especiallyinasystemconsistingofgas(likeCO2,methane,and propane)andliquids(waterandhydrocarbon).MultiphasesystemslikeCO2-hydrocarbon,CO2-water/brine, andcarbonatedwater-hydrocarbonareofincreasinginterestduetotheirapplicationin petroleum(CO2EOR), environmental (CO2 sequestration) and renewable energy (geothermal). When CO2 contact liquid (hydrocarbon)itdiffusesanddissolvesintotheliquids,formingabinarymixture.Thediffusionofgases intoliquidsaltersthecompositionoftheresultingbinarymixture,hencealterthepropertieslikedensity.

Obtaining thedensity of the binarymixture is complex,especially atelevated pressures and temperaturesandasafunctionoftime.Mostofthestudieshaveneglectedthedensitychangesdueto thesolubilityeffectsofdissolvedgasesinbulkliquidsandhaveusedthedensityofpurefluidsinstead ofthebinarymixture[3,4].Whilesomestudieshaveusedseparatehighpressureandtemperature densitymeasuringequipmentatequilibriumcondition(notdynamic),whichcomplicatesthesystem [5,6],asitrequirestwodifferentsetups.Somestudieshaveevenusedacomplexequationofstate model(GERGequationofstate(EOS))[7].

Inthepresentstudy,asimpleandeffectivemethodisusedtomeasurethedynamicandequilibrium IFTofthefluid-fluidsystem withamasstransferacrosstheinterface.InsteadofacomplicatedEOSmodel or expensive additional instrument, in the presentmethod, the density of changes in the hydrocarbon due toCO2masstrasferismeasuredfromacombinationofexperimentalandanalyticalapproach,andthe obtaineddensityisthenusedtoestimatetheIFTbypendantdroptechnique.

PrincipleofIFTmeasurement

Thependantdropmethodisaneffectiveandpopularmeanstomeasuretheinterfacialtensionof liquid-liquidorliquid-gassystem.Inthependantdropmethod,thedropiscreatedfromaneedle

(3)

(capillarytube)inabulkphase(liquidorgas)insideaPVT-cell.Theshapeofthependantdropis governedbygravityandthesurface/interfacialtension.TheIFTiscalculatedfromtheshadowofthe digitalimagecapturedbythecamerausingthedropshapeanalysis.Thedropshapeanalysisrelieson Young-Laplaceequation(Eq.(1))forcalculationofIFT[8,9].

D

P¼

s

1 r1þ1

r2

; ð1Þ

where

D

Pisthepressureacrosstheinterface;r1andr2aretheprincipalradiiofthependantdrop,and

s

istheinterfacial/surfacetension.

WhilecarryingoutanIFTmeasurement,thescaleofthedigitalimageismeasuredfirsttogetthe actualdimensionofthependantdrop.Oncethescaleisobtained,usinggreyscaleanalysis,theshape ofthedropisthendetermined.Ashapeparameter(B)isthenadjustedinanumericalmethoduntilthe calculateddropshaperesembleswiththeactualshape.Theinterfacialtensionmaythenbecalculated fromEq.(2)fromthedensitydifferencebetweenthePgandPd(

Dr

=Pd–Pg)andthemodifiedshape parameter(B)[8,10].

s

¼

Dr

gd2

B ; ð2Þ

where

Dr

isthedensitydifferencebetweenthephases;gistheaccelerationduetogravity,anddisthe maximumhorizontaldiameteroftheunmagnifiedpendantdrop.

FromEqs.(1)and(2)itmaybeobservedthatexceptfordensitydifference(

Dr

),therestofthe

parametersarecalculatedbytheimageprocessingsoftware.Thedensityofthephasesgoesasinput thattheuserhastoprovide.Therefore,evenifthesoftwareishighlyaccurate,aninaccuratedensity inputwouldresultinanincorrectIFT.Therefore,theactualdensityofthephasesplayacrucialrolein estimationoftheIFT.

Materials

Inthepresentstudy,CO2(PRAXAIRwithpuritygreaterthan99%)andn-decane(MerckKGaAwith purity99%)wereusedastheexperimentalfluids.NISTChemistryWebBook[11]wasthesourceof densityandviscositymeasurementsforpuresubstances(n-decane,andCO2).

Experimentalsetup

Fig.1Ashowstheschematicsoftheexperimentalsetup.ThecriticalpartofthesetupistheHigh- PressurePendantDropApparatus(PD-E1700LL-H)(PVT-cell)builtbyEUROTHECHNICAandKRUSS[12], whichhasbeenusedtomeasuretheinterfacialtension.InFig.1A,PVT-celliscorrosionresistant,high-

Fig.1.(1A)Schematicsoftheexperimentalsetup;(1B)ArrangementofthependantdropinthePVT-cell.

(4)

pressurecylindricalchamber(25mlcapacity)havingalimitingpressureandtemperatureof690barand 180C respectively. The PVT-cell is a see-through chamber, inwhich the pendant drop will be created.Fig.1B showsthearrangementofdropphase(pendantdrop,Pd)andthesurroundingenvironmentalphase(gas orliquid,Pg)inthePVT-cell.ThetemperatureofthePVT-celliscontrolledbyaNiCr-Nithermocouple fittedwithadigitalindicator.Thepressureofthesystemismaintainedexternallythroughapump (maximumpressureof32MPa,GILSON)connectedtothegascylinder.ThePVT-cellhasasee-through windowandisplacedbetweenahigh-resolutioncamera(CF03),andalightsource.KRUSSDSA100 (ADVANCE)[13]softwareisusedtoanalysetheacquiredimagesandcomputethePdvolume,and interfacialtension(IFT)atpre-settimesteps.Further,detailsoftheexperimentalsetupmaybefoundin BagalkotandHamouda[14].Thepressuresensorhasanaccuracyof0.1MPa,whilethetemperature sensorhasaccuracyof0.1Cat0Cto0.8Cat400C,respectively.

ProcedureformeasurementofIFT

InthecurrentworktheCO2-decanesystemhasbeentakenasthereferencesystem,withCO2being theenvironmentalphase/fluid(Pg)andn-decanethedropphase/fluid(Pd).Fig.2showstheschematic representationoftheprocessinvolvedinthemeasurementofIFT.

1ThePVT-cellisfilled withtheenvironmentalfluidatrequiredpressureusingtheCO2cylinder connectedtothepump,whichissetattherequiredpressureasshownintheFig. 1A.Therefore,atall timesthepressureinsidethePVT-cellismaintained.Further,thetemperatureofthePVT-cellisset, whichismaintainedbyaNiCr-Nithermocouple.

2Once the PVT-cell consisting of environmental fluid achieves the required pressure and temperature,ann-decanependantdrop(Pd)iscreatedattheendofthecapillarytubeasshown intheFig.1B.

3Assoonasthependantdropiscreated,thecameraandtheADVANCEsoftwarestartstocapturethe high-resolutiondigitalimagesofthependantdropfortheanalysis.

4DiffusionofCO2(Pg)intothen-decane(Pd)startswhenthefluidscomeincontactwitheachother, resultinginabinarymixtureofCO2+decane.ThediffusionofCO2wouldresultinincreasedvolume ofPd.Theexperimentwillcontinueuntilthevolumeofthependantdrophasreachedequilibrium

Fig.2.SchematicrepresentationoftheprocessinvolvedinthemeasurementofIFT.

(5)

(pointabovewhichthereisnoorminimalincrementinthevolumeofthependantdrop)(Fig.3at 50bar25C).

5 Fromtheimagescaptured,withtheaidoftheimageanalysissoftware,thevolumeofthePdat differenttimestepswillbeobtained(Fig.3).

Atthestartoftheexperiment(timet=0),thePdconsistssolelyofn-decane(100%hydrocarbon).

WiththeinitiationoftheCO2diffusion(t>0s),thevolumeofthePdincreasesduetotheadditional volumeofCO2.Hence,thevolumeofthependantdrop(VPd)wouldbeasummationofthevolumeof hydrocarbon(VHC)andtheincreaseinvolumecausedbythediffusionofCO2(VCO2)inthePd,as givenbyEq.(3).

VPdðtÞ¼VCO2ðtÞþVHC ð3Þ

Forafixedtemperatureandpressurethevolumeofthen-decanewouldbesameasthatduringthe startoftheexperiment(sincethePVT-cellisclosedforanyadditionaldecanemasstocomein).

Hence, in Eq. (3) VPd (obtained from the experiment (step 5) and VHC are known,therefore rearrangingEq.(3)wouldgivethevolumeofCO2inthependantdropasgivenbyEq.(4).

VCO2ðtÞ¼VPdðtÞVHC ð4Þ

6 FromtheacquiredvolumeofCO2(VCO2)anddecane(VHC)inPdateverytimestep(step5),themassand moles,andhence, themole fraction ofCO2(xCO2), andn-decane (xHC) may beobtained atalltime steps.

7 ThecalculateddynamicmolefractionofCO2(xCO2)andmolefractionofn-decane(xHC)wasfurther beusedtoobtainthedensityofthePdconsistingofabinarymixture(

r

Pd)ateveryexperimental timestepbyEq.(5)[15–17].

r

ðtÞPd¼ðxðtÞCO2

r

CO2ÞþðxðtÞHC

r

HCÞ

P;T; ð5Þ

where

r

CO2and

r

HCarethedensitiesofCO2andhydrocarboninthedrop,respectively(obtained fromNISTwebbook[11]).

8 ThedensitydataoftheCO2anddensityofpendantdropconsistingofCO2+n-decanefromEq.(5) wasusedasaninputtothesoftwaretoobtainthedynamicandequilibriumIFToftheCO2-decane system.

Validation

AsdescribedinSection1.1,forthependantdropmethodtheIFTmeasurementisafunctionofthe densityofphases.Therefore,tovalidatethepresentmethod,itwouldbesufficienttovalidatethe

Fig.3.Volumeofthependantdropasafunctionoftime.

(6)

densityvaluescalculatedfromtheEq.(5),withthatobtainedinliterature.DensitydataofCO2+decane binarymixtureat34barand40CobtainedbyKandiletal.[16]wasusedtovalidatethepresent method.ThedensityofthepresentworkandthatformKandil,etal.[16]werebeinputintothe software for theexperiments carried out at 35bar,and 40C withthe CO2-decane system. The obtainedIFT’swerethencomparedforbothofthedensityinputs(Table1).Itmaybeobservedthat bothdensityandobtainedIFTofthepresentmethodarecomparablewithKandiletal.[16],therefore, validatingthepresentmethodofcalculatingthedensityandhence,theIFT.

Methodresultsandcomparison

Todemonstratetheimportanceofcorrectphasedensities(PgandPd)intheestimationofIFT,two differentmethodsondensityinputfromtheliteraturewereusedandcomparedwiththemethod presentedinthecurrentarticle.Allthreemethodsareanalysedusingthesameexperimentcarriedout at50bar,25CforaCO2-decanesystem.Thedetailsofeachofthesemethodsaredescribedbelow:

Case1(initialdensity)[3,4]:This method usesthepurephase density(CO2and decane) andneglecting thedensitychangesduetothediffusedgases(CO2+decane)inbulkliquidstoestimatetheIFT.

Case2(equilibriumdensity)[2,6]:Inthismethod,theIFTismeasuredusingtheequilibriumphase density.Thedensitychangeduetothesolubilityofgaseswasthenconsidered,however,itisdoneonly atequilibrium(finalpoint),andthisequilibriumdensityisusedtoestimateIFTforthewholeprocess (atalltimes).

Case3(dynamicdensity,presentmethod):HeretheIFTismeasuredusingthecorrecteddensityof thephases(Pg(CO2)andPd(CO2+decane))ateverytimestepcalculatedfromEq.(5),thenfollowing theprocedure described in section2.0. The present methodimproves case-2 asit is capable of calculatingthedensitychangeofthedropphase(CO2+decane)causebythesolubilityofthegas,asa function of time. This is unlike in case-2 where only the density of equilibrium is considered.

Therefore,thepresentmethodreflectsthereal-timechangesindensityonIFT,withoutrequiring additionalsetupasincase-2.

Fig.4showsthedensityofthependantdropphaseobtainedfromthethreecases1–3asafunction oftimeat50barand25CfortheCO2-decanesystem.Thedifferenceinthedensityvstimeprofile Table1

ValidationofdensityandIFTofthepresentmodelatequilibriumcondition.

Study DensityofCO2-decanependantdrop(g/ml) DensityofCO2[11](g/ml) IFT(mN/m)

Kandiletal.[16] 0.720 0.07087 12.85

Presentmethod 0.711 0.07087 12.53

Fig.4.Densityofthependantdropasafunctionoftimeforcase-1,case-2andcase-3at50barand25C.

(7)

amongthecases(1–3)isevident.Thedensityforcase-1(initialdensity)andcase-2(equilibrium density)remainconstantwithtime,whilethedensityforcase-3(dynamicdensity)whichrepresent theactualscenariovaries(decreases)withtime,depictingchangesindensityofthedropphase(Pd) duetothesolubilityofCO2indecane.

Fig.5showstheIFToftheCO2-decanesystemforcase1,case-2,andcase-3at50barand25C.Itis clearfrom the Fig. 5 that different IFT vs time profiles are obtained for the same experiment, emphasising,thedependencyoftheIFTmeasurementonthedensity.Since,bothcase-1andcase-3do notconsiderthedynamicchangeinthedensityofpendantdropduetothesolubilityofagasina liquid,thedynamicIFTmeasuredbythesemethodsaredifferentfromtheonewherethesolubility effectisconsidered(case-3).TheerrorintheestimationofIFTvariesfromamaxof13.4%tominof0.2%

forcase-1andmaximumof14.7%toaminimumof0.2%forcase-2whencomparedtocase-3.However, theequilibriumIFTforcase-2andcase-3seemstobesameorneartoeachother.IfequilibriumIFTis thefocusofthestudyandnotthedynamicnatureoftheIFT,thenapplyingthecase-2wouldbefine,as thedensitiesofthephasesrepresenttheequilibriumconditions.However,ifthedynamicchangesin theIFT,aswellastheequilibriumIFT,istobeanalysed,thencase-3wouldbethebestoption(followed inthepresentstudy),asthedensitiesofthephasesarecalculatedatdifferenttimeintervalsuntil equilibriumisreached.ObtainingIFTusingthecase1approachwouldleadtoanerror,asthedensity representonlytheinitialstateofthesystem,nottheequilibriumorthedynamic.

Drawbacksandrecommendations

Althoughthemethodpresentedissimple,reliable,andfreefromhumaninterference,themajor setbackwouldbemanuallyenteringthedensityofphasesinthesoftware.Thetaskmayseemsimple, buttoobtainhighresolutiondynamicdata,itrequiresalotofentries.Further,ifexperimentsare carriedoutwithsensitivityforbothtemperatureandpressure,thenumberofentriesismultiplied accordingly.Anexample,a4-hexperimentwithdynamicIFTdataforevery5minandsensitivityfor two temperatures and three pressuresresults inn 576manual inputs (two for each time-step).

However,sincetheprocessisrepetitive,itisstraightforwardtoletcomputer-scriptsperformthetask.

Moreimportantly,theproblemcanbeeliminatedifthesoftware-developers allowedforinputof densityofphasesobtainedfromthemodelaseitherafunctionoftimeorasatablewithtimeand densityofthephases.

References

[1]D.Yang,P.Tontiwachwuthikul,Y.Gu,Interfacialtensionsofthecrudeoil+reservoirbrine+CO2systemsatpressuresupto 31MPaandtemperaturesof27Cand58C,J.Chem.Eng.Data50(4)(2005)1242–1249.

Fig.5.DynamicIFTCO2-decanesystemasafunctionoftimeforcase-1,case-2andcase-3at50barand25C.

(8)

[2]M.Ghorbani,A.H. Mohammadi,Effects of temperature,pressureand fluidcomposition onhydrocarbon gas-oil interfacialtension(IFT):anexperimentalstudyusingADSAimageanalysisofpendantdroptestmethod,J.Mol.Liq.227 (2017)318–323.

[3]D.Yang,P.Tontiwachwuthikul,Y.Gu,Dynamicinterfacialtensionmethodformeasuringgasdiffusioncoefficientand interfacemasstransfercoefficientinaliquid,Ind.Eng.Chem.Res.45(14)(2006)4999–5008.

[4]D.Yang,Y.Gu,Interfacialinteractionsofcrudeoil-brine-CO2systemsunderreservoirconditionsSocietyofPetroleum Engineers,SPEAnnualTechnicalConferenceandExhibition(2004).

[5]A.Zolghadr,M.Riazi,M.Escrochi,S.Ayatollahi,Investigatingtheeffectsoftemperature,pressure,andparaffingroupson theN2miscibilityinhydrocarbonliquidsusingtheinterfacialtensionmeasurementmethod,Ind.Eng.Chem.Res.52(29) (2013)9851–9857.

[6]A.Zolghadr,M.Escrochi,S.Ayatollahi,TemperatureandcompositioneffectonCO2miscibilitybyinterfacialtension measurement,J.Chem.Eng.Data58(5)(2013)1168–1175.

[7]P.T. Jaeger, R. Eggers, Interfacial properties at elevatedpressuresin reservoir systemscontaining compressedor supercriticalcarbondioxide,J.Supercrit.Fluids66(2012)80–85.

[8]M.Alotaibi,H.Nasr-El-Din,Effectofbrinesalinityonreservoirfluidsinterfacialtension,Pap.SPE121569(2009).

[9]K.V.Greenway,Effectofdifferentsurfactantstructuresonthebrine-crudeoilandbrine-alkaneinterfaceindifferent aqueousenvironments,TheUniversityofBergen,2017.

[10]Kruss,PendantDropAvailable:,https://www.kruss-scientific.com/services/education-theory/glossary/pendant-drop/.

[11]P.Linstrom,W.Mallard,NISTChemistryWebbook,NISTStandardReferenceDatabaseNumber69,NationalInstituteof StandardsandTechnology,GaithersburgMD,20899,2010.

[12]Kruss(2016,04/05)DropShapeAnalyzerDSA100.Available:https://www.kruss-scientific.com/products/contact-angle/

dsa100/drop-shape-analyzer-dsa100/.

[13]Kruss (2016, 04/05) ADVANCE Software. Available: https://www.kruss-scientific.com/products/advance-software/

overview/.

[14]N.Bagalkot,A.A.Hamouda,Experimentalandnumericalmethodforestimatingdiffusioncoefficientofthecarbondioxide intolightcomponents,Ind.Eng.Chem.Res.56(9)(2017)2359–2374.

[15]M.McBride-Wright, G.C.Maitland,J.M. Trusler, Viscosityand densityof aqueous solutionsof carbon dioxide at temperaturesfrom(274to449)Kandatpressuresupto100 MPa,J.Chem.Eng.Data60(1)(2014)171–180.

[16]M.E.Kandil,N.M.Al-Saifi,A.S.Sultan,Simulationandmeasurementsofvolumetricandphasebehaviorofcarbondioxide+

higheralkanesathighpressure:CO2+n-decaneattemperatures(313–410)Kandpressuresupto76MPa,Int.J.Greenh.Gas Control53(2016)198–206.

[17]J.Zambrano,F.V.Gómez-Soto,D.Lozano-Martín,M.C.Martín,J.J.Segovia,Volumetricbehaviourof(carbondioxide+

hydrocarbon)mixturesathighpressures,J.Supercrit.Fluids110(2016)103–109.

Referanser

RELATERTE DOKUMENTER

Faraday rotation receivers on the rocket and the EISCAT UHF incoherent scatter radar provided simulta- neous electron density profiles whereas the ALOMAR Na lidar and meteor

To obtain further understanding about the interaction between cobalt / iron and carbon in bulk at equilibrium state, the total density of states (TDOS) and partial density of

How does the density profile inside the core (the mass density as a function of the radius r) vary with time during the collapse?.. Examination, course TFY4345 Page 3 of 4 Problem

Regular sampling of the visibility function using graphics hardware is expensive, because it either re- quires sorting the primitives (and rendering them back-to- front), or slicing

Two ap- proaches for visualizing time-varying multivariate data sets are introduced: (1) Temporal Density Parallel Coordinates (TDPC), which extends the use of density maps and

This paper presents analysis of the effects of the parameters of the heuristic voxel density algorithms in (1) the geometry and struc- tural performance of the final design and, (2)

The computed time series of the internal water level and discharge velocity (Figure 15) had also similar shape as that for Case 1 (Test ID 8) with large density difference..

In this work, we propose a method for dynamic simulations of carbon dioxide using the Span–Wagner reference equation of state.. The simulations are based on using the density