• No results found

Scheduling ships with uncertain arrival times through the Kiel Canal

N/A
N/A
Protected

Academic year: 2022

Share "Scheduling ships with uncertain arrival times through the Kiel Canal"

Copied!
17
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

ContentslistsavailableatScienceDirect

Maritime Transport Research

journalhomepage:www.elsevier.com/locate/martra

Scheduling ships with uncertain arrival times through the Kiel Canal

Tina Andersen

a

, Joakim Høgset Hove

a

, Kjetil Fagerholt

a

, Frank Meisel

b,

aDepartment of Industrial Economics and Technology Management, Norwegian University of Science and Technology, Trondheim, Norway

bSchool of Economics and Business, Kiel University, Germany

a r t i c le i n f o

Keywords:

Ship scheduling Matheuristic Simulation Uncertainty Time corridors

a b s t r a c t

TheKielCanalisatwo-waywaterwaythatconnectstheBalticSeaandtheNorthSea.Thecanal consistsofanalternatingsequenceofnarrowtransitsegmentsandwidersidingsegments.This callsforsolvingashipschedulingproblemtodecidewhichshipshavetowaitinsidingstolet opposingtrafficpassthroughsuchthatthetotaltraversingtimeofallshipsisminimized.This paperextendspreviousstudiesonschedulingshipsthroughtheKielCanalbyconsideringthat thearrivaltimesoftheshipsattheentrancetothecanalaresubjecttouncertainty.Thisisa majorchallengeintheplanningasitgivesfrequentneedofreplanningtomaketheschedules feasible.Weproposeamathematicalformulationfortheproblemtomitigatethenegativeeffects oftheuncertainty.Thisformulationincorporatestime-corridors,sothattheschedulewillstillbe validaslongastheshipsarrivewithintheirgiventime-corridors.Tosolvereal-sizedinstances oftheproblem,weadaptamatheuristicthataddsviolatedconstraintsiterativelytotheproblem.

Thematheuristicwastestedwithinarollinghorizonsimulationframeworktostudytheeffectof arrivaltimeuncertainty.Weshowbyexperimentthatsolutionsofthematheuristicfordifferent time-corridorwidthscanbeusedtoidentifyasuitablecorridorwidththattradesoff theaverage traversingtimeofshipsandthenumberofreschedulesrequiredintheplanning.Asimplemyopic heuristic,reflectingthecurrentschedulingpractice,wasusedtogeneratebenchmarkresults,and testsonrealdatashowedthatthematheuristicprovidessolutionswithsignificantlylessneedof replanning,whileatthesametimekeepingthetotaltraversingtimesfortheshipsshort.Wealso providesimulationstogaininsightabouttheeffectontheships’averagetraversingtimefrom upgradingthenarrowtransitsegments.

1. Introduction

Theseabornecargovolumesareconstantlygrowingalongwiththeconcernabouttheenvironmentalconsequencesofgreenhouse gasemissionsandairpollution(UNCTAD,2018).Shippingcompaniesthereforelookforwaystoreducetheirfuelcostsandemissions.

TheKielCanalcutsthroughtheNorthernpartofGermanybetweentheNorthSeaandBalticSea(bluerouteinFig.1),allowingships tosaveonaverage250nauticalmiles,andreducethefuelconsumptionaccordingly,comparedtosailingaroundtheJutlandPeninsula inDenmark(redroute),seeHeitmannetal.(2013).TheKielCanalhasanannualtrafficofabout30000ships(UCA,2019)making itthemosttraffickedcanalintheworld.Thecanalis98.7kilometerslongandhastwosetsoflocks,oneateachend,intheportal townsKielandBrunsbüttel.TheshippingcompaniesalsovaluetheproximitytotheportofHamburg,whichisthethirdlargestport inEurope(UNCTAD,2018)andcaneasilybeaccessedfromtheKielCanal’sexitinBrunsbüttel.

Correspondingauthor.

E-mailaddresses:kjetil.fagerholt@ntnu.no(K.Fagerholt),meisel@bwl.uni-kiel.de(F.Meisel).

https://doi.org/10.1016/j.martra.2020.100008

Received5September2020;Receivedinrevisedform7December2020;Accepted21December2020

2666-822X/© 2020TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/)

(2)

Fig.1. SailingroutearoundtheJutlandPeninsulaandKielCanalshortcut.MeiselandFagerholt(2019).

Fig.2. Overviewoversidings(white)andtransitsegments(grey)intheKielCanaltogetherwithpassagenumberandsegmentnumber.

ThedailyoperationsoftheKielCanalconsistofplanningsafeshipschedulesforshipstraversingthecanal.TheKielCanalismade upof23differentsegments.Italternatesbetweenwidesidingsegmentsandnarrowtransitsegments.Fig.2illustratesthesidings andtransitsegmentsoverthelengthofthecanal.Sincethetransitsegmentsarenarrow,largeshipscanonlypasseachotherinthe widersidings.Moreprecisely,formanagingthetrafficoftheKielCanal,eachsegmentisassignedapassagenumberthatexpresses itswidthandeachshipisassignedatrafficgroupnumberthatexpressesitssize.Thepassagenumberofsidingsis12.Thepassage numberofverynarrowtransitsegmentsis6andforsomewhatwidertransitsegmentsitis8,seeFig.2.Thetrafficgroupnumbers ofshipsrangefrom1(small)to6(large).Theruleformanagingthetrafficisthatopposingshipscannotmeetinatransitsegmentif thesumoftheirtrafficgroupnumbersexceedsthepassagenumberofthesegment.Insuchacase,oneoftheshipshastowaitina sidingtolettheopposingshippassthrough.

Furthermore,theships’travelspeedsaregivenbyspeedlimitsvaryingwiththesizeoftheship.Thelargestshipsmusttravelat lowerspeedsthansmallerships.This,inturn,mayleadtosmallershipsqueuingupbehindlargershipsintransitsegmentsasships canonlyovertakeothershipsinsidingsduetosafetyreasons.

SchedulingshipsthroughtheKielCanalhaspreviouslybeenstudiedbyLübbeckeetal.(2019)andMeiselandFagerholt(2019), whichproposedifferentmathematicalformulationsandheuristicmethodsthatprovidesolutionswithinanacceptabletime.Ships thataregoingthroughthecanalannouncetheirarrivalafewhoursbeforetheirExpectedTimeofArrival(ETA).Allpreviousstudies consideredthisinformationtobegivenwithcertaintyandsolvedtheshipschedulingasadeterministicproblem.Incontrasttothe thesepreviousstudies,weconsiderthattheships’actualarrivaltimesaresubjecttouncertaintyand,especially,thatshipsareoften delayed.Thisisamajorpracticalchallengeintheplanningasitgivesfrequentneedofreplanningtokeeptheschedulesfeasible.

Frequentreschedulingistimeconsumingandforcestheplannerstousesimplerulesofthumb,whichmayyieldtravelplansthat arefarfromoptimalwiththeconsequenceoflongertraversaltimesthroughthecanalfortheships.Wehavenamedtheresulting schedulingproblemShipSchedulingontheKielCanalwithUncertainArrivalTimes(SSKC-UAT).

Ourcontributionsthroughthispaperareasfollows.WeintroducetheSSKC-UATandproposeamathematicalformulationfor theproblemtomitigatethenegativeeffectsoftheuncertainarrivaltimes.Thisformulationincorporatestime-corridors,sothata schedulewillstillbevalidaslongastheshipsarrivewithintheirgiventime-corridors.Inotherwords,thetime-corridorservesasa bufferthathedgesagainstdelayedarrivaltimesofshipsatthecanal.Ifpossible,thiscorridorispreservedthroughoutaship’scanal journeysuchthatashipwhoarrivesearlywithinitstime-corridorbenefitsintermsofanearlycanalexitingtime.However,planned waitingtimesofashipinasidingconsumethecorridorassuchwaitingobviouslydelaystheearliestpossiblecanalexitingtimeofa ship.Thepresentedmodeltakescareoftheseinterdependencies.Toensurefastsolutionstoreal-sizedinstancesoftheproblem,we adaptthewell-workingmatheuristicofMeiselandFagerholt(2019)toourproblem.Thematheuristichasbeentestedwithinarolling

(3)

horizonsimulationframeworktostudytheeffectofarrivaltimeuncertaintyandtoidentifysuitablewidthsofthetime-corridorsby experiment.Asimplemyopicheuristic,reflectingthecurrentschedulingpractice,isusedtogeneratebenchmarkresults.Testson realisticdatashowthatthematheuristicprovidessolutionswithsignificantlylessneedofreplanning,whileatthesametimekeeping thetotaltraversingtimesfortheshipsatanacceptablelevel.Wealsoprovidesimulationstogaininsightabouttheeffectontheships’

averagetraversingtimefromupgradingthenarrowtransitsegments.Itshouldbenotedthateventhoughthisstudyisforscheduling shipsthroughtheKielCanal,theproposedmodelandmatheuristiccanbeadaptedforotherwaterwaysorfortrafficsystemsthat facesimilarproblems.

Theoutlineofthispaperisasfollows.Section2reviews therelevantliterature,whileSection3givesadetaileddescription oftheSSKC-UATtogether withamathematicalformulationfortheproblem.Thematheuristicsis describedin Section4, while Section5presents asimulationframeworkforevaluatingschedules.Thecomputationalstudyis giveninSection6.Concluding remarksaredrawninSection7.

2. Literaturereview

A number of studies has investigated traffic management problems for waterways all around the world. In particular, Griffiths(1995)presentqueuingmodelsforbuildingconvoysofshipsthatgothroughtheSuezCanal,Ulusçuetal.(2009)give anoptimizationmodelforsequencingshipsthatpasstheStraitofIstanbul,Sluiman(2017)presentsmethodsforsequencingships attheStraitofIstanbultooaswellasattheSundaStrait,andLalla-Ruizetal.(2018)presentanoptimizationmodelandaheuristic forschedulingshipsattheYangtzeriverdelta.Furtherstudiesaddressshipschedulingforinlandwaterwayswithoutreferringtoa particularreal-worldcase,seee.g.Alfandarietal.(2019).Allthosestudiesthataddressaparticularreal-worldwaterwaytakeinto accountthespecificlayoutoftheconsideredwaterway.Anyhow,whatallthesewaterwayshaveincommonisthatashiphastogo throughonlyoneoratmosttwonarrowtransitsegments.Therefore,thedecisionmakingistypicallytofindasequenceinwhichthe shipsarrivingateithersideofsuchasegmentareallowedtotravelthroughthisbottleneck.Incontrast,theKielCanalconsistsof23 alternatingnarrowandwidesegmentswhereeachshipgoingthroughthecanalhastopassallofthesesegments.Forthisreason,the shipschedulingdecisionsofthedifferentsegmentsareinterdependentandrequireadvancedmethodsfortrafficmanagement.

The particularities of traffic management for the Kiel Canal have been investigated in a number of recent studies.

Lübbecke(2015)andLübbeckeetal.(2019)presentafundamentalmixed-integerprogramthatdescribesthecombinatoricsofthe shipschedulingdecisionsoverthevarioussegmentsofthecanal.Thismodelisbasedontheassumptionthatshipstravelattheir maximumallowedspeedatalltime.Thisimpliesthatthetimeittakesforashiptotraverseasegmentisagivenconstantandthat havingshipswaitinsidingsistheonlywaytoavoidconflictsbetweenships.Theauthorsproposealabelingalgorithmwhichcreates afeasiblesolutionbyiterativelyaddingtheshipsin agivenorder,basedontheestimatedtimeofarrival,withtheuseofwhat theauthorsrefertoascollision-freerouting.Alocalsearchisthenappliedtosearchforalternativeshipordersthatyieldimproved schedules.Wewanttonotethatthelabelingalgorithminthesepapersdeterminestimewindowswithinwhichashipcanentera segmentwithoutcausingconflictswithotherships.Thesetimewindowsaresimilartothetime-corridorsdeterminedinourpaper.

However,thetimewindowsinLübbecke(2015)andLübbeckeetal.(2019)aremerelyameansforfeasiblyinsertingashipintoa partialschedulewithinadeterministicproblemsetting.Theproactivedimensioningoftime-corridorsasisproposedinourpaperfor derivingrobustsolutionsunderuncertainshiparrivaltimesisnotconsideredthere.MeiselandFagerholt(2019)suggestextensions forthemixed-integerprogramandanalternativeheuristicsolutionmethod.Theextensionsenrich themodel(1)byconsidering thespeedofshipsasadecisionratherthanafixedparameter,(2)byrestrictingthewaitingtimesofshipsasaninstrumentfor improvedservicequality,and(3)byincludingcapacityconstraintsthatensurethatshipswaitinginasidingsegmentdonotexceed theavailablespaceofthissegment.Theproposedsolutionmethodisamatheuristic,whichfirstrelaxesallmodelconstraintsthatare responsibleforavoidingconflictsamongshipsand,then,iterativelyaddsviolatedconstraintstoobtainafeasiblesolution.Itisshown byexperimentthattheproposedmatheuristicsolvesrealisticallysizedinstanceswithinsecondsevenfortheextendedversionsofthe problem.Furthermore,thestudyofLuy(2011)investigatestheoperationsplanningofthelocksthatarelocatedatbothendsofthe KielCanal.Whilelockoperationsandtrafficmanagementareinterdependentand,thus,mightideallybeconsideredasanintegrated problem,thetwosub-problemsareintheresponsibilityoftwodistinctcanalauthorities,whichiswhytheyaretreatedindividually inthedifferentstreamsofresearch.

Trafficmanagementproblemssimilartotheschedulingofshipsinnarrowwaterwaysarefoundinrailscheduling,inparticular iftrainstravelinginthesameorinoppositedirectioncannotmeet(orovertake)insegmentsthathaveasingletrackonly,seethe surveysofCordeauetal.(1998)andLusbyetal.(2011).Trainschedulingproblemshavebeentreatedinadeterministicsetting inmany studieslike,forexample,Castilloetal.(2011),Gafarovetal.(2015),Yangetal.(2016), Lamorgeseetal.(2017)and Zhangetal.(2019).Anyhow,alargenumberofstudieson(singletrack)railschedulinghasalsoaddressedthisproblemfroma robustnessperspective.AnoverviewofmodelingapproachestorobusttraintimetablingisprovidedbyCacchianiandToth(2012). ArecentsurveyoftheliteratureinthisfieldisgivenbyLusbyetal.(2018).Theauthorsdistinguishdifferenttypesofproblems where’timetabling’isthefieldthatcomesclosetoourresearch.Therearemanyapproachesinthisfieldthatconsidertrain-related issueslike uncertaindwelltimesin stations,traveldelays frompassengerperspectives,etc,whicharenotrelevanthere.Papers thatcomeclosetothetrafficmanagementofshipsinacanalare,forexample,thesingletrackstudiesofMengandZhou(2011), Shafiaetal.(2012),andJovanović etal.(2017).MengandZhou(2011)determinearobustmeet-passplanfortrainsattheexample ofa138kmsingletrackroutethatconnects18stationsinChina.Inthisproblem,therunningtimeoftrainsalongthesegmentsis uncertainandsegmentscanhaveacapacitybreakdown.Theuncertaintyiscapturedinasetofscenariosandthegoalistofinda solutionthatminimizesexpectedscheduledeviationswithrespecttoaninitialplanningtablethatprescribesenteringandleaving

(4)

timesatsegmentsandminimumdwelltimesatstations.Shafiaetal.(2012)considerasingletrackcorridorthatconnectsthecities ofTehranandIsfahaninIran.Theyfocusondeterminingarobust,periodictimetablethatcanbeappliedrepetitivelyandabsorb delays.Theproblemismodelledasavariantofthejobshopschedulingproblemthatalsocapturesfeatureslikestationcapacityand headwaytimeconstraints.Jovanović etal.(2017)considerabusyrailcorridorinSweden.Theypresentaknapsackformulationthat purposefullydistributesanamountofbuffertimeinagiventimetablesuchastoimprovethereliabilityandon-timeperformanceof thetrains.Tothisend,thetrainsmaybegivendifferentprioritiestoreflecttheirneedforprotectionagainstuncertainevents.

Eventually,theseproblemssharesimilaritieswiththetrafficmanagementinartificialwaterways,buttheyalsodifferwithregard tocentralfeatures.Forexample,insingletrackrailsystemsopposingtrainscannevermeetonatrackwhereastheKielCanalallows thatopposingshipscanmeetinatransitsegmentundercertainconditionsthatmustbecarefullyreflectedinthecorresponding optimizationmodelsandsolutionmethods.Also,trainsmuststopatallstationsaccordingtotheirtimetablewhereasintheship trafficmanagementitneedstobedecidedpurposefullywhichshipstopswhereandforhowlongtoletopposingtrafficpassby.

Withregardtotheabovepapersonrobusttrainscheduling,wehavetostatethattheseapproachesdiffersubstantiallyintermsof theirscope,thenatureoftheuncertainparameters,thedecisionsmade,and/orthepursuedobjective.Moreprecisely,Mengand Zhou(2011)focusonschedulerecoveryafteramajorservicedisruptionthatcomesalongwithacapacitybreakdown ofarail tracksegment,whereasbreakdownsofsegmentsarenotasourceofdisruptionforthedailytrafficmanagementoftheKielCanal.

Shafiaetal.(2012)generateperiodicschedulesthatcanbeexecutedrepetitivelyasisappropriatefortimetabledtrainoperations butirrelevantforwaterwayswhereshiptrafficdoesnotfollowrepetitivepatterns.Furthermore,theyfocusonissuesthatareof particularrelevanceintrain operationssuchasanexplicitseparationoftraindeparturesfromasamestationtoavoid crowded platforms.Suchseparationsarenotneededandevenundesirablewhenschedulingshipsinacanal.Jovanović etal.(2017)facea tacticalproblemofinsertingbuffertimesintoagiventraintimetablesuchthattheoverallcycletimeofthetimetabledoesnotchange iftrainoperationsaredelayed.Incontrast,trafficmanagementattheKielCanalisanoperationalproblemthatisaboutoptimizing shipschedules(timetables)w.r.t.time-corridors(buffertimes)wheretheuncertaintyliesintheinitialarrivaltimeoftheshipsand theobjectiveistominimizethetotalcanalexitingtimeofallshipsinsteadofanoverallcycletime.Duetothesedifferences,robust trafficmanagementfortheKielCanalclearlyrequiresspecificmodelsandmethodsonitsown.

Ofcourse,therearealsostudiesonrobustnessissuesinshipoperationsmanagement.However,suchpaperstypicallyfocuson routingdecisionsfortheconsideredships(e.g.Norlundetal.,2015)butnotonmanagingshiptrafficwithinaparticularwaterway infrastructure.Forthisreasonandbecauseallshiptrafficmanagementpapersmentionedabovefocusondeterministicproblemstoo, ourstudy’scontributionistopresentafirstapproachtorobusttrafficmanagementforinlandwaterwaysliketheKielCanal.Inthis sense,ourpaperbelongstothestreamoftrafficmanagementresearch.

3. Problemdefinitionandmathematicalmodel

GeneralaspectsofschedulingontheKielCanalaredescribedinSection3.1,whiletheShipSchedulingproblemontheKielCanal withUncertainArrivalTimes(SSKC-UAT)ispresentedinSection3.2.ModelingassumptionsandnotationaregiveninSection3.3, beforewepresentthemathematicalmodelfortheSSKC-UATinSection3.4.

3.1. GeneralaspectsofschedulingshipsthroughtheKielCanal

TheKielCanalhasbidirectionaltraffic.IfashipentersthecanalontheKiel-sideitiswestboundandifashipentersinBrunsbüttel itiseastbound.Twoshipsthattravelintheoppositedirectionareopposing,whileshipstravelinginthesamedirectionarealigned.

Theshipsarecategorizedaccordingtotheirsize,andbasedonthistheyaregivenatrafficgroupnumberrangingfrom1to6, wheretrafficgroup6consistsofthelargestships.Themaximumallowedtravelingspeedinsidethecanaldependsonthetraffic groupnumber,andis15𝑘𝑚fortrafficgroupnumbers1–5and12𝑘𝑚fortrafficgroupnumber6.Weassumethatallshipsfollow thisspeedlimitwithinthecanal,exceptforwhentheyhavetowaitinthesidings.Thetraversingtimethroughagivensegmentisthe timeittakesfortheshiptopassthroughthatsegment.

Afeasiblescheduleneeds tokeepcertainsafetyrestrictions.Situationsthatmightviolatethese safetyrestrictionsarecalled conflicts.IntheKielCanal,therearetwotypesofconflicts.Thefirsttypeisaligningconflicts.Eachpairofalignedshipsmaypass eachotherinsidings,whileitisnotallowedforanyalignedshipstoovertakeeachotherintransits.Therefore,thereisapossible conflictbetweentwoalignedshipsineverytransit.Inordertoavoidsuchconflicts,theshipsneedtokeepaminimumsafetydistance throughthetransit.

Theothertypeofconflictisopposingconflicts.Twoopposingshipsmaymeeteachotherinasegmentonlyifthesumoftheirtraffic groupnumberislessthanorequaltothepassagenumberofthesegment.Therefore,shipswillalwaysbeabletomeetinsidingsas thesehaveapassagenumberof12,seeFig.2.Fortransitsegmentsontheotherhand,toolargeshipswillnotalwaysbeabletopass eachotherandaconflictarises,asdemonstratedinFig.3.Toavoidconflicts,oneoftheshipsmighthavetowaitinasidingsothat theothershiphastimetocompletethetransitsegmentbeforetheothershipenters.

Toensureasafepassageoftheshipsandcomplywiththesafetyregulations,itisnecessarytocalculateacertainsafetytimethat mustbekeptbetweentheenteringoftwoshipsatatransitsegment.Suchasafetytimemustbecalculatedbothforeachpairof opposingandalignedships.Detailsonhowtocalculatesafetytimesandonhowtoderivesetofshippairs𝑠𝐴and𝑠𝑂thatcouldhave analigningoropposingconflictinasegment𝑠ofthecanalaregiveninMeiselandFagerholt(2019).

(5)

Fig.3.Demonstrationoflegalshiptraffic.

Fig.4. a)Theonlyallowedpositionforship𝑗isthepositiontheshipiscurrentlyplacedin,sincethereisnocorridorintheschedule.Ifship𝑗is delayed,theschedulewillbecomeinfeasibleasthefollowingship𝑘hastoslowdownorovertakeship𝑗.b)Ship𝑗hasacorridorandisnowallowed tobeinallpositionsinsidethiscorridor.Thetwoextremepoints,theearliestandlatestallowedposition,aremarkedwiththetwogreyships.The increasedflexibilityintheschedulecomesatthecostofforcingship𝑘totravelfurtherbehindship𝑖.

3.2. ShipschedulingintheKielCanalwithuncertainarrivaltimes

InordertofacilitatethetrafficmanagementattheKielCanal,shipcaptainsareaskedtoannouncetheirExpectedTimeofArrival (ETA)atthecanalafewhoursinadvance.Clearly,the𝐸𝑇𝐴issubjecttoacertaindegreeofuncertaintyandshipsmayarrivelater thanexpectedwithinthecanal,forexamplebecauseofloweractualtravelingspeedduetoweatherconditions,heavyshiptrafficor queuingtimebeforeenteringthelocks.

Suchdelaysmightrenderplannedschedulesinfeasibleandforcethetrafficoperatorstorescheduletoobtainnewconflict-free travelschedules.Frequentreschedulingistimeconsumingfortheoperatorsandmightforcethemtouseeitherfastheuristicap- proachesorsimplerulesofthumb.Thismayyieldtravelplansthatarefarfromoptimalwiththeconsequenceoflongertraversal timesthroughthecanal.

IntheSSKC-UAT,weconsiderthisuncertaintyinarrivaltimesandtrytoreducetheamountofreschedulingwhileatthesame timekeepingthetotaltraversingtimeforallshipsthroughthecanalaslowaspossible.Theproblemthenconsistsofgeneratinga feasibletravelscheduleforallshipsthattosomeextenthedgesagainstarrivaltimedelays,whileminimizingthetotaltraversing timeforallships.Ourapproachtoachievethisisbyintroducingatime-corridorforeachship(i.e.,atimebuffer),whichmeansthat spaceistemporarilyreservedforthatshipinthecanalsegments.Aslongastheshipentersthecanalwithinitstime-corridorand stayswithinthiscorridorthroughoutitsjourney,thescheduledtravelplanwillremainfeasible.Ifforexample,itwasplannedthat ashipentersthecanalatan𝐸𝑇𝐴of10:30andisgivenatime-corridorof20minutes,theschedulewillbefeasibleandvalidaslong astheshipentersthecanalintheinterval[10:30,10:50].

Theuseoftime-corridorsisdemonstratedinFigs.4and5.InFig.4a,ship𝑗hasnocorridorandisforcedtoremainatitsrelative positionbetweenships𝑖and𝑘withoutanyflexibility.InFig.4b,ship𝑗receivedadistancecorridorwhichgivesmoreflexibilityof theactualshippositionin-betweenships𝑖and𝑘.Thisdistancecorridorcorrespondsdirectlytoatime-corridor.Abetterillustration oftime-corridorsisobtainedfromrepresentingtheshiptravelinginatime-spacediagramasisdoneinFig.5.Fig.5arepresentsthe situationwithouttime-corridorswhereallthreeshipsmoveatasamespeed(thatcorrespondstotheslopeofthearcs)throughthe depictedcanalsegments.Theseparationofthelinesrepresentstherequiredsafetydistancesbetweentheships.Fig.5brepresentsthe situationwhereship𝑗receivesatime-corridor.Here,theactualpositionoftheshipisnolongerrelevantbutthescheduleremains feasibleaslongastheshipstayswithinitscorridor.Inotherwords,thecorridorcancompensateforuncertainenteringtimesofthe ship.Thefigurealsoshowsthatship𝑘needstobepostponedinordertoprovideacorridorforship𝑗.

3.3. Modelingassumptionsandnotation

Whenmodelingthisproblem,some assumptionshavebeenmade. Firstly,itisassumedthateachshiptraversesthecanalat aconstantspeed(exceptforwhenwaitinginthesidings)equaltothemaximumspeedbasedontheship’strafficgroupnumber.

(6)

Fig.5.a)Thetime-spacerepresentationshowsthatship𝑗hastokeepitsrelativepositionin-betweenships𝑖and𝑘.Ifship𝑗isdelayed,theschedule willbecomeinfeasibleasthefollowingship𝑘hastoslowdownorovertakeship𝑗.b)Ship𝑗hasatime-corridorandisnowallowedtoenterthe segmentatanytimewithinthecorridorwithoutmakingthescheduleinfeasible.Theincreasedflexibilityintheschedulecomesatthecostofforcing ship𝑘totravelfurtherbehindship𝑖thanwithouttime-corridors.

Furthermore,extratraversingtimeduetoaccelerationordecelerationisneglectedwhichmeansthattraveltimespersegmentare deterministicandcanbecalculatedaspartofthepre-processing.Secondly,capacitylimitsinthesidingsarenotconsideredhereas experimentsinMeiselandFagerholt(2019)showedthattheselimitsarehardlybindinginanysolutiontothetrafficmanagement problem.Lastly,weassumethatallshipstravelthroughtheentirecanal.

ThenotationthatweuseinthemathematicalformulationfortheSSKC-UATispresentedandexplainedinthefollowing.

Sets

:Setofsidings

 :Setoftransitsegments

=∪ :Setofallsegments,bothsidingsandtransitsegments

:Setofships

𝐸 :Setofeastboundships,i.e.shipsthatenterthecanalinwestmostsegment0(Brunsbüttel)andexitthroughtheeastmost segment𝑠=22(Kiel),seeFig.2

𝑊 :Setofwestboundships,i.e.shipsthatenterthecanalineastmostsegment𝑠=22andexitthroughthewestmostsegment0

𝐴𝑠 :Setofallpossiblealigningconflictsonsegment𝑠,givenasasetofpairsofships

𝑂𝑠 :Setofallpossibleopposingconflictsonsegment𝑠,givenasasetofpairsofships Parameters

𝑇𝐶𝑖:Initialtime-corridorwidthgiventoship𝑖

𝐸𝑇𝐴𝑖:Estimatedtimeofarrivalatfirstcanalsegmentforship𝑖 Δ𝑖,𝑗,𝑠:Safetytimebetweenship𝑖and𝑗insegment𝑠

𝐷𝑖,𝑠:Traversingtimeforship𝑖insegment𝑠 𝑀:Big𝑀-parameter

DecisionVariables

𝑧𝑖,𝑗,𝑠:Binaryvariablethattakesvalue1ifship𝑖enterssegment𝑠beforeship𝑗,0otherwise 𝑤𝑖,𝑠:Thewaitingtimeforship𝑖insidingsegment𝑠

𝑡𝑖,𝑠:Plannedenteringtimeforship𝑖intosegment𝑠 𝑡𝑖,𝑠:Latestenteringtimeforship𝑖intosegment𝑠

3.4. Mathematicalmodel

Themodelaimsatmakingaschedulethatcantosomeextentwithstanddelaysinarrivaltimesbyintroducingtime-corridors.We takeupandextendthebasemodelformulationofMeiselandFagerholt(2019),whichassumedadeterministicsettingwithoutaneed tomitigateagainstuncertaintyinthearrivaltimes.ModelextensionsthatwereinvestigatedinMeiselandFagerholt(2019)like,for example,consideringshipspeedasadecisionvariable,arenotincludedhereforreasonsofbrevity.Thetime-corridorofashipis definedtobethedifferencebetweenaplannedenteringtimeandalatestenteringtimeateachsegmentandisusedtoretainspace temporarilyinthecanal,creatingafreepathfortheshipaslongasitstayswithinthegiventime-corridors.Initially,atthebeginof thecanaljourney,theETAdefinestheearliesttimeinthecorridor.Thelatestallowedenteringtimefollowsfromapresetcorridor width𝑇𝐶𝑖thatisaddedtotheearliesttime.

(7)

Themodelusesthefollowingdecisionvariables:Thebinaryvariable𝑧𝑖,𝑗,𝑠decideswhichoftwoconflictingships(𝑖,𝑗)∈𝑠𝐴∪𝑠𝑂 getstoentersegment𝑠first,where𝑧𝑖,𝑗,𝑠=1ifship𝑖entersbeforeship𝑗intosegment𝑠and𝑧𝑖,𝑗,𝑠=0ifship𝑗entersbeforeship𝑖into segment𝑠.Variable𝑤𝑖,𝑠denotesthewaitingtimeforship𝑖insidingsegment𝑠.Theplannedenteringtimeforship𝑖intosegment𝑠is denotedby𝑡𝑖,𝑠whereas𝑡𝑖,𝑠denotesthelatestenteringtimeforship𝑖intothissegment.𝑡𝑖,𝑠and𝑡𝑖,𝑠spanthetime-corridorforship𝑖in segment𝑠,meaningthatthescheduleremainsfeasibleaslongastheshipentersthesegmentwithinthistimespan.Theoptimization modelisthenformulatedasfollows.

min𝑇𝑇𝑇= ∑

𝑖 𝜖𝐸

(𝑡𝑖,𝑠+𝐷𝑖,𝑠𝑡𝑖,0)+ ∑

𝑖 𝜖𝑊

(𝑡𝑖,0+𝐷𝑖,0𝑡𝑖,𝑠) (1)

Theobjectivefunction(1)minimizesthetotaltransittime(𝑇𝑇𝑇)fortheshipsthattraversethecanal.Theexitingtimeforashipis whentheshipleavesthelastsegment,whichis𝑡𝑖,𝑠+𝐷𝑖,𝑠foreastboundships,whileitis𝑡𝑖,0+𝐷𝑖,0forwestboundships.

𝑡𝑖,𝑠+𝐷𝑖,𝑠=𝑡𝑖,𝑠+1 𝑖∈𝐸,𝑠∈ (2)

𝑡𝑖,𝑠+𝐷𝑖,𝑠=𝑡𝑖,𝑠−1 𝑖∈𝑊,𝑠∈ (3)

𝑡𝑖,𝑠+𝐷𝑖,𝑠+𝑤𝑖,𝑠=𝑡𝑖,𝑠+1 𝑖∈𝐸,𝑠∈∖{ 𝑠}

(4)

𝑡𝑖,𝑠+𝐷𝑖,𝑠+𝑤𝑖,𝑠=𝑡𝑖,𝑠−1 𝑖∈𝑊,𝑠∈∖{0} (5)

Constraints(2)-(5)handletheflowoftheships.Constraints(2)settheplannedenteringtimeatthesubsequentsegmentforeach eastboundship andfor eachtransit segment.Constraints(3)dothesamefor westboundships.Constraints(4)andConstraints (5)handletheflowforthesidingsforeastboundandwestboundships,respectively.Notethatwaitingisallowedonlyinsidings.

𝑡𝑖,0=𝐸𝑇𝐴𝑖 𝑖∈𝐸 (6)

𝑡𝑖,𝑠=𝐸𝑇𝐴𝑖 𝑖∈𝑊 (7)

𝑡𝑖,0=𝐸𝑇𝐴𝑖+𝑇𝐶𝑖 𝑖∈𝐸 (8)

𝑡𝑖,𝑠=𝐸𝑇𝐴𝑖+𝑇𝐶𝑖 𝑖∈𝑊 (9)

𝑡𝑖,𝑠𝑡𝑖,𝑠𝑡𝑖,𝑠+1𝑡𝑖,𝑠+1 𝑖∈𝐸,𝑠∈∖{ 𝑠}

(10)

𝑡𝑖,𝑠𝑡𝑖,𝑠𝑡𝑖,𝑠−1𝑡𝑖,𝑠−1 𝑖∈𝑊,𝑠∈∖{0} (11)

Constraints(6)and(7)settheplannedcanalenteringtimes,foreastboundandwestboundships,respectively,equaltoaship’s estimatedtimeofarrival.Foreastboundshipsthiswillbetheenteringtimeatsegment0whileforwestbounditwillbeatsegment 𝑠.Thelatestenteringtimeissettobetheestimatedarrivaltime𝐸𝑇𝐴𝑖plusthetime-corridor𝑇𝐶𝑖giventotheship,asstatedin Constraints(8)and(9).Theseconstraintsestablishtheinitialwidthofeachship’stime-corridor.Asashiptravelsthroughthecanal, itsgiventime-corridormaybeconsumedifithastowaitforanothership.Thisisbecausethetime-corridorisabufferthatcatches upvariationsofshiparrivaltimeswhenenteringthecanal.Ifashipactuallyarrivesatits𝐸𝑇𝐴𝑖,itcanfollowthetime-corridorat theearliestsegmententeringtimes𝑡𝑖,𝑠whereasifitjustarrivesatthetime𝐸𝑇𝐴𝑖+𝑇𝐶𝑖itcanfollowthetime-corridoratthelatest enteringtimes𝑡𝑖,𝑠.However,ifashipentersthecanalalreadyat𝐸𝑇𝐴𝑖butthenhasaplannedwaitingatsomesegmentwithinthe canal,theearliestenteringtimes𝑡𝑖,𝑠atsubsequentsegmentsareobviouslypostponedbythewaitingtime.Thiseffectsthatthecorridor shrinksaccordingtotheplannedwaitingtime.Then,ifthewaitingatsomesegmentcompletelyconsumedthetimecorridorofaship, thisshiphastofollowapathwithoutatime-corridor(asshowninFig.5a)fortherestofthecanaljourney.Afurtherexplanation oftime-corridorconsumptionisprovidedbelowattheexampleofFig.6.Eventually,thetime-corridoratasubsequentsegmentisat mostaslargeasthetime-corridoratthecurrentsegment,seeConstraints(10)and(11).

𝑡𝑖,𝑠𝑡𝑖,𝑠 𝑖∈,𝑠∈ (12)

𝑡𝑖,𝑠+𝐷𝑖,𝑠𝑡𝑖,𝑠+1 𝑖∈𝐸,𝑠∈∖{ 𝑠}

(13)

𝑡𝑖,𝑠+𝐷𝑖,𝑠𝑡𝑖,𝑠−1 𝑖∈𝑊,𝑠∈∖{0} (14)

Thetime-corridorshrinksbytheamount oftimetheshiphastowait. Iftheentiretime-corridor isconsumed,theshipwillno longerhaveacorridor.Instead,itwillhaveastricttravelschedulesimilartoasinadeterministicplanningenvironment,suchasin Lübbeckeetal.(2019)andMeiselandFagerholt(2019).Clearly,asthetime-corridorcannotbecomenegative,Constraints(12)ensure thatthelatestenteringtimeisboundedbytheplannedenteringtime.Constraints(13)and(14)thenpropagatethelatestentering timefromasiding𝑠tothenextsegment.

(8)

Fig.6. Anexampleoftheconsumptionoftime-corridors.

Fig.6showsanexampleofhowwaitingaffectsthetime-corridor.Therearethreeeastboundships𝑖,𝑗 and𝑘aswellasone westboundship𝑙.Initially,allfourshipshavetime-corridorsof20minuteseach.Inthedepictedsolution,thewestboundship𝑙has togiveprioritytoallthreeeastboundships.Forthisreason,ithastowaitineachofthesidings𝑠+5,𝑠+3,and𝑠+1.Insiding 𝑠+5,ithastowaituntilship𝑖’scorridorhasfullyleftthetransitsegment𝑠+4.Thisshrinks𝑙’stime-corridorbyabout7minutes.

Insiding𝑠+3,ithastowaituntilship𝑗’scorridorhasfullyleftthetransitsegment𝑠+2.Thiswaitingfullyconsumes𝑙’sremaining time-corridor,whichisthenofwidth0.Eventually,insiding𝑠+1,ship𝑙hastowaituntilship𝑘’scorridorhasfullyleftthetransit segment𝑠.Here,thetime-corridorof𝑙isnomoreconsumable,whichiswhythe0-widthcorridorisnowshiftedalongthetimeaxis, asishandledbyConstraints(12)to(14).Thedepictedsolutionremainscompletelyfeasibleaslongasallfourshipsarrivewithin theirrespectivetime-corridors.

𝑡𝑖,𝑠+𝐷𝑖,𝑠=𝑡𝑖,𝑠+1 𝑖∈𝐸,𝑠∈ (15)

𝑡𝑖,𝑠+𝐷𝑖,𝑠=𝑡𝑖,𝑠−1 𝑖∈𝑊,𝑠∈ (16)

Sinceashipcannotwaitinsideatransitsegment,thetime-corridordoesnotshrinkwhentravelingfromatransittoasiding.Thisis takencareofbyConstraints(15)and(16).

𝑡𝑖,𝑠𝑖,𝑗,𝑠𝑡𝑗,𝑠+𝑀⋅(1−𝑧𝑖,𝑗,𝑠) 𝑠∈,(𝑖,𝑗)∈𝑠𝐴 ∪ 𝑂𝑠 (17)

𝑡𝑗,𝑠𝑗,𝑖,𝑠𝑡𝑖,𝑠+𝑀𝑧𝑖,𝑗,𝑠 𝑠∈,(𝑖,𝑗)∈𝑠𝐴 ∪𝑠𝑂 (18)

Constraints(17)and(18)aretheprecedenceconstraintsandareonlydefinedforthetransitsegmentsastravelinginsidingsdoes notraiseconflicts.Ifship𝑖enterssegment𝑠beforeship𝑗,i.e.𝑧𝑖,𝑗,𝑠=1,Constraints(17)forcetheenteringtimeforship𝑗tobelater thanthelatestenteringtimeofship𝑖(i.e.theendof𝑖’stime-corridor)plusthesafetytimethathastoelapsetomakesurethatships 𝑖and𝑗cansafelytraversethesegment.Ifship𝑗getspriorityovership𝑖,Constraints(18)ensurethatship𝑗entersfirst.

𝑡𝑖,𝑠,𝑡𝑖,𝑠≥0 𝑖∈,𝑠∈ (19)

𝑤𝑖,𝑠≥0 𝑖∈,𝑠∈ (20)

𝑧𝑖,𝑗,𝑠𝜖{0,1} 𝑠∈,(𝑖,𝑗)∈𝑠𝐴 ∪ 𝑂𝑠 (21)

Constraints(19)and(20)arethenon-negativeconstraintsforthedecisionvariables.Constraints(21)settheprecedencevariablesto bebinary.

(9)

4. Iterativeconflict-Addingmatheuristic

Themixedintegerprogramming(MIP)modelprovidedinSection3.4ishardtosolveduetothelargenumberofbinaryz-variables andConstraints(17)and(18),whichareneededtoresolveallpotentialconflicts.Thesizeoftheproblemincreasesstronglywithan increaseinthenumberofshipsanditalsobecomeshardertosolvewithincreasedwidthoftime-corridors.Asaresultofthis,aMIP- solvercanonlysolvesmallprobleminstances.Wethereforeproposeamatheuristic,whichwedenoteastheIterativeConflict-Adding Matheuristic(ICAM)forsolvingtheSSKC-UAT.

ThebasicframeworkofICAMistakenfromMeiselandFagerholt(2019).WepresentthisinAlgorithm1 tomakethepaper

Input:Aprobleminstance

1.Initialization:𝑠𝑂←∅and𝑠𝐴←∅forallsegments𝑠 2.SolvetheoptimizationmodelusingastandardMIP-solver.

3.IdentifythesetofConflictsFoundinthecurrentsolutionusingAlgorithm2.

4.whileConflictsFound≠∅do

5.FirstConflicts←uptothe𝜈firstconflictsinConflictsFound 6.foralltheconflictsfcFirstConflictsdo

7.iffcisaconflictofopposedshipsonsegment𝑠then 8.𝑠𝑂←𝑂𝑠𝑓𝑐

end

9.iffcisaconflictofalignedshipsonsegment𝑠then 10.𝑠𝐴←𝑠𝐴𝑓𝑐

end end

11.Fixfeasiblepartofcurrentsolutionuptotheearliestconflict𝜏. 12.SolvetheoptimizationmodelusingastandardMIPsolver.

13.IdentifythesetofConflictsFoundinthecurrentsolutionusingAlgorithm2.

end

returnTheobtainedsolutionwhichisafeasibletravelplanforallships.

Algorithm1:TheIterativeConflict-AddingMatheuristic(ICAM).

self-contained.Wewanttonotethatthewidthoftime-corridorsisgivenasaninputparametertotheheuristic(andrespectedwhen solvingtheembeddedoptimizationmodel).Aplannercanreruntheheuristicforseveraldifferentwidthstoidentifytheonethat bestsuitsthearrivaltimeuncertaintyhe/sheisfacedwith.Weillustratethislaterinourcomputationalexperiments.Byintroducing time-corridors,thecomplexityofthealgorithmincreasessincetheexactpositionofeachshipisnolongerfullyknown.Thisrequires amoredetailedconflictdetectionthroughAlgorithm2,whichislaterexplained.TheideabehindICAMistofirstsolvetheproblem

Input:Currentsolution ConflictsFound←∅

forallthepairsofshipsiandjdo forallthetransitsegmentsdo

ifprecedenceconstraints(17)and(18)areviolatedthen ifshipsiandjarealigningthen

iftherealreadyisaconflictbetweenships𝑖and𝑗then checktimeofconflictsandkeepearliestone end

else

addconflicttoConflictsFound end

end

ifshipsiandjareopposingthen addconflicttoConflictsFound end

end end end

returnConflictsFound

Algorithm2:Conflictdetectionprocedure.

withemptysets𝐴𝑠 and𝑠𝑂ofalignedandopposingconflicts,asdescribedinstep2inAlgorithm1.Withoutprecedenceconstraints, theproblemsolvesquicklywithacommercialsolverasitisacontinuouslinearprogramonly.Allconflictsthatmakethesolution

(10)

Fig.7. a)Whentheformulationincludestime-corridors,theshipcanbeineitherthedarkorthelightsegmentattime75.b)Inaformulation withouttime-corridors,asusedinMeiselandFagerholt(2019),theshipcanonlybeinthelightsegmentattime75.

infeasiblearethenidentifiedandsortedinchronologicalorder.Asshowninsteps3to10inAlgorithm1,theconflictsetcalled ConflictsFoundcontainsallconflictsfoundinthecurrentsolution.Adefinednumberofconflictsarestoredtemporarilyintheset firstConflictsandtheseareaddedtoeitherthealigningortheopposingconflictssets𝑠𝐴and𝑠𝑂ofthecorrespondingsegment𝑠.The scheduleisthenfixeduptothetimeofthefirstnewconflict,whichisdenotedby𝜏.Thismeansthatsomeshipscannothaveparts oftheirschedulechangedinlateriterations,whichwillhelpreducethecomplexityoftheMIP-problemsolvedineachiteration.The problemisthenresolvedwiththeupdatedsetsofalignedandopposingconflictsandfixationofallships’schedulesuptotime𝜏.

MultiplePossibleShipPositions

Whenallshipsaregivenaninitialtime-corridor,itisnotclearinwhichparticularsegmentashipsisatagiventime.InFig.7a), thetwoblacklinesrepresenttheupperandlowerboundaryforaship’sposition.Theshiphasatime-corridoroftentimeminutes,i.e.

thelowerlineistentimeunitsbelowtheupperline.Asseenbythedottedhorizontalline,whichreferstopointintime75,theship canbeinoneoutoftwodifferentsegments.Itcanbeinthetransitsegment𝑠−1orinthesidingsegment𝑠.Thisisdifferentfrom thesituationinMeiselandFagerholt(2019),whereashiptravelsalonganexactlydefinedpathwhereitisinexactlyonesegmentat agiventime,seetheexampleinFig.7b).

Whenthewidthofaship’stime-corridorincreases,thenumberofpossiblelocationsforthisshipmayincreaseaswell.Thisresults inlargerconflictsetsandmorebinaryprecedencevariablestoresolveallpotentialconflicts.

HowconflictsaredetectedineachiterationintheICAMwithtime-corridorsfortheshipsisoutlinedinAlgorithm2.Sinceeach shipmayhaveatime-corridorinourproblem,boththeearliestandlatestplannedtimeareusedtoidentifyconflicts.Eachpairof ships𝑖and𝑗ischeckedtoseeifthereisaconflictbetweenthem.Thisisdoneonalltransitsegmentsbycheckingwhichshipenters thesegmentfirst,andtheprecedencevariables𝑧𝑖,𝑗,𝑠and𝑧𝑗,𝑖,𝑠arethentemporarilysetaccordingtothis.Furthermore,theprecedence constraints(17)and(18)arethenexaminedtoidentifypossibleconstraintviolations.Ifaconstrainthasbeenviolated,thereisa conflict,andthedirectionsoftheshipsareusedtodetermineiftheconflictisaligningoropposing.

BeforetheconflictisaddedtothesetConflictsFound,itischeckedifthesametwoshipshaveanotherconflictonanothersegment.

Inthiscase,onlytheconflictthatoccursfirstisadded.Thereasonforthisisthatiftwoaligningshipshaveaconflictonasegment (astheymovetooclosetoeachother),theywillmostlikelyhaveconflictsonallthefollowingsegmentstoo.

TheconflictdetectionalgorithmusedbyMeiselandFagerholt(2019)detectsconflictsbyrunningthroughtheships’positions atcertaintimeincrements.Sincetheshipscanbeinmultiplepossiblepositionswhenapplyingtime-corridorscheduling,thesame detectionalgorithmwasnotsuitableforourcase.ThemaindifferencebetweenMeiselandFagerholt(2019)andtheoneproposedin thispaperisthatMeiselandFagerholt(2019)’sdetectionalgorithmrunschronologicallythroughtheconflictsandstopswhenithas foundthepredefinednumberofconflicts,𝜈.Incomparisonouralgorithmfirstfindsallconflictsbeforesortingtheminachronological orderandreturnsthefirst𝜈conflicts.

MechanismsforSpeedinguptheSolutionProcess

MeiselandFagerholt(2019)haveproposedthreemechanismsforspeedingupthesolutionprocess,whicharealsoemployedin ourversionofthealgorithm.Oneapproachistoaddonlyapredefinednumberofconflictsineachiterationinsteadofalltheconflicts thataredetected.Parameter𝜈inStep5ofAlgorithm1controlshowfaraheadintimeconflictsshouldbeadded.Assuch,itcontrols thesizeandcomplexityoftheMIP-problemthatissolvedperiteration.Here,low𝜈-valuesresultinsmallMIP-subproblemstosolve butitmayrequirealargernumberofiterationstosolvetheproblemcompletely.Largervaluesof𝜈createlargersubproblemsbut requirelessiterations.Furthermore,𝜈affectstheoverallsolutionquality.Itisthereforeessentialtochooseitappropriatelytoobtain bothlowtotalsolutiontimeandsatisfactorysolutiongaps.

(11)

Fig.8. Flowchartforthesimulationframeworkwhereshiparrivaltimesareuncertain.

AnotherwaytoreducethesolutiontimeoftheICAMistofixthescheduleuptothetimeoftheearliestconflict,seeStep11of Algorithm1.Theconflicttimeisdenoted𝜏anddeterminedwhentheconflictsofthecurrentsolutionareidentified.Thetimeisset tobethetimeoftheearliestenteringtimeofthesegmentwheretheconflictoccursforthetwoships.Asweintroducetime-corridors intotheproblem,wefixinourversionofthealgorithmbothenteringtimes,theearliest𝑡𝑖,𝑠andthelatest𝑡𝑖,𝑠thatareearlierthan𝜏 foranyship𝑖andsegment𝑠.Byfixingthepartofthesolutionuptotheearliestconflict,theruntimeperiterationwillstayalmost constant,sincepreviousbinaryprecedencevariableshavealreadybeenfixed.

Finally,whensolvingtheMIP-modelinStep12ofAlgorithm1,onecanprescribeamaximumruntimeasitisnotmandatoryto solvethesubproblemstooptimalitywithinaheuristicframework.

5. Simulationframework

TheSSKC-UATisinSection3.4formulatedasastaticoptimizationproblem.However,inpracticeitisdynamicandmustbesolved overandoveragainasnewinformation(e.g.aboutdelaysleadingtoconflicts)appearsoverthecourseoftime.Therefore,wewant totesthowtheICAMheuristicworkswithinarollinghorizonsimulationframeworktostudytheeffectofarrivaltimeuncertainty.

Thissectiondescribesthesimulationframeworkinwhichthistestingisdone.

ThecurrentpracticeatthecanalisthatshipcaptainsareaskedtocallintheirestimatedETAsometimepriortothearrivalatthe canal.AtypicalannouncementleadtimeoftheETAsisaroundtwohoursaheadofthearrival.Thistimeisdenotedthenoticeperiod. Forexample,ifthenoticeperiodisexactlytwohours,ashipwithan𝐸𝑇𝐴of17:23becomesknowntothecanaloperatorsattime 15:23and,therefore,thisshipwillbepartofanyplanningthatisconductedatthistimeorlater.

Thereareseveraldifferentaspectsthatmustbeconsideredinordertocreateasimulationprocessthatrealisticallyresemblesthe real-lifeschedulingonthecanal.AflowchartforthesimulationprocesscanbefoundinFig.8.Therearefourdifferenteventsthat canoccur,numberedfrom1to4inFig.8.Someoftheseeventleadtoarescheduling,i.e.thatarevisedscheduleisobtainedfrom solvingtheSSKC-UATforallshipsknownatthecurrenttimewiththemostup-to-dateinformationavailable.

ReferringtoFig.8,ifashiparrivesonitsETA,theeventwillbeoftype1.IftheshiparriveslaterthanETAbutstillwithinits time-corridor,theeventwillbeoftype2.Neitheroftheseeventtyperequiresareschedulingiftheshipisalreadyincludedinthe currentsolutionasthisplanremainsthenfeasibleinbothcases.Anyhow,distinguishingbotheventtypeshelpstoanalyzethevalue oftime-corridors.Moreprecisely,shipsthattriggerevent1wouldbefeasibleonlyinadeterministicplanningwhereasshipsthat triggerevent2wouldmakeanon-robustsolutioninfeasible.Itisthereforetheintroductionoftimecorridorsthatkeepsthesolution feasibleinthesesituations.

Anyhow,ifashipisdelayedevenbeyonditstime-corridor,therewillbetwoeventsoftype3and4.First,whenadelayedship hasnotarrivedattheendofitstime-corridor,anevent3istriggeredatthattime(i.e.,ETAplusthelengthofthetime-corridor).The shipwillthenberemovedfromthecurrentsolutionandarescheduleisinitiatedtore-optimizetheroutesoftheotherships.When thedelayedshipfinallyarrives,aneventoftype4willinitiateareschedulingtoinsertthisshipintothesolution.

Forconductingthesimulationstudies,wegeneratedshipdataasfollows.Wehaveusedadiscretedistributionforassigningtraffic groupnumberstoeacharrivingship.Basedonhistoricaldata,wehavesettheprobabilitiesto0.005,0.03,0.495,0.25,0.21,and 0.01forships’trafficgroupnumbers1,2,3,4,5,and6,respectively.TheETAisassumedtobethetimewhentheshipisexpectedto enteritsfirstsegmentofthecanal,i.e.aftertheshiphaspassedthroughthelock.Fromanalysingreal-worlddatathatwasprovided bythecanalauthority,itwasfoundthatthearrivaltimesoftwoconsecutiveshipsarenotindependent.Thisiscausedbyhowthe

(12)

Table1

TheresultsoftheICAMcomparedtotheresultsobtainedwiththeXpressMIP-solverunderatimelimitof600seconds.Eachrowinthetable isbasedontheaverageoftentestinstances.

Xpress ICAM

# of ships in

instance 𝑇 𝐶[ 𝑚𝑖𝑛 ] Avg objective

[ 𝑚𝑖𝑛 ] # of optimal

solutions Avg gap [%] Solution

time [ 𝑠𝑒𝑐] Avgchange [%] Avg gap [%] Solution time [ 𝑠𝑒𝑐]

20 0 8257.91 9 0.15 85.60 0.16 0.31 2.26

10 8412.19 9 0.21 142.42 0.19 0.40 3.07

25 8663.10 8 0.40 239.17 0.27 0.67 3.40

Average 8444.40 8.7 0.25 155.73 0.21 0.46 2.91

30 0 12342.52 7 0.19 266.32 0.19 0.38 3.89

10 12606.40 2 0.99 519.39 0.09 1.07 5.13

25 13008.58 0 1.95 600.00 0.55 2.49 6.76

Average 12652.50 3.0 1.04 461.90 0.28 1.31 5.26

40 0 17064.40 0 3.61 600.00 -0.78 2.85 35.51

10 17588.75 0 5.32 600.00 -1.70 3.68 33.96

25 18319.81 0 7.08 600.00 -2.24 4.95 37.53

Average 17657.65 0.0 5.34 600.00 -1.57 3.83 35.66

locksareoperated,morespecificallythatseveralshipsareallowedthroughthelockssimultaneously.Agroupofshipsthatenters intothefirstcanalsegmentataroundthesametimeisreferredtoasabatch.

Weuseexponentialprobabilitydistributionstocreatetheinter-arrivaltimesbetweentwoconsecutiveshipsinsideabatch,aswell asthetimebetweentwobatches.Thedistributionsarechosensoastogivearealisticarrivalpatternandayearlytrafficofaround 30000ships.Basedonthereceivedhistoricaldata,thetrafficflowinbothdirectionsaccountsforapproximately50%eachwithan almostconstantflowofshipsinbothdirections.However,sincetheshipsarriveinbatches,itisnotpossibletorandomlydrawa directionforeachship,asthiswillnotguaranteerealisticbatchbehavior.Wethereforedrawthedirectionsofthebatchesinstead oftheindividualships.Wehavealsolookedatthehistoricaldatatocreaterealisticdistributionsonthebatchsize,whichcanvary from1to4ships.

Sincethecanaloperatorsdidnotprovidedataonshipdelays,wehaveusedestimatesforthesimulationstudy.Wehaveassumed thatthearrivaltimedelaysareindependentandidenticallydistributedamongtheships.Thepercentageofshipsthatenterthecanal punctuallyattheirETAisdenoted𝛼,whereas1-𝛼percentoftheshipsaredelayed.Thelengthsofthesedelaysaredrawnfroman exponentialdistributionwithanexpectedvalueof𝑑minutes.Thevaluesofparameters𝛼and𝑑arelatervariedinourexperimental study.

6. Computationalstudy

Thecomputationalstudyisdividedintotwoparts.InSection6.1,wesettheparametersoftheICAMmatheuristicandcompareits performancetousingthecommercialMIP-solverFICOXpressforsolvingthemodelinSection3.4directly.Afterwards,inSection6.2, thesimulationframeworkisusedtotesttheeffectofintroducingtime-corridorsinastochasticenvironment.Theobjectiveistostudy howtime-corridorsaffectthetotaltraversingtimeoftheshipsandhowmanyreschedulesneedtobeperformedduringtheplanning periods,i.e.thenumberoftimestheSSKC-UATneedstoberesolvedasascheduleturnedinfeasible.Wealsostudytheimportance ofthelengthofthenoticeperiod,i.e.,howearlyinadvancetheshipscallintheirETAs,andtheeffectofextendingcertaincanal segmentsonthetraversingtimesoftheships.

AllsimulationsareconductedonLenovoM5 computerswith3.4GHzprocessorsand512 Gbofmemory. TheBCL-libraries developedbyFICO XpresshavebeenusedtoimplementtheICAMthroughC++.Fortheheuristic,wesetthemaximumruntime periterationtobe5secondsandthenumberofconflictsaddedperiterationto𝜈=20.Theseparametersweredeterminedinapretest liketheoneconductedinMeiselandFagerholt(2019).

6.1. Evaluationoftheiterativeconflict-Addingmatheuristic(ICAM)

WenexttesthowwelltheICAMperformsandthecommercialMIP-solverperformfortestinstancesofdifferentsizeanddifferent initialtime-corridorwidthsfortheships.Tentestcaseswith20,30and40shipsweregeneratedbasedonrealhistoricaldata.Asthe yearlytrafficthroughtheKielcanalisabout30000shipsandeachshipspendsabout8hoursinthecanal,anaverageof27shipsis inthecanalatatime.Therefore,testcaseswith30shipsrepresentanaveragetrafficdensitywhereasinstanceswith20shipsare lowtrafficdensityand40shipsrepresentbusytrafficsituations.Weconsidertheinitialtime-corridorwidths𝑇𝐶of0(i.e.,thereare notime-corridors),10and25minutespership,resultinginatotalof90testinstances.Thetestdataisprovidedtootherresearchers uponrequest.

TheresultsaresummarizedinTable1,whereeachrowrepresentsaverageresultsoverteninstancesofsamesizeandcorridor width.FortheMIP-solver,theaverageobjectivevalue,thenumberofinstancessolvedtooptimality,theaveragegap,andtheaverage solutiontimeareshown.Thegapisdefinedastherelativedifferencebetweenthebestsolutionandthebestbound,wheretheXpress solverisgivenaruntimeof600secondsperinstance.FortheICAMmatheuristic,column’Avgchange’iscalculatedastherelative

(13)

differencebetweenthesolutionfoundbyICAMandtheXpressobjectivevalue(negativenumbersmeansthattheheuristicsolution isbetter),whilecolumn’Avggap’givestherelativedifferencebetweentheICAMsolutionandthebestboundobtainedfromthe MIP-solver.Inadditiontoconductingthesetestswitharuntimeof600seconds,werantwotestinstanceswith40shipseachand time-corridorsof25minutes,withtheexactsolutionmethod(XpressMIP-solver)foratotalof18hours.Thegapsforthesetwo instanceswerereducedfrom9.95%and4.41%after600secondsto6.19%and2.89%after18hours,respectively.Asthereduction ofgapsaftertheextremelongruntimeisveryminorandmostlyduetoimprovementsoflowerboundsratherthanimprovementsof theobjectivefunction,itseemsreasonabletoconductthecomparisonsoftheICAMandtheexactsolutionmethodata600seconds runtime.Itcanalsobementionedthatsincethisisanoperationalplanningproblemthathastobesolvedeverytimeanewshipis approachingthecanal,600secondscanbeconsideredasapracticalupperlimitonthemaximumallowedsolutiontime.

AsshowninTable1,theoverallperformanceoftheICAMisverygood.Fortheinstanceswith20and30ships,thematheuristic givessolutionsthatarejustslightlyworsethantheonesobtainedbytheMIP-formulationwhereas forthecaseswith40ships, ICAMperformssignificantlybetterthanMIP-SolverXpress.Regardingtheroleoftime-corridors,weobservethattheobjectivevalues increase(asexpected)andthatgapsgetsomewhatlargerforwidercorridors.Furthermore,runtimesofXpressclearlygrowwith largertime-corridorswhereasruntimesof𝐼𝐶𝐴𝑀stayalmostconstantfordifferentwidthsofcorridors.Althoughtheruntimesofthe heuristicgrowsubstantiallyforlargerinstanceshere,itismuchfasterthanXpressinallcases.Duetothisperformance,ICAMisvery wellsuitedtobeusedinthesimulationframework.

6.2. Simulationswitharrivaltimeuncertainty

Inthesubsequentexperiments,weanalyzetheeffectofintroducingtime-corridorsonthetotaltraversingtimeoftheshipsand thenumberofreschedules.Wealsoinvestigatetheeffectofthelengthofthenoticeperiod(i.e.,thetimeinadvancetheshipswill callintheirETAs)toseeifitmaybebeneficialtoseekforlongernoticeperiods.Finally,weconductananalysisonhowpossible upgradesinthecanalcanimprovetheaveragetraversingtime.

Forthesimulations,weusedadatasetofabouttwomonths(63days)ofshipstraffic.Thefirstdayistakenoutoftheperformance analysisasitservesaswarmupperiod.Thuseachsimulationhas62daysoffulltraffic.

Fourdifferentsimulationsareconductedtoanalyzetheeffectofintroducingtime-corridorsonthetotaltraversingtimesforthe shipsandthenumberofreschedules.Thefirstsimulationisrunusingaheuristicthatreflectsthecurrentschedulingpracticeto createsomebenchmarkstocomparewith.WedenotethisheuristicastheSimpleWaitingHeuristic(SWH).TheSWHsolvesconflicts chronologicallyastheyoccurbyforcingoneofthetwoshipstowait.Italwaysselectstheshipthatgetsthesmallestwaitingtime withoutconsideringconflictsthatappearlater.Thealgorithmiccomplexityofthisprocedureislow,hencethecomputationaltimeis veryshortperconflictresolution.

ThethreeothersimulationsusetheICAMasthesolutionmethodwithdifferenttime-corridorwidths𝑇𝐶of0,10and20minutes.

Thedelayparametersusedduringthesesimulationsare𝛼=0.5and𝑑=10,meaningthat50%oftheshipsareassumedtoarrivelater thantheirETAsandthattheexpecteddelayamongthedelayedshipsistenminutes.

TheresultsfromthesesimulationsaresummarizedinFig.9a).Thisfigureshows(witha95%confidenceinterval)theaverage traversingtime(𝐴𝑇𝑇)fortheshipsandthedailynumberofreschedules fromeachofthefoursimulations.Comparingthetwo heuristicswithoutanytime-corridors(width0),weseethatSWHleadstoanaveragetraversingtimeof444.82minuteswhereas ICAMachievesanaveragetraversingtimeof 437.10minutes.Thisis areductionof almost8minutes. However,amuchlarger improvementisfoundinthenumberofreschedules,whichgoesfrom496.61downto77.27.Itshouldhoweverbenotedthatthe complexityofthesetwoproceduresareverydifferent.TheICAMspendsmuchlongertimeperfullreschedulethanwhattheSWH usestoresolveaspecificconflictbetweentwoships.Nevertheless,theSWHmightbeconsideredmoretediousthantheICAMbythe trafficmanagersworkingatthecanalauthority.SincethenumberofreschedulesissomuchlargerfortheSWHthanforanyofthe ICAMresults,weremovedinFig.9b)theSWHresultstoshowmoreclearlythedifferencesamongtheresultsobtainedbytheICAM underdifferenttime-corridors.

AscanbeseeninFig.9b),theaveragetraversingtimepershipincreaseswiththewidthofthetime-corridors,asatime-corridor giventooneshipcanrestrictthetravelingofotherships.Thisincreasereflectsthe’priceofrobustness’inoursolutions.Time-corridors of10minutesleadtoanincreaseofaboutsixminutescomparedtonotime-corridorsatall.Withtime-corridorsof20minutes,the increaseof𝐴𝑇𝑇 isabout15minutes.Anyhow,theaveragetraversingtimeachievedbyICAMwithtime-corridorsof10minutesis stillslightlysmallerthantheoneobtainedwiththeSWHand,atthesametime,muchmorerobust.Ingeneral,thereisasignificant decreaseinthenumberofrescheduleswhenthewidthofthetime-corridorsincreases.Thenumberofreschedulesisreducedbymore than50%withtime-corridorsof10minutescomparedtonotime-corridors,andthenumberofreschedulesisfurtherdecreasedwhen thetime-corridorsaresetto20minutes.Basedontheresultsfromthesesimulations,itmightthereforebebeneficialtoincludeshort time-corridorsforeachshipsincethiswilldecreasetheneedforreschedulesandonlygiveamodestincreaseintheaveragetraversing time.

Tofurthertesttheeffectofthetime-corridors,wehaveconductedadditionalsimulationsforthreeconfigurationsofthedelay parametersthatrepresentdifferentsituationsregardingtheuncertaintyinarrivaltimes.Moreprecisely,weconsidersituations(a) where50%oftheshipsaredelayedandtheexpecteddelayfordelayedshipsis10minutes,(b)where50%oftheshipsaredelayed andtheexpecteddelayfordelayedshipsis20minutes,and(c)where20%oftheshipsaredelayedandtheexpecteddelayfordelayed shipsis20minutes.Forallthreesituations,wevariedthetime-corridorwidthfrom0to25minutes.Fig.10displaysthesimulation results.

(14)

Fig.9. 95%ConfidenceIntervalsforthenumberofdailyreschedulesandtheaveragetraversingtimeATT.TheSWHisexcludedinb)tomore clearlyshowthedifferencesforthesimulationswithICAMunderdifferentwidthsoftime-corridors𝑇𝐶.

Fig.10. Averagetraversingtimeanddailynumberofreschedulesfordifferentdelaysituations.

BoththeaveragetraversingtimeandthenumberofdailyreschedulessharethesamepropertiesinallthethreeplotsinFig.10.The averagetraversingtimesincreasewiththewidthofthetime-corridorsandarequitesimilaramongthethreesetsofdelayparameters.

Withtime-corridorsofzero,weseethatallthreeuncertaintysettingsgiveanaveragetraversingtimeofabout437minutes.The differencebetweenthemincreasesslightlyasthewidthofthetime-corridorsincreases,butthisdifferenceisstillsmall.Ittherefore seemsthatthewidthofthetime-corridorsaffectstheaveragetraversingtimemorethanthedifferentdelayparametersdo.

Thenumberofdailyreschedulesdecreasesforlargertime-corridors.Unlikefortheaveragetraversingtime,thedelayparameters affectthenumberofdailyreschedules.Inthecasewhere50%oftheshipsarriveontime(Figs.10a)andb)),around80reschedules willbeneededeachdayifnotime-corridorsareapplied.With80%oftheshipsarrivingontime(Fig.10c)),thisnumberdecreases to36reschedules.Basedontheseresults,itseemsthatthepreferredwidthofthetime-corridorsshouldbebasedontheexpected delay.Whichtime-corridorwidthtoselectwithinthisintervaldependsonhowtheoperatorsvaluetheaveragetraversingtimeand theburdenofrescheduling.

(15)

Table2

Delayparametersfordifferentnoticeperiodslengthsundertwodelaysettings.

Setting 1 Setting 2

Length of notice period [ 𝑚𝑖𝑛 ] Expected delay for delayed ships 𝑑 [ 𝑚𝑖𝑛 ] Expected delay for delayed ships 𝑑 [ 𝑚𝑖𝑛 ]

60 5 10

120 10 10

180 15 10

240 20 10

Fig.11. Simulationresultsfordifferentnoticeperiodlengthsundertwodifferentdelayassumptions.

Allprevioussimulationswereconductedwithanoticeperiodoftwohoursforthearrivalofaship.Itisofinteresttoseeifthe averagetraversingtimeoftheshipscanbeimprovedbyextendingthelengthofthisnoticeperiod.Toinvestigatethis,weconducted simulationsforfourdifferentnoticeperiodlengthsof60,120,180and240minutes.Time-corridorsoftenminutesareusedforall theseteststogetherwithan𝛼-valueof0.5,i.e.50%oftheshipsarriveontime.

Twodifferentsettingsregardinghowthedelaysvaryasthenoticeperiodchangeshavebeentested.Setting1isbasedonthe assumptionthattheexpecteddelayisproportionaltothelengthofthenoticeperiod.Thisassumptionisbuiltonthebeliefthatthe probabilityofexperiencingadelayincreasesbythelengthoftimetheshipisexposedtounforeseeneventsbeforeenteringthecanal.

Setting2isbasedontheassumptionthattheexpecteddelayisindependentofthelengthofthenoticeperiod.Thisassumptionfollows thefactthatcertaindelay-inducingeventshavethesameprobabilityofoccurringregardlessofhowearlytheship’sETAhasbeen announced.Forexample,shipsmustoccasionallywaitbeforetheyareallowedtoenterthelocksandthiswaitingtimeisrealizedjust uponarrivalatthecanal.Thedelaywillinthiscasebeindependentofthenoticeperiod.Table2showshowtheexpecteddelaysare setforthefourconsiderednoticeperiodsunderbothsettings.Wefurthermorekeep𝛼=0.5.

Theaveragetraversingtimesandtheaveragenumberofdailyreschedulesforthesimulationsbasedonthetwosettingsareshown inFig.11.Itcanbeseenthattheaveragetraversingtimeremainsrelativelyconstantforthedifferentlengthsofnoticeperiodsunder bothsettings.Asforthenumberofdailyreschedules,thetwosettingsaffectthisnumberdifferently.Undersetting1,thenumberof reschedulesincreaseswithincreasedlengthofthenoticeperiod.Thisseemsnaturalastheexpecteddelayoftheshipsismodeled toincreaseproportionallytothelengthofthenoticeperiod.Still,thenumberofreschedulesremainsclearlybelowthenumbers observedforthesimple𝑆𝑊𝐻heuristic,suchthatusingamoreadvancedplanningby𝐼𝐶𝐴𝑀leadstomuchmorerobustschedules evenunderthechallengingsituationofdelaysthatgrowwithlongernoticeperiods.

AsseeninFig.11b),theeffectoflongernoticeperiodsispositivewithrespecttothenumberofdailyreschedulesundersetting 2.Thisshowsthatearlyannouncementsofshiparrivalstogetherwithrelativeconstantactualdelaysissuccessfullyexploitedinour approachtoobtainevenmorerobustschedules.

Wenextanalysethewaitingofshipsinthecanal.Forthispurpose,wesimulatedshiptrafficfora2-monthperiod,whichinvolves about5000ships.Fig.12showsforeachsidingofthecanal,thetotalwaitingtimeofallships(measuredinhours),thelongest waitingtimeofanyship(measuredinminutes),andthenumberofshipsthatwaitedinthissegment.Wereporttheseresultsfor ICAMwithtime-corridorsof0,10and20minutesandforSWHwithouttime-corridorsandforanoticeperiodof2hours.Itcanbe observedthatthelargestdifferencesregardingthenumberofshipswaitingamongthedifferentsolutionmethodsareinsegments0 and22.Thetotalwaitinginthesesegmentsincreasesdramaticallywiththewidthofthetime-corridors.Thisisbecausealigningships thatarrivealmostatthesametimemustwaitforthetime-corridorfortheshipinfrontofittoend.Asthewidthofthetime-corridors increase,moreshipsmustwaitforalongertime.

BasedonFig.12,whichdisplaystheheatmapwithdifferentwaitingmeasures,itseemslikethattransitsegmentsnumber13,15, 17,19and21arerestrainingtheshipflow.Thesetransitshavepassagenumbersequalto6,whileallothertransitshavepassage numbersequalto8.Notethatsegment15haspassagenumber8inFig.2,butthisextensionwasquiterecentlywhichiswhyit haspassagenumber6inourexperiments.Sincethewaitingismuchhigherattheadjacentsidingstotransitsegmentswithpassage number6,itcanbeofinteresttoanalyzetheeffectofupgradingthesesegments.Toanalysethis,weconductedmultiplesimulations forthe2-monthperiodwithtime-corridorsoftenminuteswhere𝐼𝐶𝐴𝑀wasusedassolutionmethod.Ineachsimulationoneofthe verynarrowsegmentswaschangedtoapassagenumberof8.TheresultsarepresentedinTable3.Additionally,asimulationwhere

(16)

Fig.12. WaitingtimemeasuresforsimulatedtrafficschedulesobtainedbyICAMforthreedifferenttime-corridorwidths(0,10and20minutes) andobtainedbySWH(withouttime-corridors).Pleasenotethattheunitsdifferforthethreedifferentwaitingmeasures.

Table3

Improvementintraversingtimebyupgradingcertaintransitsfrompassagenumber6to8.

Average traversing time [ 𝑚𝑖𝑛 ] Reduction in transit time [%] Transit length [ 𝑚𝑒𝑡𝑒𝑟 ] Impact per kilometer [ 𝑚𝑖𝑛 𝑘𝑚 ]

Original topology 443.87 - - -

Transit 13 437.92 1.34% 8170 0.728

Transit 15 438.91 1.12% 7510 0.660

Transit 17 440.37 0.79% 4406 0.794

Transit 19 440.30 0.81% 6150 0.580

Transit 21 442.76 0.25% 2412 0.460

All transits upgraded 424.39 4.39% 28 648 0.680

allthetransitshavebeenupgradedtoapassagenumberof8hasbeenconducted.Boththeaveragetraversingtimeintheoriginal layoutandtheaveragetraversingtimesaftertheupgradesarepresentedinTable3.Thereductionintraversingtimesrelativetothe originalcanallayoutarealsoshown.Thelengthofthedifferentsegmentsvariesextensivelyandsincetheupgradingcostmaybe proportionaltothelengthofthesegment,wealsoprovideinformationabouttheminutessavedperkilometerofsegmentlength.

Thegreatestimprovementcanbeobtainedbyupgradingtransit13thatgivesaroundsixminutesreductioninaveragetraversing time.Thismayseemsmall,butwithanannualtrafficof30000ships,itwillreducethetotaltraversingtimeforallshipsbyaround 3000hoursperyear.Upgradingtransitsegment17yieldsthehighestimprovementperkilometerofupgrade.Upgradingtransit segment13givesthesecondhighestimprovementperkilometerandthehighestoverallimprovementpersegment.Interestingly, transitsegment15,whichwasrecentlyextendedtopassagenumber8,onlyachievesthesecondorthirdrank,dependingonwhich performanceimprovementmeasureoneconsiders.Eventually,byjointlyupgradingallconsideredtransitsegmenttopassagenumber 8,itispossibletosavemorethan19minutesintheaveragetraversingtime.This correspondstoanestimatedreductioninthe totaltraversingtimeforallshipsofalmost10000hoursperyear.Nexttothetime-savinganalysisthatisconductedhere,upgrading segmentsisofcoursealsoanissueofconstructioncostsetc.,which,however,isbeyondthescopeofthispaper.

7. Concludingremarks

WehavestudiedtheschedulingofshipsthroughtheKielCanalwhentheships’arrivaltimesatthecanalaresubjecttouncer- tainty.Suchuncertaintiesgivefrequentneedofreplanningtokeepschedulesfeasible.Totacklethischallenge,wehaveproposed amathematicalmodelthatincorporatestime-corridors,sothatschedulesstayvalidaslongasshipsarrivewithinthegiventime- corridors.TheproblemissolvedbyanIterativeConflictAddingMatheuristic(ICAM),whichwasshowntoproduceverygoodsolutions forreal-worldinstancesinshorttime.

Referanser

RELATERTE DOKUMENTER

An operator shall ensure that any person authorised by the Authority is permitted at any time to board and fly in any aeroplane operated in accordance with an AOC

There had been an innovative report prepared by Lord Dawson in 1920 for the Minister of Health’s Consultative Council on Medical and Allied Services, in which he used his

Now that the average time offset (based on the 160 data points for each total station) between the two time references is known, any offset from the average can be considered

In Figure 3 we show the average EUR spread calculated from our sample with the 5-year Nordic Bond Pricing's benchmark curve (due to the convenience in that the average time

While we managed to test and evaluate the MARVEL tool, we were not able to solve the analysis problem for the Future Land Power project, and we did not provide an answer to

22 To describe the frequency and the distribution of the observed voyage times there was calculated an average and a spread of the time spent in transit between ports, the

6.24 Average cluster sizes of four different measurements done in the region leading up to the maximum energy deposition of the traversing

Average RMSE of the surrogate model (L96 with an RK4 structure) compared to the reference model (L96 with an RK4 inte- gration scheme) as a function of the forecast lead time