• No results found

A Secure MANET Routing Protocol for Crisis Situations

N/A
N/A
Protected

Academic year: 2022

Share "A Secure MANET Routing Protocol for Crisis Situations"

Copied!
29
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

DOI: 10.4018/IJSSSP.2018100102

Copyright©2018,IGIGlobal.CopyingordistributinginprintorelectronicformswithoutwrittenpermissionofIGIGlobalisprohibited.

A Secure MANET Routing Protocol for Crisis Situations

Martin Gilje Jaatun, SINTEF Digital, Trondheim, Norway https://orcid.org/0000-0001-7127-6694

Åsmund Ahlmann Nyre, HEMIT, Trondheim, Norway Inger Anne Tøndel, SINTEF Digital, Trondheim, Norway

ABSTRACT

Emergencyandrescueoperationsareoftencarriedoutinareaswherethenetworkinfrastructure

cannotbereliedonformessageexchangebetweenfirstresponders.Sinceafundamentalfeature

ofaMobileAdHocNetworkistheabilitytooperateindependentlyofexistinginfrastructure,itis

deemedawell-suitedsolutiontofirstrespondersscenarios.Inthisarticle,theauthorsdescribea

securityextensiontotheOLSRroutingprotocolspecificallydesignedforfirstresponderscenarios.

Theproposedprotocolprovidesnodeauthenticationandaccesscontrolusingasymmetricencryption

anddigitalcertificates,andalsooffersasecuregroupcommunicationscheme.Alinkencryption

schemeisdevisedtoallowforefficientencryptionofdataeveninbroadcastmode,withouttheneed

foranetwork-widesharedkey.Byutilisingpairwisesymmetrickeysforlinkconfidentiality,the

authors’solutionisbothefficientandscalable.

KEywoRdS

Admission Control, First Responders, MANET, OLSR, Security

1. INTRodUCTIoN

Emergencyandrescueoperationsareoftencarriedoutinareaswherethenetworkinfrastructure

cannotbereliedonformessageexchangebetweenfirstresponders.Althoughonemayarguethat

somenetworkinfrastructure(e.g.GSM/GPRS/UMTS,Wi-Fi,WiMax,satellite,etc.)existsineven

themostdesertedplaces,thecauseoftheemergencyoperation(e.g.fire,hurricane,explosion,etc.)

mayalsoaffecttheinfrastructure.Furthermore,ruralinfrastructuremaynothavebeendimensioned

forthenetworkloadimposedbyalarge-scaleemergencyoperation.Sinceafundamentalfeature

ofaMobileAdHocNetworkistheabilitytooperateindependentlyofexistinginfrastructure,itis

deemedawell-suitedsolutiontofirstresponderscenarios.

Thenatureofemergencyandrescueoperationsimplythatprovidinginformationsecurityis

aprerequisiteforMANETstobeusedinsuchsituations(Meissner,Luckenbach,Risse,Kirste,&

Kirchner,2002,Dearlove,2004).Unlikethegeneral-purposeMANET,afirstresponderMANET

(2)

mustrestrictaccesstothenetworksuchthatvaluableresources(e.g.bandwidth,batterylifetime,

processingpower,etc.)arenotwastedonactivitiesnotrelatedtotheoperation.Accesscontrolalso

enablesnodeauthenticationandconfidentialityofinformationbyonlyallowingauthorisednodes

tosendandreceiveinformation.Withlimitedresourcesandagreatemphasisonavailabilityitis

equallyimportantthatsecuritymechanismsdonotsubstantiallyaffecttheoverallperformanceand

throughputofthenetwork.

Ourmaincontributioninthispaperisthedesignandspecificationofanewsecurityextensionto

theOptimisedLinkStateRouting(OLSR)protocolspecificallytailoredtofirstresponderscenarios.

Ourprotocolextensionutilisesdigitalcertificatesandasymmetricencryptionfornodeauthentication

andsymmetrickeyestablishment.Wealsospecifyanewcertificateextensiontoallowfordistributed

accesscontrolbasedonauthorisednodedescriptions.Toefficientlyprovideconfidentiality,our

protocolextensionalsoincludesalinkencryptionschemeutilisingdynamicallyestablishedsymmetric

keysbetweenneighbouringnodes.Bylimitingtheuseofasymmetricencryption,ourprotocol

extensionisefficient.

Thearticleisstructuredasfollows:Westartbygivinganoverviewofrelevantstateofthearton

MANETsecurity(Section2).WethenoutlinerelevantsecurityrequirementsinSection3.Nextwe

presentanoverviewofourproposedprotocolextensioninSection4,beforewedetailoursolution

inSection5.Finally,wediscussourcontribution(Section9)beforeconcludingandoutliningfurther

workinSection10.

2. BACKGRoUNd ANd STATE oF THE ART

InthissectionwewillpresentsomeexistingMANETroutingprotocols(thattypicallydonotoffer

anysecurity),thenpresentexistingattemptstoprovidesecureroutinginMANETs.Wewillalso

sayafewwordsonintrusiondetectioninMANETs,andclosethesectionbyrelatingwhatwehave

describedtoMANETsusedincrisissituations.

2.1. Routing Protocols

AttemptstosecureroutinginMANETshavemostlybeendonebyspecifyingextensionstothe

originalunsecuredroutingprotocols.Wethereforewillinthefollowinggiveanoverviewofthe

mainclassificationofMANETroutingprotocols,beforewebrieflyoutlinethemaincharacteristics

ofthreeconcreteexamples.

MANETroutingprotocolsperformroutediscoveryeitherproactivelyorreactively.Proactive

routediscoveryprotocolsutilizebeaconmessages,i.e.messagesthataretransmittedperiodically,

toinformothernodesofcurrentroutesinthenetwork.Thus,wheneveranodeneedsaroutetoa

destination,itisalreadyavailable,andnoadditionaldelayisintroduced.Theproblemwiththis

approachisthatcontroldataoverheadmaybesignificantduetotheperiodicfloodingofrouting

information,particularlyfordensenetworksandnetworkswithfewtransmissions.Routingtablesmay

bequicklyoutdatedforhighmobilitynetworks.MANETprotocolsbasedonreactiveroutediscovery

donotutilizeanyperiodicdisseminationofroutinginformation,butinsteadfloodthenetworkfora

routetoadestinationwheneverthisisneededbythenode.Thus,thereisnocontroldataoverhead

aslongasthenetworkisidle,andconsequentlytheriskofcongestingthenetworkwithsuchcontrol

dataisreduced.However,ifalinkinanestablishedroutebreaks,theentireroutediscoveryprocess

mustbere-initiated,whichmaycauseasignificantdelayinpacketdelivery.Innetworkswithlittle

nodemovement,thiswillrarelyhappen,andhencetheoverheadisgreatlyreducedcomparedtothe

proactiveapproach.Thereareseveralfactorsthatneedtobeconsideredtodeterminewhichofthe

twoapproachesarebetter,includingnodemovement,networkdensity,areasize(averagehop-count),

bandwidth,networkload,etc.

TheDestinationSourceRouting(DSR)protocol(Johnson,Hu,&Maltz,2007,Johnson&Maltz,

1996)isareactiveprotocolwheretheentireroutetothedestinationislistedineachpacket.Route

(3)

discoveryisdonethroughbroadcastingrouterequestmessagescontainingthedestinationaddress.The

requestispropagatedthroughthenetworkwithallintermediatenodesaddingtheiraddresstotheroute

storedinthepacket,untileitherthedestinationoranodewitharoutetothedestinationisreached.A

routereplyisthensenteitherusingthereversepathoftherequest,orpreferablypiggybackedonanew

routerequesttotheinitialsender.Piggybackingisconsideredbettersincelinksmaybeasymmetric

andhencethereversedroutemaynotbevalid.Routemaintenanceisperformedeitheractively

throughthereceptionoflink-layeracknowledgementsorpassivelythroughdetectingthereceiving

node’sretransmissioninpromiscuousmode.Detectedlinkerrors,i.e.missingacknowledgements,

resultinthetransmissionofalinkerrormessagetothesender.Similartoroutereply,thismayeither

bedonethroughthereversepathofthecurrentrouteorpreferablypiggybackedonarouterequestto

thesender.Toimproveefficiency,DSRalsoallowsnodestoutilizepromiscuousmodetodiscover

routesanderrorshandledbyadjacentnodes.

Adhocon-demanddistancevectorrouting(AODV)(Perkins&Royer,1999,Perkins,Belding- Royer,&Das,2003),isareactiveprotocolsimilartoDSR.AODVhoweverdoesnotcarrytheentire

pathinthepacketheader,insteadeachintermediatenodeindependentlycomputestheoptimalnext- hopforthegivendestination.Routediscoveryisperformedbyfloodingrouterequests(RREQ)inthe

networktoreacheitherthedestinationoranintermediatenodewithavalidroutetothedestination.The

next-hopinthereversepath,i.e.thenodefromwhichtheRREQwasreceived,isrecordedbyevery

intermediatenode.Uponreachingthedestination(oranothernodewithavalidroute)aroutereply

(RREP)messageisunicastbackalongthetherecordedreversepath.Intermediatenodesreceivinga

RREPrecordtheforwardpath,i.e.thenodefromwhichtheRREPwasreceived.Timersareassociated

withtheroutingtableentriessuchthatinvalidorunusedroutesareremovedafterapredefinedperiod

oftime.AODVissaidtobe“apureon-demandrouteacquisitionsystem”(Perkins&Royer,1999),

meaningthatunlessnodeslieonanactivepath(i.e.route),theydonothavetomaintainoradvertise

anyroutinginformation.

TheOptimizedLinkStateRouting(OLSR)protocol(Jacquetetal.,2001,Clausen&Jacquet,

2003)isaproactiveprotocolthatactivelymaintainsroutestoalldestinationsinthenetworkby

periodicallytransmittingcontrolinformation.LocallinksensingisachievedbybroadcastingHELLO

messagescontainingeveryone-hoplinkknowntothenode.Thereceiveristhenabletocomputeits

two-hopneighbourset,whichinturnallowsittocreateaMulti-PointRelay(MPR)set.TheMPR

setisformedsuchthatitincludestheleastnumberofone-hopneighbourssuchthateverytwo-hop

neighbourcanbereached.TheprotocolspecifiesthatonlyneighboursbelongingtotheMPRsetare

allowedtoforwardcontrolmessagesonbehalfofanode.Thus,thecostoffloodingcontrolpackets

inthenetworkisconsiderablyreduced.Topologyinformationbeyondthetwo-hopneighboursalready

knownusingHELLOmessages,isdistributedusingTopologyChange(TC)messages.Everynode

maintainsaMPRSelectorssetcontainingallnodesthathaveselecteditasMPR.Everynodewitha

non-emptyMPRSelectorssetmustperiodicallyfloodthenetwork(usingMPR)withTCmessages

containingatleasteverynodeintheMPRSelectorsset.OnemayextendtheTCmessagestoinclude

additionalnodesandalsocreatesuboptimalMPRsets,howeveratthecostofincreasedoverheadand

consequentlyreducedperformance.

2.2. Secure MANET Routing

Ariadne(Hu,Perrig,&Johnson,2005)isasecureon-demandroutingprotocolbasedonDSR.It

providesthreewaysofauthenticatingroutingmessages;usingpairwisesharedsecretkeys,using

pairwisesharedsecretkeyscombinedwithbroadcastauthenticationorusingdigitalsignatures.If

sharedkeysordigitalsignaturesareusedthentheroutingmessageisauthenticatedbyappending

aMessageAuthenticationCode(MAC)ordigitalsignatureforeachintermediatenode.The

protocolalsoproposestheuseoftheTimedEfficientStreamLoss-tolerantAuthentication(TESLA)

broadcastauthenticationmechanism(Perrig,Canetti,Tygar,&Song,2002)forintermediatehop

authenticationandsharedsecretforendpointauthentication.TheTESLAmechanismutilizes

(4)

reversedhashchainsanddelayedkeydisclosuretoprovideauthenticationofroutingmessages.The

protocolrequireslooselysynchronisedclocksandadelayofatleastthenetworkround-triptime

toguaranteethatthemessagehasbeenreceivedbyallnodesbeforethekeyisdisclosed.Ariadne

providesbothintegrityandauthenticationofroutinginformation,howevernon-repudiationcanonly

beguaranteedwhenusingdigitalsignatures,sinceMACscanalsobecalculatedbytherecipient,

andareimpossibleforotherstoverify.

TheSecureRoutingProtocol(SRP)(Papadimitratos&Haas,2002)isdesignedasanextension

toDSRortheinterzonepartoftheZoneRoutingProtocol(ZRP)(Haas,1997).Theprotocolrelies

solelyonsymmetrickeycryptographyforauthenticatedroutediscovery,assumingthatshared

secretkeyshavealreadybeenestablishedbetweenthesourceanddestinationnodes.AMACbased

onthesharedkeyisappendedtorouterequestsinordertoallowthedestinationtoauthenticatethe

originator.However,intermediatenodesandtherecordedroutearenotauthenticated.Additionally,

routeerrormessagesdonotcontainanyverificationandhencecanbeforgedbyadversaries.The

protocolprovidesauthenticationandintegrity,butintroducessomeseriousissuesfortheavailability.

TheSecureAODVroutingprotocol(SAODV)(Zapata&Asokan,2002)utilizeshashchainsfor

authenticatingmutabledatainrouterequestmessages.However,fornon-mutabledatatheprotocol

usesonlydigitalsignatures.Anoderequestingaroutetoadestinationgeneratesarandomseedfor

thehashchainandcomputesthemaximumhashchainvaluebyrepeatedhashingoftheseeduntil

reachingthemaximumhopcount.Thesignatureonallfieldsbuttheseedandhopcountisappended

tothemessage.Intermediatenodesverifythesignatureandthatthemaximumhashchainvalueis

reachedafterhashingthereceivedseed(max_hop_count-hop_count)times.Ifverificationholds,

thehopcountissteppedandtheseedisupdatedbyhashingit.Inordertoallowintermediatenodes

torespondwithaRREPwheneveritholdsavalidrouteinitsroutecache,thedoublesignature

schemeisproposed.Routeerrormessagesdonotusethehashchainmechanism,butareinstead

digitallysigned.Sinceitisnotconsideredrelevantwhichnodeinitiallystartedtheerrormessage,

thesignatureisreplacedforeachhop,ratherthanappended.Theprotocolprovidesauthentication

forendnodes,butnotforintermediate,allowingadversariesonthepathtoforgetheiridentity.The

hashchainmechanismguaranteesthatmaliciousnodescannotreducethehopcountvalue,butmay

increaseitoromitupdatingit.

AuthenticatedRoutingforAdhocNetworks(ARAN)(Sanzgirietal.,2005)isasignature- basedextensiontotheAODVroutingprotocol,providingsecureroutediscovery.Routerequests

aresignedbytheoriginatoroftherequestandpropagatedthroughoutthenetwork.Intermediate

nodeswill,uponreceivingtherequest,verifythesignatureandthesequencenumberbeforeadding

theirsignatureandforwardingittotheirneighbours.Thedestinationvalidatesallsignaturesand

createsasignedroutereplymessageincludingthesequencenumberandsourceoftherequest.

Thereplyissentbacktothesourcealongthereversepathoftherequest,whereintermediate

nodesverifyandsignitinthesamemannerastherequest.Linkfailuresaredetectedandreported

usingroutingerrormessages,whicharesignedbythereportingentityandpropagatedthroughthe

network.Nointermediatenodesignstheerrormessage.Theproof-of-conceptimplementationand

subsequenttestingindicatesthattheprotocolincreasesthedelayforroutesetupbyseveralorders

ofmagnitude.Thetestsdoneontheprotocolshowthatevenwithfairlypowerfullaptops,the

ARANprotocolusing1024bitsRSAkeysareapproximately23timesslowerthantheunsecured

AODVprotocol(Sanzgirietal.,2005).

TheSecureLinkStateProtocol(Papadimitratos&Haas,2003)isasecureproactiverouting

protocolemployingasimilarstrategyasSAODVformessageauthentication.LinkStateUpdates

(LSUs)aredigitallysignedbytheoriginatingnode,withallmutablefieldsexcluded.Themutable

fieldsareinsteadgovernedbyahashchain,whichdoesnotallowreductioninthehopcount.

Byspecifyingamaximumhopcount,theprotocolcanbeusedastheintrazonepartofZRP

(Haas,1997)Onlyend-nodesareauthenticated,suchthatintermediatenodesmayspooftheir

identitywithoutbeingrevealed.

(5)

TheSecureTransmissionProtocol(STP)(Papadimitratos&Haas,2006)utilisessymmetrickey

encryptionforreliableendtoendauthenticationofdatatransmission.Messagesaresplitupand

sentondisjointroutes,andmissingpacketsresultinresendingandupdatedroutinginformation.

Symmetrickeysareassumedtobeestablishedinadvance.Aspairwisesharedsecretsdonotscale

well,Puzaretal.(Pužar,Plagemann,&Roudier,2008)suggestasolutionwhereeverynodeinthe

networksharesthesamekey.Mechanismsaredefinedthatresultinperiodickeychanges,butduring

keyre-selectionthenetworkisinaninconsistentstateunabletoroutemessages.

2.3. Intrusion detection

Giventhelackofnetworkperimetersandtheopencollaborativenatureofmobileadhocnetworksit

ishardtodefinewhatactuallyconstitutesanetworkintrusion.Commonly,intrusionsareviewedas

maliciousbehaviouraimedatdisruptingordegradingnetworkperformance.

TheWATCHERSprotocol(Bradley,Cheung,Puketza,Mukherjee,&Olsson,1998)wasproposed

toenabledetectionofdisruptivenodesinthenetwork.Theideaistouseconservationofflow,i.e.

whatcomesinmustcomeout,todetectmisbehavingnodes.Everynodemonitorsitsneighboursand

measurestheamountofdroppedpackets,misroutedpackets,etc,bylisteningtothecommunication

ofadjacentnodesandcomparingreceivedpackagestothetransmittedones.Ifmetricsexceeda

predefinedthreshold,thecorrespondingnodeisconsideredmaliciousandthelinktoitdropped.The

protocolhasbeencriticisedforitsassumptionsonthereliabilityofwirelesscommunication(Hughes,

Aura,&Bishop,2000),sincetherearenumerousvalidreasonsfordroppingapacket.

AsimilardetectionandpreventionschemewereproposedbyMartietal.(Marti,Giuli,Lai,&

Baker,2000)whereawatchdogisusedtodetectmisbehavingnodesandapathraterisusedtocompute

pathsavoidingthedetectednodes.DesignedfortheDSRprotocol,thewatchdogmechanismutilizes

promiscuousmodeandknowledgeofthepathtothedestinationtoassertwhethertheneighbour

nodeactuallyforwardspacketsasexpected.Acounterisincreasedwheneveraroutingmisbehaviour

isdetected,ultimatelyblockingthenodeifthecounterreachesapredefinedthreshold.Unlikethe

WATCHERSprotocol,watchdogandpathraterareprotocolspecificsoasnottorelysolelyonthe

conservationofflowasadetectionmechanism.

TheCOllaborativeREputationmechanism(CORE)(Michiardi&Molva,2002)liketheprevious

protocolsalsoutilizesawatchdogmechanismandadditionallyincludesareputationsystem.The

reputationsystemspecifiesthreedifferenttypesofreputation;subjective,indirectandfunctional.

Subjectivereputationisbasedondirectobservationthroughthewatchdogmechanismoperatingin

promiscuousmode.Indirectreputationisbasedonreceivedreputationmetricsfromothernodes,while

functionalreputationindicatesthereputationforaparticularfunctionality(e.g.packetforwarding).

Topreventdenial-of-serviceattacksbymaliciousbroadcastingofnegativeratingsforbenignnodes,

indirectreputationmayonlytakepositivevalues.Unlikethewatchdog/pathraterapproachdescribed

above,COREdoesnotexcludemaliciousnodesfromroutes,butratherencouragescooperationin

ordertoreceivenetworkservices.

TheDSRprotocolextensionCONFIDANT(CooperationOfNodes:FairnessInDynamicAd-hoc

NeTworks)(Buchegger&Boudec,2002)consistsofamonitor,atrustmanager,areputationsystem

andapathmanager.Themonitorissimilartothewatchdogmechanismandperformslocaldetection

ofmisbehaviour.ThetrustmanagerisresponsiblefordistributingALARMmessagesregarding

maliciousbehaviourtonodesbelongingtoafriendslist.Italsocomputestrustlevelsofreceived

informationsuchthatweightingmaybeemployedforratingchanges.Thereputationsystemprovides

aqualityratingofparticipatingnodes,basedonlocalandreceivedinformation.Sufficientevidence

mustbegatheredbeforeadecisionismadeanditmusthavebeengatheredoveralongenoughtime

toruleoutcoincidence.Thepathmanagerisresponsibleforratingtheactivepathsinthenetwork

andtoreacttopathscontainingmaliciousnodes(e.g.deletethepath).

CONFIDANTissimilartothewatchdog/pathraterapproach,butadditionallycreatesincentives

forcorrectbehaviourofnodesbyrefrainingfromforwardingpacketsonbehalfofmisbehavingnodes.

(6)

TheCONFIDANTprotocolproposestheuseofatrustmanagertoshareitsratingswiththeother

nodesinthenetwork.Routeselectionisdoneaccordingtoatrustmetricsuchthatthemosttrusted

pathisselected.Ifthereismorethanonepathwithhighesttrustrating,theshortestisselected.

ThestrategybyWangetal.(Wang,Lamont,Mason,&Gorlatova,2005)istouseprotocolspecific

propertiesforsanitycheckingroutingupdates.FortheOLSRprotocol,theuseofmulti-pointrelays

(MPRs)allowssomecheckingoftheoriginatingnode.Forexample;IfnodeAadvertisesalinkto

nodeB,thennodeAmustbeanMPRofnodeB.Thus,nodeBcanperformasanitycheckofthe

receivedinformationbycomparingtheoriginatortoitssetofMPRs.Wangetal.(Wangetal.,2005)

furtherproposeforBtobroadcast(throughitsMPRs)amessagetoinvalidatetheadvertisedlink,

sothatothernodeswillrefrainfromusingit.Thereareseveralsuchpropertiesthatmaybeusedto

verifythecorrectnessoftheadvertisedinformation.Thearticledoesnotdiscussotherreasonsfor

suchincoherence,suchaslatencyinTCupdates,linkfailures,etc,norwhatactionsshouldbetaken

uponreceivinganinvalidationofalink.Labellingtheoriginatorasmaliciouswouldintroducethe

possibilityformaliciousnodestoemitinvalidationsrandomlytoitsMPRnodesandtherebyconvince

thenetworkthatthebenignnodeismalicious.Ifthecheckwasperformedbyanyadjacentnode

toB(i.e.inB’sHELLOset)oranyofB’sMPRs,amajorityvotecouldbeusedtoguaranteethe

correctnessoftheinvalidation.

Otroketal.proposeadifferentstrategyforintrusiondetectionthatgreatlyreducespower

consumptionofparticipatingnodes(Otrok,Mohammed,Wang,Debbabi,&Bhattacharya,2008).

Theideaistoletnodesinaclusterelectonesinglenodetoperformintrusiondetectiononbehalfof

theothersinacollaborativegame,maximisingthesecurityforthenetworkasawhole.Inorderto

mitigatetheriskofhavingamisbehavingnodeperformingtheintrusiondetectionasetofcheckers

aresimultaneouslyelectedtoverifycorrectbehaviour.Bysamplingthecommunication,thecheckers

collaborativelydecidethroughmajorityvotewhethertheelectednodeismisbehaving.Forthis

approachtobevalid,atleasthalfofthecheckersmustbebenigninordertoguaranteethatnobenign

nodeisblockedfromthenetwork.Althoughtheapproachisfavourableintermsofenergyconsumption,

networksofhighlymobilenodesmayforceconstantre-electionsofbothintrusiondetectionnodes

andcheckers.Whileobviouslydegradingperformanceandthroughputofthenetwork,thismayalso

hamperdetectionofmisbehavingnodesasitisimpossibletogathersufficientinformationformaking

adecisionbeforeare-electionisdone.

Anotherapproachtoreducedenergyconsumptionisforeachnodetoonlyhaveitsintrusion

detectionmechanismrunningaportionofthetime,assuggestedbyMarchangandTripathi(Marchang

&Tripathi,2007).Theydevelopagametheoreticapproachtomodelhowthedefenderandattacker

choosethepercentageofthetimethedefenceandattackwillberunning,respectively.Byassuming

differentdetectionrates,thegameissimulatedtoshowtheimpactofreducedmonitoring.

2.4. Relating State-of-the-Art to Crisis Situations

Intheprevioussectionswehavegivenanoverviewofpreventiveandreactivesecuritymechanisms

tailoredforuseinMANETs.Thenextstepwouldbetoidentifythemissingparts(ifany),inorder

toprovidesecureMANETs,andthusweneedtomapeachoftheprotocolstowhethertheyprovide

authentication,confidentiality,integrity,authenticationandnon-repudiation.

Forreactiveprotocolsaimedatdetectingmisbehavingnodes,thereistypicallynocryptographic

supportthatenablesconfidentiality,authenticationandnon-repudiation.Integritycouldbesupported

byobservingneighbours’retransmissions,howeverthekeypropertyofsuchprotocolsisavailability.

Bydetectingandreactinguponmisbehavingnodestheprobabilityofcorrectfunctioningofthe

networkisimproved.Thus,whenidentifyingwhethertheprotocolsmeetsthesecuritygoals,we

haveonlyincludedthepreventiveprotocols.Table1summarizeshowthevariousprotocolsmeet

thesecuritygoals.Notethattheavailabilitypropertyisconsideredsatisfiediftheprotocolimproves

denial-of-serviceresistanceanddoesnotimplythatitwillresistallattacks.Also,thenon-repudiation

propertyisnotconsideredsatisfiedwhenusinghash-chainsorsymmetrickeyMACsformessage

(7)

authentication.Hashchainsonlyprovidetemporalevidence,sinceafterkeydisclosureanyonecan

createauthenticmessages.MACsontheotherhandarenotverifiabletoanyonebuttheentitiesthat

sharethesecretkey,anddonotprovideevidenceastowhichoftheseentitiesinitiatedthemessage.

Whatisperhapsmostnoteworthyisthefactthatnoneoftheprotocolsprovideanyconfidentiality

ofroutinginformation.ForgeneralpurposeMANETswithfreeaccess,confidentialitymayseem

unnecessary.However,forclosednetworkssuchasmilitary,rescueorcrisismanagementMANETs,

itmaybevitalthatoutsiderscannotidentifynetworkparticipantsandalsoareunabletobuilda

networkmap.Thus,forsuchapplicationsofMANETs,thereshouldbeaprotocoltoprovidethis.

NotealsothatallprotocolseitherrelyonanestablishedMANET-widePKIorpairwisesharedsecret

keys.Althoughthereexistnumerouskeymanagementandkeysharingschemes(Zhou&Haas,1999,

Ramkumar&Memon,2005;Saxena,Tsudik,&Yi,2007),thisisnottriviallyachieved,especially

foropencommercialapplicationsareassuchasaconferencevenue.

Becauseoftheproblemswithnetworkwidekeys,wedonotbelievetheapproachbyPuzaret

al.(Pužaretal.,2008)tobethebestsolutionforMANETs.StillPuzaretal.specificallyaddress

emergencyandrescueoperations,andmanyoftheirideasfitwellwithinthissetting;theyrelyonpre- existingcertificatestobeinplace,allcertificatesaresignedbythesameCA,andtheyputrestrictions

onwhichnodesareauthorisedtoinfluencerouting.

Thereareofcourseothernon-securitypropertiestoconsidersuchasdataandprocessingoverhead,

batteryconsumption,delay,etc.,whichinfluencethechoiceofsecuritymechanism.Forinstance,

theextensiveuseofdigitalsignaturesintheARANprotocolensuresahigherlevelofsecurity(e.g.

secureauthenticationofintermediatenodes)atthecostofaddedprocessinganddataoverheadfor

eachhop.Thus,theoptimalprotocolisnotnecessarilytheoneprovidingtheoptimalsecurity.

Aswithconventionalintrusiondetectionsystems,detectingmisbehavingnodesinMANETs

maybeerroneous,whichinturnmayhavedevastatingeffectsontheNetwork.Sinceavailabilityis

theprimarygoalofsuchsystems,labelingabenignnodeasmaliciouswouldineffectconstitutea

denial-of-serviceattackbytheprotocol.Similarlyifmaliciousnodesareundetected,theavailability

oftheentirenetworkwouldbethreatened.

TheprotocolsandmechanismsoutlinedinSection2.3alluseanomaly-baseddetection,where

deviationsfromcorrectprotocolbehaviourareconsideredmalicious.Additionally,allprotocolsrely

onobtaininginformationbypromiscuouslyoverhearingneighbourtransmissions.Aproblemhere

isthepossibilityofanodehavingtwoneighbours(thatarenotthemselvesneighbours)transmitting

simultaneously,causingacollisiononlyforthenodeoperatinginpromiscuousmode.Suchsituations

andalsotheunreliabilityofthewirelessmediummakesitverydifficulttoperformaccuratedetection.

3. REQUIREMENTS

Mostexistingworkonsecurityinadhocnetworkshandlessecurityrequirementsonlysuperficially.

Themostrelevantworkthatweareawareofisastudyofknownproblemswithexistingrouting

Table 1. Comparison of proposed secure MANET protocols

Protocol Availability Confidentiality Integrity Authentication Non-

Repudation Assumptions

Ariadne Yes No Yes Yes No EstablishedPKIorshared

secretkeys

SRP Yes No Yes Yes No Establishedsharedsecretkeys

SAODV Yes No Yes Yes Yes EstablishedPKI

ARAN Yes No Yes Yes Yes EstablishedPKI

SLSP Yes No Yes Yes Yes EstablishedPKI

(8)

protocolsforadhocnetworks,aspresentedbyDahilletal.(Dahill,Levine,Royer,&Shields,

2001)andSanzgirietal.(Sanzgiri,Dahill,Levine,Shields,&Belding-Royer,2002).Thisstudy

ledtosevensecurityrequirements,coveringspoofingofroutesignalling,fabricationandalteringof

routingmessages,maliciousformationofroutingloops,routeredirectionfromshortestpath,which

nodesshouldbepartofroutecomputationanddiscovery,andexposureofnetworktopology.Adhoc

networksaredividedintothreecategories,eachrequiringadifferentlevelofsecurity.Emergency

andresponseindisasterareasisconsideredpartofthemanaged-hostileenvironmentsgroup,which

shouldmeetalltheidentifiedrequirements.

Alessdetailedlistofsecurityrequirementsonroutingprotocolsofadhocnetworksis

providedbyZapataandAsokan(Zapata&Asokan,2002).Theyareconcernedwithrouting

updates,andstatetheimportanceofimportauthorisation,sourceauthenticationandintegrityof

routinginformation.Dataauthenticationissaidtobecoveredbythecombinationoftheabove.

Compromisednodesarenotconsidered,astheybelievethisonlytoberelevantformilitary

scenarios.Availabilityisalsonotcoveredastheyfinditunfeasibletopreventdenialofservice

(DoS)attackswhenusingwirelesstechnology.

Wrona(Wrona,2002)takesadifferentapproach,andstatesthatadhocnetworksingeneralhave

thesamesecurityrequirementsasothercommunicationsystems.Adhocnetworksarehoweverextreme

intherequirementsonthesophisticationandefficiencyofthesecuritymechanismsthemselves,mainly

becauseofthelackofinfrastructureandtheverydynamicandephemeralcharacterofrelationships

betweennetworknodes.However,Wronadoesnotprovidemoredetailsonthesecurityrequirements.

3.1. Elicitation Method

Tøndeletal.(Tøndel,Jaatun,&Meland,2008)giveanoverviewofexistingapproachestosecurity

requirementselicitation,andidentifythemostcommonlyrecommendedsteps.Afour-stepapproach

isthenproposed:1)Identifysecurityobjectives,2)Assetidentification,3)Threatanalysis,and4)

Documentationofsecurityrequirements.Objectivesaredefinedas“thehigh-levelrequirementsor

goalsthataremostimportanttocustomers,andtherequirementsthatmustbemettocomplywith

relevantlegislation,policies,andstandards”(Tøndeletal.,2008).Assetsareimportantas“security

requirementsareprimarilyneededinordertoprotectourassets,andthiswillobviouslybeimpossible

todoproperlyunlessweknowwhattheseassetsare”(Jaatun&Tøndel,2008).Duringthreatanalysis

likelyattacksagainstthemostimportantassetsarestudied.

Inthisworktherequirementselicitationprocesswasperformedbytheauthors,whocan

besaidtobenetworksecurityexperts.Aswedidnothaveaccesstocustomers,objectives

wereidentifiedbasedonpreviousworkinOASISandbasedonreadingmaterialonadhoc

networksforemergencyandrescueoperations.Assetswereidentifiedinaworkshopusing

theapproachdescribedbyJaatunanTøndel(Jaatun&Tøndel,2008).Thisapproachisbased

onbrainstorming,somethingthatmayseemabittoounstructuredatfirstglance.Available

publicationsonassetidentificationhowevershowthatbrainstormingtechniquesandsimilar

areusedinseveralapproaches-withfewproblemsexperienced(Caralli,Stevens,Young,&

Wilson,2007,Jaatun&Tøndel,2008).

Intheworkshopassetswereprioritisedbyconsideringtheimportanceoftheconfidentiality,

integrityandavailabilityofeachassetfromtheviewpointofsystemusers,ownersandattackers.

Byincludingdifferentviewpointswewereabletohandlethefactthatdifferentactor’sviewofan

assetarenotdirectlyrelated(Haley,Laney,Moffett,&Nuseibeh,2008).Hencemostfocusisgiven

toassetsthatareimportantforattackersaswellassystemownersand/orsystemusers.Inorderto

keepthemethodaslightweightaspossibleweonlyusedfourclassesofprioritiesforourassets:

high,medium,lowandirrelevant.Thetotalvalueofe.g.theconfidentialityofanassetisthenthe

sumofitsvaluefromthedifferentviewpoints.Thisisofcourseasimplification,butstillprovides

aneasyandpowerfulwayoffindingwhichassets(ormorecorrectly,whichpropertiesoftheassets)

areimportantinthesystem.

(9)

Basedontheresultofassetidentification,westudiedthethreatstowardsthemostimportant

assets.ForthethreatmodellingweusedattacktreesasdefinedbySchneier(Schneier,1999),ashis

threatmodellingmethodiswellrecognisedandfitsourapproachwell.Aselectionoftheidentified

attacksispresentedinTable2.Mostattacktreeswerecreatedinaworkshop,therestwascreated

byoneexpertandcheckedbytheothersatalaterpointintime.Attheendoneexpertidentifiedand

documentedsecurityrequirementsbygoingthroughthesecurityobjectives,assetsandattacktrees.

Therequirementswerelatercheckedbytheotherexperts.

3.2. objectives

TheidentifiedsecurityobjectivesarelistedinTable3.Asabasisforidentifyingtheseobjectiveswe

describedwhatwillbethetypicalusageoftheOASISadhocnetworkandthemainsecurityissues

asweseeit.

Table 2. Examples of identified attacks

Attack Tree Main Attacks Identified

A1 Getaccesstoanduseanexistingnode Accessnode,eitherphysicallyorexternally,andeithergetaccesstovalidaccess

credentialsorbypassaccesscontrol.

A3 Getaccesstosensitiveinformation Getaccesstocommunicationthrougheavesdroppingorrouting,andbreakany

encryption.Getaccesstosensitiveinformationonanode.

A4 Getaccesstoaccesscredentials Getaccesstocommunicationornodesthatcontainaccesscredentialsandbreakany

protection.Findcredentials.Guesscredentials.Performsocialengineeringattack.

A7 Destroyintegrityofinformation Flipbitsincommunication.Destroyintegrityofpacketsduringrouting.Destroy

integrityofinformationstoredonnodes.

Table 3. Security objectives

Nr. Objective

O1 Confidentiality:Forsomeinformationconfidentialitywillberequiredbylaw,e.g.medicalinformation.

Mechanismsmustthusbeinplacethatisabletoofferadequateprotectionofconfidentiality.

O2 Availabilityvs.confidentiality:AstheOASISadhocnetworkisintendedusedincrisissituations,availabilityis

inmany,ifnotmost,casesmoreimportantthanconfidentiality.

O3 Integrity:Asthereareattackersthatmaywanttoattacktheintegrityofinformationinordertohamperthe

operation,integrityshouldbeensured.

O4 Participationandcollaboration:Personnelfromdifferentorganisationsandregionsmustbeallowedto

participateandcollaboratewithoutcompromisingthesecurityofthenetwork.

O5 Accesscontrol:Thereisnointentionofletting“justanyone”connecttothenetworkandstartinteractingwith

it.Thisisadifferencebetweenafirstrespondernetworkandthe“academicideal”adhocnetwork.

O6 Userhierarchy:Securitysolutionsshouldsupportthehierarchicalnatureofemergencyoperations.

O7 Dynamicsofresponsibility:Securitysolutionsshouldsupportdynamicsinresponsibilityandauthority.

O8 Limitednoderesources:DevicestypicallyusedfortheOASISadhocnetworkwillhavelimitedcomputational

powerandbatteryavailable.Thesecuritysolutionsmusttakethisintoaccount.

O9 Limitedbandwidth:Thebandwidthavailablewilltypicallybelimited,andthismustbetakenintoaccountwhen

choosingandimplementingsecuritysolutions.

O10 Usability:Securitysolutionsmustnotrenderthesystemtoodifficultortroublesometouse.

O11 Notdependentoncentralnodes:Theadhocnetworkshouldfunctionwithoutanycentralnodes.

(10)

The current predominant communication paradigm for first responders is voice

communicationoverradionetworks(e.g.TETRA).MANETSwillenabledistributionof

richcontentinuni-,multi-orbroadcastmode.Inadditiontousernodes,weenvisagea

commandpostthatisoperatedfromaspecialisedvehicleandpossessgreatercomputing

resources.Insituationswhereexternalcommunicationinfrastructureisavailable,boththe

command post and first responders may connect to external resources (health networks,

policenetworks,etc.).

ManyofthechallengesofsecuringMANETsingeneral(Wu,Chen,Wu,&Cardei,2007)

alsoapplytoMANETsforfirstresponders.However,communicationpatterns,mediadiversity,

organisationalstructureandlegislativeissuesconstitutebothchallengesandopportunitiesforfirst

respondersMANETs.WhileMANETsinthegeneralcaseshouldallowanyonetoparticipate,

thesituationisquitethecontraryforfirstresponders.Firstrespondersrequireanaccesscontrol

thatpreventsnodesfromwastingtheirresources(energy,processingpower,bandwidth,etc.)on

informationthatisnotrelevantforthemission.Whilethisnormallyrequirespre-configuration,

themechanismshouldbeflexibleenoughtoallowtemporaryaccesstonodesthathavenotbeen

pre-configured.Thiswillallowfirstresponderstodynamicallyincludevolunteers,experts,etc.,

intheoperationastheyseefit.

WehaveidentifiedtwomaintypesofattackersposingathreattofirstresponderMANETs:news

mediaandterrorists.Newsmediaisprimarilyinterestedinobtaininginformationonthetactical

operationbylaunchingpassiveattacks.Informationisassumedtobemostvaluableinreal-time,

butremainsinterestingforcriticsintheevaluationprocess.Terroristsareinterestedinobstructing

thenetworkoperationsbylaunchingactiveattackstodisruptrouting,forgecommunication,thwart

legitimateaccess,etc.Itispossiblethataphysicalterroristattack(e.g.,explosion,fire,etc.)isextended

byafollow-upattackonthefirstresponderemergencyoperationnetwork.

Organisationsinvolvedinemergencyoperationsaretypicallyhierarchicallystructured,

where information flows upwards and decisions downwards. However, the operational

hierarchyisaffectedbythetypeofpersonnelavailableatanygiventime,suchthatdynamics

inresponsibilityandauthoritymustbeanticipated.Asanexample,policecommandersare

normallyinchargeoftheoveralloperation,butifnonewithsufficientauthorityispresent,a

fire-fighterofficerwillassumethisrole.Inaddition,personnelfromdifferentorganisations

and regions must be allowed to participate and collaborate without compromising the

securityofthenetwork.Thismakeskeymanagementforauthenticationandaccesscontrol

inparticular,atroublesometask.

Inacrisissituation,itislikelythatsomemedicaldatawillbeexchanged.Confidentiality

ofmedicaldataisrequiredbylawtoprotecttheprivacyofcitizens.However,intheeventofan

emergency,preservinglivesisconsideredmoreimportantthanpreservingprivacy.Ifconfidentiality

requirementshamperoperations,medicalstaffwillpleadjustcauseinordertoensureavailabilityof

data.Forthesamereasonusabilityisalsoimportant,assecuritymechanismssignificantlyhampering

theperformanceoffirstrespondersarenotlikelytobeused.

Foranytacticaloperationitisvitalthatcommandingnodes(e.g.squadleader)haveaccess

toasituationmapwiththecurrentlayoutofthenetwork(withoptionallygeographicalposition).

Thiscoupledwiththeneedforlowlatencyinroutediscoverymakesproactiveprotocolsseem

asthebetterchoice.

ThelimitedavailableresourcesofdevicesinMANETsareaprimeconcernwhendesigning

effectivesecuritymechanisms.Thisconstraintalsoappliestothefirstrespondercase,butnottothe

sameextent.DevicesforfirstrespondersarenotassumedtobeCOTS(CommercialOff-The-Shelf),

butratherspecificallydesignedtomeetcommunicationrequirementsandtowithstandenvironmental

stress.Itisthusconceivablethatdevicesforfirstresponderswillhavefarmoreresourcesthanhand- helddevicesdesignedforthecommonpublic.

(11)

3.3. Requirements Summary

Wedevisedintotal30securityrequirements(Tøndel,Jaatun,&Nyre,2009)relevantforadhoc

networksasusedinOASIS.Therequirementsrelevantfortheworkpresentedinthispaperis

theserequirementsispresentedinTable4.Inadditionweidentifiedrequirementsconcerning

e.g.physicalaccesstonodes,inputcontrolandcredentialquality.Therequirementsdifferfrom

therequirementssuggestedbyDahilletal.(Dahilletal.,2001)andSanzgirietal.(Sanzgiriet

al.,2002)inthattheycovermorethanjustrouting.Inourrequirementselicitationprocesswe

havealsofocusedonobjectives,assetsandthreats,whiletheymainlyfocusedonproblemswith

existingapproaches.OurrequirementsarealsomoredetailedthanthosepresentedbyZapata

andAsokan(Zapata&Asokan,2002)andWrona(Wrona,2002).Theentriesinthefinalcolumn

ofTable4referbacktotheidentifiedobjectivesorattacksasexemplifiedinTable3and2(see

Tøndeletal.(Tøndeletal.,2009)formoredetails).

Table 4. Selected security requirements

Nr. Requirement Source

R8 Networkaccess:AccesstotheOASISadhocnetworkshouldrequireauthentication. A2A3 R9 Strengthnetworkaccess:ThemechanismforaccesstotheOASISadhocnetworkshould

beabletowithstandextensivesecuritytestingbysecuritytestingprofessionals. A2A5 R10 Linkconfidentiality:Theconfidentialityofsensitiveinformationmustbeprotectedwhile

sentonthecommunicationlink. A3

R11 End-to-endconfidentiality:Theconfidentialityofsensitiveinformationshouldbeprotected

end-to-endduringcommunication. A3

R12 Encryptionalgorithms:Allencryptionmechanismsshouldbeimplementedwithwell

recognisedalgorithms. A3A4

R13 Encryptionkeys:Allkeysusedrelatedtoencryptionshouldhaveakeylengththatis

recognisedtoprovidehighprotection. A3A4

R14 Keymanagement:Allkeymanagementmechanismsshouldbewellknownandrecognised. A3A4 R16 Credentialcommunication:Theconfidentialityofaccesscredentialsmustbeprotectedend-

to-endduringcommunication. A4

R20 Transmissionerrors:Forallcommunicationitshouldbepossibletodetecttransmission

errors. A5-A9

R21 Integritytransmission:Integrityofcommunicationrelatedtoaccesscontrol(orpossibly

allcommunication)shouldbeprotectedwhilesentonthelinkinordertodetectdeliberate

changesbyattackers. A5-A9

R23 Detectionofmisbehavingnodes:TheOASISadhocnetworkshouldincludemechanisms

fordetectingmisbehavingnodes. A8

R26 Identitiesvs.accessrights:Mechanismsmustbeinplacethatensuresnodeuserscannot

edittheiridentitiesandbythatincreasetheiraccessrights. A6 R27 Identitiesandspoofing:Mechanismsshouldbeinplacethatensuresuserscannotedittheir

entitiesandbythatspoofasanotheruser. A6

R28 Participation:Theaccesscontrolmechanismtotheadhocnetworkshouldsupport

participationandcollaborationfrompolice,fireandmedicalprofessionalsfromthesameor

neighbouringdistricts. O4

R29 Decentralisation:Accesscontroltoadhocnetworkshouldworkwithoutanycentralised

nodes. O11

(12)

4. PRoToCoL oVERVIEw

Inthissectionweoutlinethemainfeaturesofourproposedprotocol.Wefirstprovideabasicoverview

oftheOLSRprotocolforMANETs,whichwebaseourspecificationon.Nextwedescribehowa

certificatehierarchyisassumedtobeorganisedandtheauthenticationandaccesscontrolprocedure

isaccomplished.Finally,wegiveabriefdescriptionofourlinkencryptionscheme.

4.1. optimised Link State Routing Protocol

TheOptimisedLinkStateRouting(OLSR)protocol(Jacquetetal.,2001,Clausen&Jacquet,2003)

isaproactiveprotocoldesignedforMANETs.TheprotocolintroducestheconceptofMulti-Point

Relay(MPR)flooding,whereonlydesignatednodesrebroadcastmessages.Eachnodeselectsasubset

ofitsneighbours,calledtheMPRset,suchthateverytwo-hopneighbourcanbereachedthroughat

leastoneMPR.ByrestrictingforwardingtoonlythenodesthathavebeenselectedasMPRbythe

originator,theMPRschemeallowsforanoptimisedpacketfloodingthatgreatlyreducesthenumber

ofbroadcastscomparedtothegeneral-purposeflooding.

TheprotocoldefinesHELLOmessagesforlocallinksensingandTopologyChange(TC)

messagesfornetworkwidetopologydiffusion.NodesadvertisetheirlinksetandMPRselection

throughperiodicbroadcastsofHELLOmessagescontainingalldirectlinkswithcorrespondingstatus

(e.g.symmetric,MPR,etc.).Atthereceivingend,themessagesareusedforlinksensing,determine

forwardingactions(whetherthenodeisMPRornot)andtobuildtwo-hopneighbourtopologythat

formsthebasisforMPRselection.ThenodealsomaintainsanMPRSelectorSetcontainingall

neighboursthathaveselectedthenodeasMPR.HELLOmessagesareintendedforneighboursonly

andareneverforwarded.

TopologyChange(TC)messagesareperiodicallyfloodedinthenetworktoallownodesto

buildacompleteroutingtable.TheprotocolrequiresthateverynodehavingbeenselectedMPR

mustbroadcastTCmessagescontainingatleastallneighboursintheMPRSelectorSet.Thisbeing

aminimum,additionallinksmaybeadvertisedforredundancy.

4.2. PKI

TheauthenticationmechanismofourprotocolisbasedonX.509certificates(Cooperetal.,

2008)andrequirestheestablishmentofacertificationauthority(CA)foreachorganisation

participatinginthenetwork.TheCAoperatesoff-line,i.e.doesnotparticipateintheMANET,

andisresponsibleforissuingcertificatestoallitsnodes.Thenumberofhierarchicallevelsand

theirstructure(geographical,organisational,etc.)isconfigurablebytheuser.However,iftwo

nodesthatdonotshareaCA(atsomelevel)aretoauthenticateeachother,atleastoneofthe

certificatesinthecertificatechainmustbecrosssigned,sothattheymayverifytheauthenticity

ofeachother’scertificate.Forfirstresponderorganisationsthatarelikelytocooperate,such

cross-certificationisrecommended.ThecertificatesmustincludeanX.509extensioncontaining

adescriptionofthenodeandthecertificate.

DistributionofCertificateRevocationLists(CRLs)isnottrivial,especiallywhenallowing

crosssignedcertificateauthorities.InordertolimitthesizeofCRLsandalsotheimpactoffailing

todistributeCRLs,weproposetolimitthevaliditytimeofcertificatestotypicallyafewmonths.

Theprocessmaybeautomatedaspartofdocking/re-chargingprocedureatthenode’shomelocation

(e.g.atthehospital).CAscouldhaveconsiderablylongervaliditytime(e.g.years)sincetheseare

notexposedinthesamewayasmobilenodes.

Inordertoprovidenetworkaccesstonodesthatdonotpossessregularfirstrespondercertificates,

weproposeaspecialshort-termcertificate.Thistypeofcertificateisissuedonscenebyregular

authorisednodes.Whetherallregularnodes,oronlyasubsetofsuch(e.g.high-rankingofficers)

areauthorisedtoissueshort-termcertificatesisconfigurable.Withvaliditytimesetto24hours,the

needforCRLsisdiminished.

(13)

4.3. Authentication, Key Establishment and Access Control

Inordertoverifytheauthenticityofcertificates(i.e.proveownership)achallenge-responseprotocol

isproposed.Theprocess(depictedinFigure1)isinitiatedwheneveranewlinkisdiscovered(through

thereceptionofaHELLOmessage)andconsistsoffourmainsteps:

1. NodeBgeneratesachallenge(CKeyID)fornodeA;

2. NodeAsignsthechallenge(CKeyID)andgeneratesanewone(RKeyID)fornodeB;

3. NodeBverifiestheresponsefromAandgeneratesakey;

4. NodeAverifiestheresponsefromBandstoresthereceivedkey.

Thisprocessservesthreemainfunctionsasit1)providesmutualauthentication,2)distribute

theauthorisednodedescription(containedinthecertificate),and3)establishesasharedsecretkey.

Afterasuccessfulauthentication,theaccesscontrolmechanismutilisesthenodedescription

containedinthecertificateextensiontodeterminetheaccessleveltograntthenode.Wehavedefined

twolevels;whereoneisgrantedtoallnodeswithregularcertificates,whiletheotherisgrantedto

nodeswithtemporaryshort-termcertificates.ThelattergroupisnotallowedtobeselectedMPR

andmaythereforenotinterfereinroutingprotocolupdates(exceptfromtheonesoriginatingfrom

thenodeitself).

4.4. Link Encryption

Weproposeaneffectivesymmetricencryptionschemewheremessagesareencryptedonaperlink

basis.Theschemereliesontheestablishmentofsymmetrickeysforeachpairofneighbours.These

keysaredenotedlink keysandareestablishedduringthefinalstepoftheauthenticationandkey

establishmentprocessdescribedpreviously.

Toreducetheprocessingoverheadforintermediatenodes,thepayloadisencryptedonceusing

aone-timekey,whichinturnisencryptedusingthelinkkey.Thus,intermediateforwardingnodes

needonlydecryptandre-encrypttheheaderfield,ratherthantheentirepacket.Additionally,to

accommodatebroadcastmessages,multipleheadersareallowedsuchthatallneighbouringnodes

maydecrypttheone-timekeyusingtheirlinkkey.Thiswayoneneednotrepeattheentirepayload,

onlytheminimalheader.

Figure 1. Key establishment process

(14)

5. PRoToCoL dESCRIPTIoN

OurprotocoldescriptionisbasedontheOLSRprotocolandisaimedatpointingoutwherethetwo

protocolsdiffer.Hence,wewilloftenrefertotheOLSRspecification(RFC3626(Clausen&Jacquet,

2003))onmattersthatarenottreatedspecificallybyoursecurityextension.

5.1. Message Formats and Processing

AllexistingOLSRmessagessuchasTCandHELLOmessagesaredistributedinbroadcastmode

withoutexplicitaddressesofrecipients.Forourlinkencryptionschemewethereforedefinethe

generalencryptedmessageformat(Figure2)toallowmultiplerecipientsoftheperlinkencrypted

message.Thesummarysectioncontainsthenumberofkeyblocks(KB_counter)andthetypeand

lengthoftheMessageAuthenticationCode(MAC)(MAC_length).ThereisoneKeyBlockforeach

recipientcontainingakeyidentifier(Key_id)andtheone-timekeyencryptedwiththecorresponding

key.TheMACandencryptedpayloadconstitutestherestofthemessage.Byusingkeyidentifiers

insteadofIPaddresses,theprotocoldoesnotallowadversariestoeavesdroponthecommunication

inordertogetanoverviewofparticipatingnodes.

TheencryptedHELLOmessagedefinedforourprotocolisidenticaltotheoriginalHELLO

messageformatafterdecryption.TheencryptedTCmessagescontainanodedescriptioninaddition

tothealreadyspecifiedsolution(seeFigure6).

ThemessageformatsforourchallengeresponseprotocolaregiveninFigures3,4,and5.The

keyidentifiers(CKeyID/RKeyID)areselectedrandomlyandthereforealsoserveasnonces.

Figure 2. General encrypted message format encapsulating HELLO and TC messages

Figure 3. Challenge message format

(15)

5.2. Information Bases

WeextendtheinformationbasesforOLSRtoincludelinkkeys,nodedescriptionsandaccess

level.Thelinksettupleisextendedtoincludelocalandneighbourkeyidentifiers(L_local_KID,

L_neighbour_KID)andkeyvalue(L_key_value).Thelocalkeyidentifierisusedwhenevera

messageissenttoanode,whiletheneighbourkeyidentifierisusedwheneveramessageisreceived.

Localkeyidentifiersmustbeuniqueforeachnode,whileneighbourkeyidentifiersneednot.The

neighbourhoodinformationbaseisextendedtoincludetheauthenticatednodedescriptionextracted

fromthecertificateduringkeyestablishment.

Figure 4. Response message format

Figure 5. KEY message format

Figure 6. TC message format after decryption

Referanser

RELATERTE DOKUMENTER

34 Conflicts may also arise between Russia, Canada and Denmark over parts of the Arctic shelf, as it may be argued that the Lomonosov Ridge is an extension not only of

experiments listed above have all been performed to support, test and develop solutions for secure cross domain information exchange using the Object Level Protection paradigm,

He leads the High-Performance Visualization research group at VCC, where his research in- terests in the area of scientific visualization include extreme-scale visual computing

This is followed by the background section which de- scribes security challenges in cloud computing for healthcare, Overview of Cloud Computing, features and Models of cloud

Cloud computing is web-based processing, whereby shared resources, software, and information are provided to computers and other devices on demand,.. like the

The requirements in the document have been organized in terms of whether they are related to Data Storage, Data Processing, Data Transfer, Access Control, Security

This article identifies the security concerns that users may have when adopting cloud computing, including fault tolerance and service availability, data migration, and data

Even though service availability and performance of- ten are identified as critical issues, the number one barrier of adopting Cloud computing services is as- surance (European