• No results found

A stepwise neuron model fitting procedure designed for recordings with high spatial resolution: Application to layer 5 pyramidal cells

N/A
N/A
Protected

Academic year: 2022

Share "A stepwise neuron model fitting procedure designed for recordings with high spatial resolution: Application to layer 5 pyramidal cells"

Copied!
20
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

ContentslistsavailableatScienceDirect

Journal of Neuroscience Methods

j ou rn a l h o m epa g e :w w w . e l s e v i e r . c o m / l o c a t e / j n e u m e t h

A stepwise neuron model fitting procedure designed for recordings with high spatial resolution: Application to layer 5 pyramidal cells

Tuomo Mäki-Marttunen

a,b,∗

, Geir Halnes

c

, Anna Devor

d,e,f

, Christoph Metzner

g

, Anders M. Dale

d,e

, Ole A. Andreassen

a,h

, Gaute T. Einevoll

c,i

aNORMENT,KGJebsenCentreforPsychosisResearch,InstituteofClinicalMedicine,UniversityofOslo,Oslo,Norway

bSimulaResearchLaboratory,Lysaker,Norway

cFacultyofScienceandTechnology,NorwegianUniversityofLifeSciences, ˚As,Norway

dDepartmentofNeurosciences,UniversityofCaliforniaSanDiego,LaJolla,CA,USA

eDepartmentofRadiology,UniversityofCalifornia,SanDiego,LaJolla,CA,USA

fMartinosCenterforBiomedicalImaging,MassachusettsGeneralHospital,HarvardMedicalSchool,Charlestown,MA,USA

gBiocomputationResearchGroup,UniversityofHertfordshire,Hatfield,UK

hDivisionofMentalHealthandAddiction,OsloUniversityHospital,Oslo,Norway

iDepartmentofPhysics,UniversityofOslo,Oslo,Norway

h i g h l i g h t s

•NewVSDandCa2+-imagingtechniquesallowhigh-resolutionimagingofneurons.

•Wepresentastepwisemodel-fittingschemewithpossibilitiestoapplytosuchdata.

•Weapplyourmethodtosimulateddatatoconstructareduced-morphologyL5PCmodel.

•Ourmodeliscost-efficientandreproducesthemainfeaturesoftheoriginalmodel.

•OurmodelpredictsthatinterconnectedL5PCscanamplifylow-frequencyinputs.

a r t i c l e i n f o

Articlehistory:

Received8September2016

Receivedinrevisedform7September2017 Accepted5October2017

Availableonline7October2017 Keywords:

Multi-compartmentalneuronmodels Biophysicallydetailedmodeling Modelfittingusingimagingdata Automatedfittingmethods Parameterpeeling

a b s t r a c t

Background:Recentprogressinelectrophysiologicalandopticalmethodsforneuronalrecordingspro- videsvastamountsofhigh-resolutiondata.Inparallel,thedevelopmentofcomputertechnologyhas allowedsimulationofever-largerneuronalcircuits.Achallengeintakingadvantageofthesedevelop- mentsistheconstructionofsingle-cellandnetworkmodelsinawaythatfaithfullyreproducesneuronal biophysicswithsubcellularlevelofdetailswhilekeepingthesimulationcostsatanacceptablelevel.

Newmethod:Inthiswork,wedevelopandapplyanautomated,stepwisemethodforfittinganeuron modeltodatawithfinespatialresolution,suchasthatachievablewithvoltagesensitivedyes(VSDs)and Ca2+imaging.

Result:Weapplyourmethodtosimulateddatafromlayer5pyramidalcells(L5PCs)andconstructamodel withreducedneuronalmorphology.Weconnectthereduced-morphologyneuronsintoanetworkand validateagainstsimulateddatafromahigh-resolutionL5PCnetworkmodel.

Comparisonwith existingmethods:Ourapproachcombinesfeaturesfromseveralpreviouslyapplied model-fittingstrategies.Thereduced-morphologyneuronmodelobtainedusingourapproachreliably reproducesthemembrane-potentialdynamicsacrossthedendritesaspredictedbythefull-morphology model.

Conclusions:Thenetworkmodelsproducedusingourmethodarecost-efficientandpredictthatinter- connectedL5PCsareabletoamplifydelta-rangeoscillatoryinputsacrossalargerangeofnetworksizes andtopologies,largelyduetothemediumafterhyperpolarizationmediatedbytheCa2+-activatedSK current.

©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

Correspondingauthorat:SimulaResearchLaboratory,Lysaker,Norway.

E-mailaddress:tuomo@simula.no(T.Mäki-Marttunen).

1. Introduction

Automatedmethods for neuron model fitting have replaced theneedformanualtuningofmodelparameters(VanGeitetal., https://doi.org/10.1016/j.jneumeth.2017.10.007

0165-0270/©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).

(2)

2008).Duetotheease oftheiruse, theycouldprovidea solu- tion for exploiting computational properties of single neurons andneuralcircuits(Markrametal.,2015).Novelalgorithmsand strategiesforautomatedneuronmodelfittinghavebeenproposed (Kerenet al.,2005;Druckmann etal.,2007,2011; Hendrickson et al., 2011; Bahl et al., 2012; Brookings et al., 2014; Rumbell etal.,2016).Thesemethodsspanawiderangeoftypesofneu- ronsandtheirelectrophysiologicalcharacteristics.Manyofthese strategiesonlyusevoltagetracesrecordedfromthesoma,while others rely on electrophysiological recordings at one or more additionaldendritic locationsin orderto reproducethecorrect membrane-potentialdynamicsdistributedacrossthesub-cellular compartments. However, recording with multiple intracellular electrodesisanexperimentallydemandingprocedureultimately limitedbythenumberofmicromanipulatorsthatcanfitinasetup, theexperimenter’sskills,andintegrityofthecellinthepresence ofmultiplerecordingelectrodes(Wangetal.,2015).Bycontrast, recent developments of opticalimaging technologiesand engi- neeringofnovelvoltage-sensitivedyes(VSDs)andCa2+indicators haveenabledhigh-resolutionsamplingoftransmembranevoltage andintracellularCa2+concentrationinsingleneuronswithsub- cellularresolution(belandHelmchen,2007,1;Peterkaetal.,2011;

Hochbaumetal.,2014;Grienbergeretal.,2015;Anticetal.,2016;

Louetal.,2016).Inthiswork,wedevelopanautomated,stepwise procedureforfittingamulticompartmentalneuronmodeltodata fromsomaticpatch-clamprecordingsincombinationwithVSDand Ca2+-imagingdata.

Interactionsbetweensynapticinputstothedendritesandfir- ing of the somaare a hallmark of neural computation (Smith etal.,2013).ThisisespeciallytrueforL5PCs,whicharecharac- terizedbyalongapicaldendritethatspansacrosscorticallayers andreceivesinputsfromvariousneuronpopulationsindifferent partsofthedendritictree(Larkum,2013).Theapicaldendriteis rich involtage-gated Ca2+channels thatcontribute tothegen- erationofa dendriticCa2+spike(Schilleretal.,1997).ThisCa2+

spikeplaysanimportantroleinintegrationofsynapticinputsto theapicaltuft,communicationofthesesignalstothesoma,and coincidencedetectionintheformoftheback-propagatingaction potential-activatedCa2+spike(BAC)firing(Larkum,2013).L5PCs expressmanytypesofvoltage-gatedionchannels(Korngreenand Sakmann,2000;Christopheetal.,2005;Almogetal.,2009),and anumberofcomputationalmodelshavebeendevelopedaccount- ingforthesebiophysicalproperties(Kerenetal.,2005,2009;Bahl etal.,2012;MainenandSejnowski,1996;Durstewitzetal.,2000;

Hayetal.,2011;AlmogandKorngreen,2014).Themultitudeof typesofvoltage-gatedionchannels,however,representsachal- lengeformodelingofthemembrane-potentialdynamics:unless specificcare istaken, therole ofa specific ion-channelspecies maybeassignedtoanotherion-channelspecieswhenbothcon- ductancesarefittedsimultaneously,i.e.,constrainedbythesame objectivefunctions(Achardetal.,2006).Totacklethisproblem, inKerenetal.(2009),aparameterpeelingexperimentalproce- durewasintroduced,inwhich specifictypesofionchannelsin L5PCareblockedsequentiallyusingdrugs,andtheneuronresponse todifferentstimuliarerecorded ateachstage.Theion-channel conductancesarethenfittedstep-by-steptothesedata.Another strategywasexploredinBahletal.(2012),where experimental datafromL5PCswithandwithoutapicaldendrite(occludedusinga

“pinching”method(BekkersandHäusser,2007))wereusedduring oneofthethreestagesoffitting.Inthiscase,thedatafordifferent stagesoffittingwereobtainedfromseparateexperiments.Both techniquesfacilitatetheoptimizationprocedurebyreducingthe numberoffreeparametersthatarefittedsimultaneously.

Reduced-morphologymodelsmaybecrucialinsimulationsof largenetworksduetothelightercomputationalloadtheyimpose.

Whilethelevelofdetail inthemorphologiesobtainedfrom3D

reconstructionsishigh,theelectrophysiologicalpropertiesofthe distal dendritic segments,as well as the heterogeneity of ion- channelpopulationsbetweendifferentdendriticbranches,remain elusive (Häusser et al., 2000) and are generally not taken into account in the models. However, in many neuron types, den- driticelectrophysiologicalpropertiesvarymonotonicallywiththe distance from the soma(Migliore and Shepherd, 2002), which favorstheuseofsimplified(yetmulti-compartmental)morpholo- gies.Thesesimplifiedmodelsshouldreproducetheexperimentally observedpropertiesofcommunicationbetweenperisomaticand (proximaltomid-distal)dendriticsectionsoftheconsideredneu- ron while reducing the computational load in comparison to full-morphologymodels.

Inthiswork,weusetheexperimentallyvalidatedmodelintro- ducedinHayetal.(2011)(“Hay model”)togeneratesimulated VSDand Ca2+-imagingdataaswellassimulated electrophysio- logicalrecordingsinaL5PC.Wesimulatetheparameterpeeling procedurebysequentiallysettingchannelconductancesofdiffer- ention-channelspeciestozerointheHaymodelandmeasuringthe neuronresponsestodifferentstimuliundertheseblockades.We thenfitthechannelconductancesinafour-compartmentmodelto reproducethesedata.Weproposeandapplyafour-stepscheme, wherethethreefirststepsutilizeinformationonvoltageandintra- cellularCa2+concentrationsalongthedendriteswithhighspatial resolution.Thefirststepfitstheparametersofreducedmorphol- ogy,inasimilarfashionasinBahletal.(2012),andparameters controllingpassivemembraneproperties.Thesecondstepfitsthe non-specific ion-channelconductances.Theseare importantfor correctlydescribingthedistaldendriticexcitability.Thethirdstep fitstheCa2+channelconductancesandSKchannelconductances andtheparametersdescribingCa2+dynamics.Thefourthstepfits therestoftheactiveconductances, includingtheconductances responsibleforthespikingbehavior.Weshowthattheobtained reduced-morphologyL5PC model iscost-efficient and faithfully reproducesthemembranedynamicsandspikingbehavior,includ- ingtheBACfiring.Furthermore,wetestourmethodforfittinga neuronmodelwithafull,reconstructedmorphology,andfindthat acceptablefittingresultsareobtainedalsowhenusingthiscomplex dendriticmorphology.

Theobtainedreduced-morphologymodelisespecially useful in network simulationsdue toits lighter requirementsof ran- dom access memory and computation time. We validated our modelbyintroducingit ina biophysicallydetailed L5PCmicro- circuitmodel (Hay andSegev, 2015), which originallyincluded thefull-morphology Haymodel neurons,and showingthat the twomodelsyieldedsimilarnetworkdynamics.Ourcircuitmodel ofreduced-morphologyL5PCspredictsthatinterconnectedL5PCs amplifycertaindelta-range frequenciesdue tothelargecontri- butionsoftheCa2+-activatedK+currents(SKcurrents)tothecell electrophysiology.

2. Materialsandmethods 2.1. TheL5PCmodel

TheHaymodelofanL5PC,aswellasthereduced-morphology modeldevelopedhere,includethefollowingioniccurrents:fast inactivatingNa+current(INat),persistentNa+current(INap),non- specific cation current (Ih), muscarinic K+ current (Im), slow inactivatingK+current(IKp),fastinactivatingK+current(IKt),fast non-inactivating K+ current (IKv3.1), high-voltage-activated Ca2+

current(ICaHVA),low-voltage-activatedCa2+current(ICaLVA),small- conductanceCa2+-activatedK+current(ISK),andfinally,thepassive leakcurrent(Ileak).Thecurrentbalanceequationofeachsegment

(3)

oftheneuronalmembranecanthusbewrittenas Cm∂V

∂t =INat+INap+Ih+Im+IKp+IKt+IKv3.1 +ICaHVA+ICaLVA+ISK+Ileak+Iaxial,

whereeachcurrentspecies,exceptfortheaxialcurrent,isaproduct ofactivationandinactivationvariablesas

I=gm¯ NmhNh(E−V).

Here, ¯gisthemaximalconductanceoftheionchannels,mandhare theactivationandinactivationvariables,NmandNhareconstants describingthegatingmechanismsofthechannel,andEistherever- salpotentialcorrespondingtotheionicspecies.Reversalpotentials ofNa+andK+areconstants(ENa=50mV,EK=−85mV),whilethe reversalpotentialofCa2+isdeterminedthroughtheNernstequa- tionbytheintracellular[Ca2+](typically,valuesofECaintheHay modelvarybetween96and120mV(Mäki-Marttunenetal.,2016)).

TheaxialcurrentIaxialisdeterminedbytheaxialresistanceandthe voltagedifferencebetweentheconsideredmembranesegmentand itsneighbors.Fordetailsonthemodelequations,seeHayetal.

(2011).

Theintracellular[Ca2+]obeysthefollowingdynamics:

d[Ca2+]

dt =ICaHVA+ICaLVA

2Fd −[Ca2+]−cmin decay ,

where ICaHVA and ICaLVA arethe highand low-voltage activated Ca2+currentsenteringtheconsideredcellsegment,represents thefractionofCa2+ionsentering thecellthatcontributetothe intracellular[Ca2+],FtheFaradayconstant,disthedepthofthe sub-membranelayerconsideredforcalculationofconcentration, cmin therestingintracellular[Ca2+],anddecayisthedecaytime constantoftheintracellular[Ca2+].

Inthiswork,werunparameter-fittingtaskswhereweassume theion-channeldynamicsfixed,andonlyvarytheparametersgov- erningthemaximalconductances,namely,gNat,gNap,gh,gm,gKp, gKt,gKv3.1,gCaHVA,gCaLVA,gSK,andgl,andparameters anddecay thatcontroltheCa2+dynamics.

2.1.1. Synapsemodel

Themodelforsynapticcurrents,whichareusedinsimulations includinginvivo-likebackgroundsynapticfiring,isadoptedfrom HayandSegev(2015).EachexcitatorysynapseconductsAMPA- andNMDA-mediatedcurrents,andeachinhibitorysynapsecon- ductsGABAA-mediated currents.These aremodeledas follows:

IAMPA=wAMPAgGlu(BAMPA−AAMPA)(EGlu−V) INMDA=wNMDAgGlu(BNMDA−ANMDA)(EGlu−V)cMg2+

IGABA=wGABAgGABA(BGABA−AGABA)(EGABA−V).

Here, wAMPA, wNMDA, and wGABA are synaptic weights, gGlu=0.0004␮S is the baseline conductance of a single gluta- matergic synapse and gGABA=0.001␮S that of an inhibitory synapse.VariablesBAMPA,AAMPA,BNMDA,ANMDA,BGABA,andAGABA areincreasedbyapositive constant(chosensuchthatthepeak conductance of the synaptic current after a long silent period wouldbegGluorgGABA)ateach timeofsynapticactivation,and otherwisedecaytowardszero,AfasterthanB,asfollows:

dA dt =−A

A

and dB dt =−B

B

. (1)

Timeconstants for the differentsynaptic species are A,AMPA = 0.2ms,B,AMPA=1.7ms,A,NMDA=0.29ms,B,NMDA=43ms,A,GABA

=0.2ms,andB,GABA=1.7ms.VariablecMg2+representstheMg2+

blockoftheNMDA-activatedchannel,anditsvalueisdetermined bythemembranepotential(JahrandStevens,1990).Parameters EGlu=0mVandEGABA=−80mVarethereversalpotentialsofthe glutamatergicandinhibitorysynapse,respectively.

ThebackgroundsynapsesareactivatedatPoisson-distributed activationtimes,whiletheintra-networksynapsesthatareexclu- sively glutamatergic (when present) are activated immediately aftera spike inthepre-synaptic neuron. Theactivations ofthe synapsesfollowaprobabilisticrule(Ramaswamyetal.,2012)that allowsthemodelingofbothshort-termdepressionandfacilitation.

Fordetails,seeHayandSegev(2015).

2.1.2. Modelimplementation

Throughout the work, the NEURON software (Hines and Carnevale,1997)isusedforsimulatingtheL5PC.Forsingle-cellsim- ulations,theadaptivetime-stepintegrationmethodisused,while for themulti-neuron simulations,the fixedtime step 0.025ms is used. Our NEURON and Python scriptsboth for runningthe parameterfittingsandsimulatingthefittedmodelsarepublicly availableat:https://senselab.med.yale.edu/ModelDB/showModel.

cshtml?model=187474 – in addition, theprincipal model for a singlereduced-morphologyL5PC isdescribed using NeuroML-2 (Cannonetal.,2014).TheNEURONscriptsarebasedonthepublicly availablemodelspublishedinHayetal.(2011)andHayandSegev (2015).WhenimplementingthemodelofHayandSegev(2015) usingourreduced-morphologyL5PCs,weupdatedthebackground synapsemodelasfollows.Wegroupedthebackgroundsynapses thatwerelocatedin thesamesegmentintoone synapsegroup, wheretheindividualsynapsessharedthevariablesAandB(see Eq.(1))–onlytheactivationtimesofeachindividualsynapsewere savedintothememory.Thisradicallydecreasedthecomputational loadimposedbysolvingthedifferentialequations(Eq.(1)).

2.2. Stepwisefittingprocedure

Wepresentaflexiblestepwiseneuronmodel-fittingframework andapplyittofitafour-compartmentmodeltosimulatedelectro- physiologyandimagingdatafromanL5PC.Thefittedparameters arelistedinTable1.Theparametervaluerangesaretakenfrom Table2inHayetal.(2011),withcertainexceptions(seeSupple- mentarymaterial,SectionS1).Duringeachstep,weuseaPython implementation(publishedbytheauthorsofBahletal.,2012)ofthe non-dominatedsortinggeneticalgorithmII(NSGA-II)(Debetal., 2002)fortheparameteroptimization.Thecrossoverandmutation parametersandtheprobabilityofmutationperparameterarekept fixedasc=20,m=20and pm=0.5.Thethreefirstfittingsteps are performedusing Nsamp=1000samples and Ngen=20 genera- tions,thefourthfittingstepusingNsamp=2000samplesandNgen=20 generations–thesevalueswerefoundadequateforobtainingan acceptablefittothedata,althoughnoconvergencetoalocalopti- mumisguaranteed.Thecapacityofthegeneticalgorithmisdouble thepopulationsize.

TheobjectivesaregiveninTable2–seeSection2.2.5fordetails oftheusedobjectivefunctions.Duringeachstep,theparameters thatwereoptimizedduringthepreviousstepsarekeptfixed,while theparametersthatwillbeoptimizedinthefollowingstepsare settozero(simulatingaperfectblockadeofthecorrespondingion channels).

2.2.1. Firststep:Morphology

Wefollowtheprocedureofthefirstfittingstepaspresentedin Bahletal.(2012),withcertainchanges.InBahletal.(2012),theleak conductancesweresettofixedvaluesbothinthetargetmodeland inthereduced-morphologymodelunderoptimization.Here,we donotchangetheleakconductanceinthetargetmodelbutkeepit

(4)

Table1

Thetableofparametersusedineachstepandtheirboundariesandreferencevalues.

Thefirstcolumnshowsthestepinwhichtheparameterisfitted.Thesecondcolumn namestheparameters,andthethirdandfourthcolumnshowthevaluesusedby theoptimizationalgorithmasthelowerandupperlimits,respectively.Thefifth columnshowsthecorrespondingvaluesinthefullmodelnotethatinthefull model,theapicaldendritictreeisdividedintotwoequallylongsections,andincase theparametersvaryspatially,thevaluesshownaretheminimumandmaximumof thevaluesacrossthesesections.ConductancesaregiveninS/cm2,lengthsin␮m, axialresistancesincm,andcapacitancesin␮F/cm2.

Step Parameter Lower Upper Fullmodel

1 Lsoma 11.58 46.34 23.17

1 Lbasal 141.06 564.26 282.12

1 Lapic 325.0 1300.0 650

1 Ltuft 325.26 1301.06 650.53

1 Rsomaa 20 500 100

1 Rbasala 10 1000 100

1 Rapica 10 1000 100

1 Rtufta 10 1000 100

1 csomam 0.5 2.0 1.0

1 cbasalm 0.5 4.0 2.0

1 capicm 0.5 4.0 2.0

1 ctuftm 0.5 4.0 2.0

1 gsomal 2×10−5 0.0001 3.38×10−5

1 gbasall 1.5×10−5 0.0001 4.67×10−5

1 gapicl 1.5×10−5 0.0001 5.89×10−5

1 gtuftl 1.5×10−5 0.0001 5.89×10−5

2 Eh −55 −35 −45

2 gsomah 0 0.0008 1.29×10−6

2 gbasalh 0 0.0008 1.30×10−6–1.71×10−6

2 gapich 0 0.008 1.78×10−6–0.000127

2 gsomal 2×10−5 0.0001 3.38×10−5

2 gbasall 1.5×10−5 0.0001 4.67×10−5

2 gapicl 1.5×10−5 0.0001 5.89×10−5

2 gtuftl 1.5×10−5 0.0001 5.89×10−5

3 gsomaCaHVA 0 0.001 3.66×10−10

3 gapicCaHVA 0 0.0025 5.55×10−5

3 gtuftCaHVA 0 0.025 5.55×10−5–0.000555

3 gsomaCaLVA 0 0.01 3.86×10−8

3 gapicCaLVA 0 0.1 0.000187

3 gtuftCaLVA 0 1.0 0.000187–0.0187

3 soma 0.0005 0.05 0.000501

3 apic 0.0005 0.05 0.000509

3 tuft 0.0005 0.05 0.000509

3 decaysoma 20.0 1000.0 460.0

3 decayapic 20.0 200.0 122.0

3 decaytuft 20.0 200.0 122.0

3 gsomaSK 0 0.1 4.18×10−5

3 gapicSK 0 0.005 0.0012

3 gtuftSK 0 0.005 0.0012

4 gsomaNat 0 4.0 2.04

4 gsomaNap 0 0.01 0.00172

4 gsomaKt 0 0.1 0.0812

4 gsomaKp 0 1.0 0.00223

4 gsomaKv3.1 0 2.0 0.693

4 gapicm 0 0.0005 6.75×10−5

4 gapicNat 0 0.02 0.0213

4 gapicKv3.1 0 0.02 0.000261

4 gtuftm 0 0.0005 6.75×10−5

4 gtuftNat 0 0.02 0.0213

4 gtuftKv3.1 0 0.02 0.000261

fixed.However,similarlyasinBahletal.(2012),wefittheleakcon- ductancesagaininthesecondstep.Thus,theoutputparametersof ourfirststepcanbeinterpretedasoptimallengths,axialresistances andmembranecapacitancesforwhichtheconsideredobjectivescan bewellmetwithsomevaluestheofleakconductances.IntheSup- plementarymaterial,SectionS7,weshowthatthemethodused inBahletal.(2012)produces validfittingresultsin ourframe- workaswell,andinSectionS9,weshowthatthefirststepcanbe combinedwiththesecondonewhenfittinganeuronmodelwith reconstructedmorphology.

FollowingBahletal.(2012),weresetthediametersofeachcom- partmentduringeachiterationoftheoptimizationalgorithmsuch thatthemembraneareaofthecompartmentisequaltothetotal membraneareaofthecorrespondingsegmentsofthefullmodel.

The objectivefunctionsare chosen suchthattheresponse of a reduced-morphologymodelneuronwithoptimalparameters to somaticand apicalinputs isassimilaraspossibletothecorre- spondingresponseinthefull-morphologyneuron.Theaccuracy ofthemodelneuronresponsetosomaticinputs ismeasuredin termsofbothsomaticmembrane-potentialtimeseries(objective 1.3)anddendriticsteady-statevoltagedistribution(objective1.1), whiletheaccuracyoftheresponsetoapicalinputsismeasuredonly inthelatterterms(objective1.2).

2.2.2. Secondstep:Passiveand“nearlypassive”properties

After fixing the morphological parameters (compartment lengths,axialresistancesandmembranecapacitances),weopti- mize therestof theparameters that are majorcontributors to membrane response propertiesat rest.These arethe leakcon- ductances, non-specific ion-channel conductances (gh), and the reversalpotentialofthenon-specificioncurrent(Eh).Inthesame wayasinthefirststep,wesettheobjectivessuchthataneuron modelwithoptimalparametervalueswouldrespondaccurately tosomaticinputbothintermsofmembrane-potentialtimeseries (objective2.1)anditssteady-state distributionacrossdendrites (objective 2.2). We assume the leak reversal potential known (−90mV),butifitisunknown,itshouldbefittedhereaswell.

2.2.3. Thirdstep:Ca2+dynamicsandSKcurrents

Oncethepassivepropertiesandnon-specificionchannelprop- ertieshavebeenoptimized,wesearchfortheoptimalparameters thatgovernCa2+currents,Ca2+dynamics,andCa2+-dependentK+ currents.TheseparametersareintheHaymodelthefollowing:

high-voltageactivated(HVA)andlow-voltageactivated(LVA)Ca2+

channelconductances(gCaHVAandgCaLVA),percentageofCa2+cur- rentinclusionintosub-membranespace(),timeconstantofdecay offreeCa2+(decay),andtheSKchannelconductance(gSK).Itmay beimportantthattheseparametersbefittedsimultaneously,as theCa2+currentshaveastrongfeedbackeffectonthemembrane potentialthroughtheSKchannels.Forthisreason,weuseobjec- tivefunctionsthatpromote both a correctmembrane-potential response and an accurate [Ca2+] response to different stimuli.

A goodfit postulatesthat thesteady-state membrane potential (objective3.2)andCa2+concentration(objective3.3)distributions acrossthedendrites,asaresponsetosomaticDC,aresimilarto thoseinthetargetneuron,andthatthemaximalmembranepoten- tial(objective3.4)andCa2+concentration(objective3.5)responses toanEPSP-likecurrentinjectionareaccurateaswell.Thedistribu- tionofmembranepotentialismeasuredacrossthewholeneuron, whiletheCa2+concentrationonlyneedstobemeasuredattheapi- caldendrite:asthesignalpropagationinthebasaldendritesof anL5PCwasnearlypassive(Nevianetal.,2007),theHaymodel doesnotincludeCa2+channelsinthebasaldendriticcompartments (Hayetal.,2011).Inaddition,themembrane-potentialtimeseries atsomaduringa100-msDCpulseshouldbeascloseaspossible totheoneinthetargetneuron(objective3.1).Thecorrecttempo- ralactivationanddeactivationoftheCa2+andSKcurrentsatthe somaisaprerequisiteforanaccuratespikingbehavior,especially regardingthemediumafterhyperpolarization(AHP)period.

2.2.4. Fourthstep:Correctspikingbehavior

AfterfixingtheparametersgoverningCa2+dynamicsandSKcur- rents,weoptimizetherestoftheparameterstomakethemodel produceacceptablespikingbehavior.Werequirethatthef–Icurve beclosetothatinthetargetneuron(objective4.4),andthatthe somaticmembrane-potentialtimeseriesbesimilartothatinthe

(5)

Table2

Objectivefunctionsusedineachstep.Thefirstcolumnnamestheobjectivessuchthatthenumberleftofthedotindicatesthestepandthenumberrightofthedotindicates theobjectivenumber.Thesecondcolumndescribesthetypeofobjectivefunction,thethirdcolumnindicatesthesiteofrecordingintheneuron,andthefourthcolumn describesthetypeofstimulusused.Thefifthcolumnreferstotheequationcorrespondingtothetypeofobjectivefunction(seeSection2.2.5).Thesixthcolumnliststhe amplitudesofthestimuli:eachvaluerepresentsanindividualrunwhereonlytheshownstimuluswiththeshownamplitudeisappliedtotheneuron,exceptforobjective 4.3,whereacombinationoftwostimuliwitha5msinter-stimulusintervalisapplied.

Objectivenumber Objectivefunction Wheremeasured Stimulustype Eq. Stimulus

amplitude 1.1 Differenceindistributionofsteady-state

membranepotential

Dendrites 3000-msDCpulseatsoma (5) 0.5nA

1.2 Differenceindistributionofpeak membranepotential

Dendrites EPSP-likecurrentinjection attheapicaldendrite 620␮mfromsoma

(5) 0.5nA

1.3 Differenceinmembranepotentialtime series

Soma 100-msDCpulseatsoma (2) −1.0nA

0.0nA 1.0nA 2.1 Differenceindistributionofsteady-state

membranepotential

Dendrites 3000-msDCpulseatsoma (5) 0nA

0.5nA 1.0nA 2.2 Differenceinmembranepotentialtime

series

Soma 100-msDCpulseatsoma (2) 0.5nA

1.0nA 3.1 Differenceinmembranepotentialtime

series

Soma 100-msDCpulseatsoma (2) 1.0nA

2.0nA 3.2 Differenceindistributionofsteady-state

membranepotentials

Dendrites 3000-msDCpulseatsoma (5) 0.5nA

1.0nA 3.3 Differenceindistributionofsteady-state

intracellular[Ca2+]

Apicaldendrite 3000-msDCpulseatsoma (5) 0.5nA 1.0nA 3.4 Differenceindistributionofpeak

membranepotential

Dendrites EPSP-likecurrentinjection attheapicaldendrite620

␮mfromsoma

(5) 0.5nA 1.0nA 3.5 Differenceindistributionofpeak

intracellular[Ca2+]

Apicaldendrite EPSP-likecurrentinjection attheapicaldendrite620

␮mfromsoma

(5) 0.5nA 1.0nA

4.1 Differenceinmembranepotentialtime seriesandnumbersofspikes

Soma 100-msDCpulseatsoma (4) 0.25nA

0.5nA 4.2 Differenceinmembranepotentialtime

seriesandnumbersofspikes

Soma 5-msDCatsoma (4) 1.9nA

4.3 Differenceinmembranepotentialtime seriesandnumbersofspikes

Soma 5-msDCatsomaand

EPSP-likecurrentatapical dendrite

(4) 1.9nA(soma)+ 0.5nA(apical)

4.4 Differenceinnumbersofspikes Soma 3000-msDCatsoma (3) 0.78nA

1.0nA 1.9nA

targetneuron,bothwhengivensomaticsub-thresholdandsupra- thresholdDC(objective4.1and4.2)andacombinationofsomatic andapicalstimulithatinducesBACfiring(objective4.3).Thisstepis computationallythemostchallengingone,bothbecauseofthecost ofevaluatingthef–Icurves(albeitheredoneforonlythreevalues ofcurrentamplitude),andbecauseofthelargegeneticpopulation thatisneededtosecurethattheobjectivefunctionsbemetclosely enough.Itmightbeadvisabletodividethisstepfurtherintotwo steps,where,e.g.,firsttheslowerion-channelconductances(Im, IKp,INap)areoptimized,andfinallytheconductancesofthefaster ones(IKt,INat,IKv3.1).Thisisleftforfuturestudies.

2.2.5. Distancemetricsoftheobjectivefunctions

TheobjectivefunctionsofTable2aredesignedtocapturecor- rectmembrane-potentialbehavioracrossthespatialextentofthe neuron.Certainobjective functionsonly considerthequantities measuredat soma(objectives 1.3, 2.2, 3.1, and 4.1–4.4). These objectivesarefurthercategorizedtothosethataimatcapturing thecorrecttimeseries(objectives1.3,2.2,3.1,4.1),thosethatonly aimatcapturingthecorrectnumbersofspikes(objective4.4),and thosethataimatcapturingboth(objectives4.2and4.3).Thediffer-

enceintimeseriesisquantifiedusingtheL1norm(meanabsolute difference)betweenthetargetandcandidatemembranepotential (afunctionofparametersp)acrossatimewindowrangingfrom 50msbeforethestartofthestimulusto200msafterthestartof thestimulus:

f(p)= 1 250ms·1mV

200 ms

50 ms

|V(p,t)−Vtarget(t)|dt. (2)

TheL1normisrelativelylessstrictagainstdifferencesinspiketim- ingsbetweenthetargetandcandidatedata(butelaboratesmore thebreadthofthetimewindowinwhichdifferencesinmembrane potentialsoccur)thantheL2norm.Thedifferenceinf–Icurvesis quantifiedbythe2-norm,i.e.,

f(p)=

3 i=1

|Nspikes,Ii(p)−Nspikes,target,Ii|2 (3)

whennoothermeasuresareconsidered(objective4.4).However, objectives4.2and4.3useacombinationofspikenumberandtim- ingdata and thetime coursedata– in theseobjectivesallthe differencesarequantifiedusing1-norms:

f(p)=a1

200 ms

50 ms

|V(p,t)−Vtarget(t)|dt+a2

min(Nspikes(p),N

spikes,target) i=1

|tspike(i) (p)−tspike,target(i) |+|Nspikes(p)−Nspikes,target|. (4)

(6)

We chose the coefficients as a1= 250ms1·12mV and a2= 201ms, whichmeansthatanaveragedifferenceof12mVispenalizedas muchasthesummeddistanceof20msbetweenthespiketim- ings,andfurthermoreasmuchasadifferenceofonespikeinspike counts.Thesevaluesgavetheerrorfunctionadesiredempiricalbal- ance,suchthatvoltagetracesthatlooked(byeye)moredifferent fromthetargetdatathanothersalsoreceivedlargererrorvalues.

Therestoftheobjectives,namely,objectives1.1–1.2,2.1,and 3.2–3.5,concernquantitiesmeasuredalongthedendrites–both neartoand farfromsoma. Fortheseobjectives,themembrane potentialsV(eitherthesteady-statemembranepotentialfollow- ingalongstimulusasinobjectives1.1,2.1,and3.2,ormaximal membranepotentialduringapulsestimulusasinobjectives1.2 and 3.4) or Ca2+ concentrations c (objectives 3.3 and 3.5) are quantified across the spatial extent. This is done using either 20 (in simulations of reduced-morphologyL5PCs when synap- tic backgroundinputsare notmodeled)or 5(in simulationsof reconstructed-morphologyL5PCsandreduced-morphologyL5PCs withspontaneoussynaptic inputs)recordingsitespercompart- ment.Withfourcompartmentsinthereduced-morphologyneuron and 193 in the full-morphology neuron, this implies that the total numbers of recording sites are Nrecs(reduced)=80 (for objec- tives1.1–3.5)andN(full)recs =965.Foreachrecordingsite,aspatial coordinatedis determinedbyitsdistancefromsoma;negative valuesof dareassigned torecording sitesalongthebasal den- driteandpositivevaluesalongtheapicaldendrite.Thedifference ofthese2-dimensionaldata,(d(i)(p),V(i)(p))i=1,...,Nrecs(reduced)and (d(i)target,Vtarget(i) )i=1,...,N(full)recs is quantified asfollows. First, we disregardthedatacorrespondingtothoserecordingsitesatthe reducedmorphologythat arefurtheraway fromthesomathan thefarthestsitesinthereconstructed morphology.Inourwork, thisisdoneforrecordingsitesforwhichd<−282␮mord>1301

␮m (i.e. d outside the spatial extent of cell #1 in Hay et al.

(2011)).Second,wenormalizetheremainingdatabythemaximal range(maxi(d(i)target)−mini(d(i)target)ormaxi(Vtarget(i) )−mini(Vtarget(i) )), andhencetheresultingdataareinR2 plane,wheretheaverage distanceofthereduced-morphology-neurondatafromtheirnearest neighborinthereconstructed-morphology-neurondataisusedasthe distancemetric.Inmathematicalterms,wecanthuswrite

f(d, V, dtarget, Vtarget)=

1 Nacc

N(reduced)recs

i=1 d(i)≥−282 and

d(i)≤−1301 minN

(full) recs j=1

⎜ ⎝

d(i)−d(j)target maxk(d(k)target)−mink(d(k)target)

2

+

V(i)−Vtarget(j) maxk(Vtarget(k) )−mink(Vtarget(k) )

2

⎟ ⎠

,

(5)

whereNaccisthenumberofaccepteddatapoints,i.e.,datapointsfor whichd(i)≥−282␮mandd(i)≤1301␮m.Notethatthelimitation oftheaccepteddatapointsallowsneuronsthataresignificantly longertobecreated.However,asthediametersofthesegments arerestrictedbytherulethatconservesthetotalmembranearea, neuronswithtoolongdendritesenduphavingtoothindiameters, whichislikelytopreventagoodfittothedata.

2.2.6. Combiningthesteps

Asweuseageneticmulti-objectiveoptimizationalgorithm,at theendofeachstepwehaveapopulationofPareto-efficient(see, e.g.,VanGeitetal.,2008)parametersets.Weapplyanexploratory scheme, where the best parameter sets of each objective and parametersetsthatperformwellintwoseparateobjectivesare handedontothenextstep.Intheinterestofreducingthenum- beroftheparametersetsthatarefixedduringtheearlysteps,we

reducethenumberofobjectivefunctionsbygroupingsomeofthem together.

Firstly,mostoftheobjectivesofTable2consistofstimuliof differentamplitudes(objectives1.3–4.1and4.4).Inthesecases, theobjectivefunctionsaredefinedassumsofthesub-objective functions.Asanexample,forobjective1.3,wehave

f1.3(p)=f1.3,1.0 nA(p)+f1.3,0.0 nA(p)+f1.3,1.0 nA(p), wherefunctionsf1.3,I(p)areoftheformofEq.(2).

Secondly, we further combine the objectives for cor- rect membrane-potential distribution across the dendrites as a response to somatic DC and that as a response to EPSP-like stimulus. Namely, we group together objectives 1.1 and 1.2 as f1.1+1.2(p)=f1.1(p)+5f1.2(p), objectives 3.2 and 3.4 as f3.2+3.4(p)=f3.2(p)+f3.4(p), objectives 3.3 and 3.5 as f3.3+3.5(p)=f3.3(p)+f3.5(p), and objectives 4.2 and 4.3 as f4.2+4.3(p)=f4.2(p)+f4.3(p). The factor 5 is chosen for f1.2(p) due to the small effect of EPSP-like stimulus on dendritic peak membrane potentialswhen allactiveconductancesare blocked comparedtothatofthesomaticDC;inotherobjectivestheeffects are approximately of the same order of magnitude (data not shown).

Dueto this grouping,themulti-objective optimizationalgo- rithmisgiventwoobjectivefunctionsforthefirstandsecondsteps, andthreeforthethirdandfourthsteps.Inpractice,thismeansthat thefirststepoptimizationisperformedonce,andthreecandidate parametersetsareobtained–onethat performsbestinf1.1+1.2, onethatperformsbestinf1.3,andonethatperformswellinboth.

Whenpickingtheparametersetthatproducesagoodfittotwo objectivefunctions,wefirstnormalizetheerrorfunctionvalues ofbothobjectivesbytheirmedians(acrossthewholepopulation ofparametersattheendoftheoptimization)andthensumthem together:theparametersetpithatproducethesmallestvalueof thesum

f1.1+1.2(pi)

medianj(f1.1+1.2(pj))+ f1.3(pi)

medianj(f1.3(pj)) (6) ischosen.Thesecondstepoptimizationisthenperformedthree times(onceusingeachofthesethreeparametersets)andninecan- didateparametersetsareobtained.Thethirdstepoptimizationis

thusperformedninetimes,andeachoptimizationgivessixcandi- dateparametersets(onethatperformsbestinf3.1,onethatisbest inf3.2+3.4,onethatisbestinf3.3+3.5,andthreeintermediateonesthat performwellintwoofthethreeobjectivefunctions),andtherefore, thefinalstepisperformedforamaximumnumberof54param- etersets.Notethatsomeoftheoptimizationsperformedduring thefirstthreestepsmaygiveparametersetsthatdonotproducea goodfittothedata.Insuchcases,onlythefeasibleparametersets arehandedovertothefinalfittingstep.

2.3. Powerspectra

We illustrate and quantify the possible oscillations in the neuronalnetworkdynamicsusingthepowerspectraofthepop- ulationspiketrains.Thepowerspectrum ofa spiketrains(t)=

(7)

Nspikes

j=1 ıtj(t),wherevariablestjrepresentthespiketimes,isdeter- minedas

Ps(f)=|Fs(f)|2,

whereFs(f)istheFouriercomponentforthefrequencyf.Thiscom- ponentcanbedeterminedas

Fs(f)=

−∞

s(t)e2itfdt=

N

spikes

j=1

e2itjf,

whereiistheimaginaryunit.

3. Results

3.1. Morphologyparametersandion-channelconductancesfor thereducedmodelcanbefittedtothefullmodeldata

Weappliedthestepwisemodel-fittingprocedureusingsim- ulated data(obtained fromsimulations of theHaymodel with reconstructed morphology)as the targetdata for the objective functions.We used the multi-objective optimizationalgorithm developedinDebetal.(2002)tofindtheoptimalparameterval- ues,inasimilarfashionasdoneinBahletal.(2012).Figs.1–4show theperformanceofthefittedmodelinfulfillingtheobjectives,and Table3liststheobtainedparametervalues.

Thereducedmodelshowsagoodfittomostofthemeasured quantities.However,thethirdsteprevealsthatallaspectsoftheion channeldistributionscannotbeaccuratelypreservedinthefour- compartmentmodel:theresponsesofthefullmodelwerebest reproducedbylettingtheCa2+channelconductancesgotozeroin theapicaltrunk,whilekeepingthecorrespondingvaluesattheapi- caltuftrelativelylarge.Bycontrastintheoriginalmodel,theCa2+

channelconductanceswerenon-zeroallalongtheapicaldendrite, buthad extremely largevalues at segments685–885␮maway fromthesoma(inthe“hotzoneofCa2+channels”).Fig.S1(Sup- plementarymaterialSectionS2)showsthattheerrorfunctionsfor thespatialdistributionsofmembranepotentialandCa2+concen- trationinthethirdstepfittingcouldbedecreasedbyincludingan extracompartmentthatrepresentedthehotzoneinthereduced- morphologyneuron.Nevertheless,thiswouldmakethemodela six-compartmentmodel,asthefurthestcompartmentwouldhave tobedividedtothreecompartments.Furthermore,inarecentstudy (AlmogandKorngreen,2014),theCa2+channelswerebetterfitted byusinglinearincreasesinCa2+channeldensitiesthanaGaussian- shapeddistributionwithlargestconductances aroundthemain bifurcationpointalongtheapicaldendrite.Therefore,weapplied theparametersobtainedfromthefittingofthefour-compartment model(Fig.3)intherestofthiswork.

Fig.5showstheevolutionoftheobjectivefunctionsacrossthe generationsinallfourstepsoffitting:inmostcasesthevaluesof theerrorfunctiondramaticallydecreasedduringthefirstfivetoten generations,afterwhichonlymodestimprovementwasachieved.

FortheresultsshowninFigs.1–4,onlythefinalparametersetwas used,buttomakesurethefittingprocedureisrobust,werepeated thefinalfittingstep10times.Allofthese10samplesshowedthe correctnumbersofspikesinresponsetothestimuliofFig.4B–D (datanotshown).

Thestepwiseapproachgainsadvantagefromthefactthatthe parametersearchspaceissmallerthanwhenallparametersare fittedatonce.In Fig.6,we showthatfittingallmodelparame- terssimultaneously(withoutsimulationofionchannelblockades) didnotproduceasgoodfittingresultsasthestepwisemethod:

outoftentrials,onlyoneoftheobtainedparametersetsproduced thecorrectnumberofspikesasresponsetothestimuliofobjec- tives4.1–4.3.Thisparametersetwascharacterizedbyrelatively

Table3

Parametervaluesobtainedfromthemulti-objectiveoptimizationsofFigs.1–4.Note thatthepassiveleakconductancesareinitiallyfittedatthefirststep,butrefittedat thesecondstep.ConductancesaregiveninS/cm2,lengthsin␮m,axialresistances incm,andcapacitancesin␮F/cm2.Thefirststepparametersetwastheonethat minimizedf1.3,whilethesecondstepparametersetminimizedf2.1.Thethirdstep parametersminimizedthesumoff3.2+3.4andf3.3+3.5andthefourthstepparameters thesumoff4.2+4.3andf4.4,wherethefunctionvalueswerenormalizedbythemedians ofthecorrespondingfunctionsacrossthegeneticalgorithmpopulation(e.g.,seeEq.

(6)).

STEP1

Variable Value

Lsoma 24.5

Lbasal 426

Lapic 400

Ltuft 702

Rsomaa 380

Rbasala 197

Rapica 958

Rtufta 224

cmsoma 1.22

cmbasal 1.94

cmapic 1.45

cmtuft 2.6

gsomal 7.8·10−5

gbasall 2.56·10−5

gapicl 5.92·10−5

gtuftl 6.75·10−5

STEP2

Variable Value

Eh −40.7

gsomah 0.000279

gbasalh 0.000294

gapich 0

gtufth 0.00493

gsomal 4.37·10−5

gbasall 3.79·10−5

gapicl 5.29·10−5

gtuftl 6.83·10−5

STEP3

Variable Value

gsomaCaHVA 0.000838

gapicCaHVA 0

gtuftCaHVA 0.000977

gsomaCaLVA 0.00311

gapicCaLVA 0

gtuftCaLVA 0.000487

soma 0.0005

apic 0.0347

tuft 0.0005

decaysoma 488

decayapic 142

decaytuft 95.4

gsomaSK 0.0479

gapicSK 0.000231

gtuftSK 0.00365

STEP4

Variable Value

gsomaNat 2.41

gsomaNap 0.00206

gsomaKt 0.0239

gsomaKp 0.000176

gsomaKv3.1 0.701

gapicm 0.000143

gapicNat 0.0135

gapicKv3.1 0.00121

gtuftm 0.000113

gtuftNat 0.0131

gtuftKv3.1 0

Referanser

RELATERTE DOKUMENTER

Interferometric Synthetic Aperture Sonar Interferometric synthetic aperture sonar systems improve mapping efficiency by generating very high-resolution seafloor images and

The aims of this study were twofold: Firstly, to investigate sex differences in the acute effects of an extremely demand- ing military field exercise on explosive strength and

3 The definition of total defence reads: “The modernised total defence concept encompasses mutual support and cooperation between the Norwegian Armed Forces and civil society in

− CRLs are periodically issued and posted to a repository, even if there are no changes or updates to be made. NPKI Root CA CRLs shall be published bi-weekly. NPKI at tier 2 and

To investigate how turbulent vertical exchange processes in the Arctic boundary layer are represented by the model parameterization a simulation with high vertical resolution (90

Here, the probability of response is estimated using a logistic model similar to RM2(y,x 2 ), except that when estimating the parameters in the response model, the family size is

A single posterior neuron prefigures the main course of the ventral nerve cord (VNC),while in the anterior region, the central ganglia is initiated by a single apical neuron and a

• Could we develop an optimal MC dropout rate, such that the accuracy of the model is as high as possible while maintaining a maximum separation between predictive uncertainty