• No results found

Deformations of rational surface singularities and reflexive modules with an application to flops

N/A
N/A
Protected

Academic year: 2022

Share "Deformations of rational surface singularities and reflexive modules with an application to flops"

Copied!
33
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

Contents lists available atScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Deformations of rational surface singularities and reflexive modules with an application to flops

TrondStølen Gustavsena,Runar Ileb,∗

a UniversityofSoutheastNorway/DepartmentofMathematics,Universityof Bergen, Norway

b BINorwegianBusinessSchool/DepartmentofMathematics,Universityof Bergen, Norway

a r t i c l e i n f o a bs t r a c t

Article history:

Received14July2017

Receivedinrevisedform10October 2018

Accepted15October2018 Availableonline25October2018 CommunicatedbyKarenSmith

MSC:

primary14B07,14E30 secondary14D23,14E16

Keywords:

Flatifyingblowing-up

MaximalCohen–Macaulaymodule Simultaneouspartialresolution Smallresolution

Rationaldoublepoint Matrixfactorisation

Blowinguparationalsurfacesingularityinareflexivemodule gives a (any) partial resolution dominated by the minimal resolution. The main theorem shows how deformations of thepair(singularity, module)relates todeformationsof the correspondingpairofpartialresolutionandlocallyfreestrict transform,andtodeformationsoftheunderlyingspaces.The resultsimplysomerecentconjecturesonsmallresolutionsand flops.

©2018TheAuthors.PublishedbyElsevierInc.Thisisan openaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Correspondingauthor.

E-mailaddresses:trond.gustavsen@math.uib.no(T.S. Gustavsen),runar.ile@bi.no(R. Ile).

https://doi.org/10.1016/j.aim.2018.10.023

0001-8708/©2018TheAuthors.PublishedbyElsevierInc. ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

1. Introduction

We relate deformations of a rational surface singularity with a reflexive module to deformationsof apartial resolution of thesingularity withthelocally free stricttrans- form of the module. Our resultsimply three conjectures of C. Curto and D. Morrison abouthowafamilyofsmallresolutionsofa3-dimensionalindexoneterminalsingularity anditsflop areobtainedbyblowing upinamaximalCohen–Macaulaymodule andits syzygy.

Rational surfacesingularities were definedby M. Artin in[1]. Further foundational workwasdonebyE.Brieskorn [8] andJ.Lipman [41] and manystudieshavefollowed.

In the 1980s the geometrical McKay correspondence was establised by G. Gonzales- Sprinberg andJ.-L. Verdier[18] and generalisedin[4]. It givesabijection betweenthe isomorphismclassesof(non-projective)indecomposablereflexivemodules{Mi}andthe primecomponents{Ej}oftheexceptionaldivisorintheminimalresolution X˜→X of arationaldouble point(RDP),i.e.theAn,Dn andE6−8.Moreprecisely,ifFi denotes the strict transform of Mi to X,˜ the Chern class of Fi is dual to the prime divisor;

c1(Fi).Ej=δij,withrkMiequaltothemultiplicityofEiinthefundamentalcycle.For non-Gorensteinquotient surfacesingularitiesthere areingeneralmoreindecomposable reflexive modules than prime components as was shownby H. Esnault [17]. However, O. RiemenschneiderandhisstudentJ. Wunramgaveanaturalclassof‘special’reflexive modules(which we will call Wunrammodules) forwhich thecorrespondence holds for any rationalsurfacesingularity [48,58]. A. Ishiirefined Wunram’sresultbymeans ofa Fourier–Mukai transformin thecase of quotientsurface singularities[29]. M. Vanden Bergh’suse in[51] oftheendomorphism ringofahigher dimensionalWunrammodule toprovederivedequivalencesforflopsinducedalotofactivity,alsoattractingattention tothe2-dimensionalcasewithinterestingresultsbyM.Wemyssand collaborators,e.g.

O.IyamaandWemyss[30,31] and Wemyss[56].

TheMcKay–Wunram correspondence isfoundational forthis article: Weprovethat blowing up a rational surface singularity X in a reflexive module M (a special case of L. Gruson and M. Raynaud’s flatifying blowing-up [46]) gives a partial resolution f: Y →X where Y inparticular is normal,dominated bytheminimal resolution,and the strict transform M = f(M) is locally free. The partial resolution is determined by the Chern class c1(F) of the strict transform F of M to X.˜ In particular, any partial resolution dominated by the minimal resolution is given by blowing up in a Wunram module. See Theorem 4.3 for more precise statements. As an example, the RDP-resolution(obtainedby contractingthe (2)-curves intheminimal resolution) is givenbyblowingupinthecanonicalmoduleωX.

ConsiderthedeformationsDef(Y,M)ofthepair(Y,M) whichblowdowntodeforma- tionsofthe pair(X,M). Ourmain result(Theorem 5.1)saysthatinthecommutative diagramofdeformationfunctors

(3)

Def(Y,M) β

α

DefY

δ

Def(X,M) DefX

the blowing down map α is injectiveand the forgetful map β is smooth and in many situationsanisomorphism.Theinjectivityofαissurprisingsincetheblowingdownmap δingeneralisnotinjective(cf.Remark5.8and[53,6.4]).OnspacesδisaGaloiscovering onto the Artin component A which for RDPs equals DefX [9,50,45,2,55]. However, β is an isomorphism if M is Wunram (e.g. any reflexive on an RDP) implying that δ factors through aclosed embedding αβ−1: DefY Def(X,M) realising deformationsof thepartialresolutionas deformationsofthepairas conjecturedbyCurtoandMorrison intheRDPcase.AdeformationofXinthecomponentAliftsingeneraltoadeformation of (X,M) –and of Y –onlyafter a finite base change.However,adeformation of the pair(X,M) inthegeometricimageofDef(Y,M)liftstoadeformationof(Y, M) without any basechange.NotethatDef(X,M)ingeneralisnotdominatedbyDef(Y,M),evenfor RDPs: in Example 5.11, M is the (rank two) fundamental module and Def(X,M) has two componentswhileDefY hasone.A crucialingredient(firstprovedbyLipman [42]) in J. Wahl’s proof that the covering DefX˜ A has Galois action by a product of Weyl groups was the injectivity of δ in the case Y is the RDP-resolution. This is an immediate consequenceof ourmain resultsince Def(X, ωX) = DefX; see Corollary 5.7.

While knowledge of Def(X,M) would be interesting initself, these results also indicate thatthereareinterestingrelationsto DefX,e.g.regardingthecomponentstructure.

In this article ourmain applicationof Theorem 5.1 is ageneralisation of three con- jectures of Curto and Morrison [13] concerning the natureof small partial resolutions of 3-dimensionalindexoneterminalsingularitiesandtheirflops. Ifg:W →Z issucha smallpartialresolutionandX ⊆Z isasufficientlygenerichyperplanesectionwithstrict transform f:Y →X, a resultof M.Reid [47] says thatf is apartial resolution (nor- mal, dominatedbytheminimalresolution)ofanRDP.Inparticular,gisa1-parameter deformation off and henceanelement inDefY. ByTheorem4.3,Y istheblowing-up of X inareflexivemoduleM.Thenαβ1 takesg toa1-parameterdeformation(Z,N) of thepair(X,M).Thebasicresultisthefollowing(cf.Theorem 6.3):

Corollary 1.1.There isamaximalCohen–Macaulay OZ-moduleN such that:

(i) The smallpartial resolutionW →Z isgivenby blowingup Z in N.

(ii) Blowing upZ in thesyzygymoduleN+ of N gives theunique flopW+→Z.

(iii) The lengthof theflopequalstherankof N iftheflop issimple.

Theorem6.6isaversionofthisstatementforflatfamiliesofsuchsmallpartialresolu- tionsandflops.Thereisafamilyofpairs(X,M) inDef(X,M)suchthattheblowingupof X inM andinthesyzygyM+givetwosimultaneouspartialresolutionsY XY+

(4)

whichinduceany local familyof flopsof g bypullback, forany g with hyperplanesec- tionf. ByaresultofS.Katzand Morrison,inthe simplecasethelength l ofthe flop determinesthegenerichyperplanesectionX[33],seealso[34].Moreprecisely,X equals A1,D4,E6,E7,E8 or E8 for l = 1,2,3,4,5 or 6, respectively. Byour result there is in eachcase aunique reflexive module M of rank l such that any simpleflop of length l isobtainedbypullbackfrom theY X Y+ for thecorresponding(X,M).Hence Y X Y+ gives the ‘universal’simple flop of length l realised as blowing-ups in familiesof reflexivemodulesas suggestedbyCurto andMorrison;seeRemark6.8.

Asanexampleconsider A1:x2+yzwhich hasaminimal versalfamilyx2+yz−u.

Afterthebasechangeu→t2itallowsasimultaneousdeformationoftheminimalreso- lutionandtheresultingfamilyisasmall resolutionofZ:x2+yz−t2 withexceptional fibreE∼=P1;seeM.F. Atiyah[5,Thm. 2].Theonlynon-trivialindecomposablereflexive moduleMonA1extendstoamoduleN onZ withpresentationmatrixΦ=

x+t y

z xt

. Blowing up Z in N gives the simultaneous resolution W Z of the family. Blowing upZ inthesyzygyN+ givesthesimpleflop W+ →Z oflengthone.Thepresentation matrixofN+ istheadjointΨ ofΦ andthepairmakesamatrixfactorisationofthehy- persurfaceZ.TheRDPs arehypersurfacesand any maximalCohen–Macaulay module is givenby amatrixfactorisation [15].Curto and Morrison phrasetheir conjecturesin termsofmatrixfactorisations(andforsimpleflops)andverifythemfortheAn andDn

byextensivecalculations.ThehigherranksoftheindecomposablemodulesfortheE6−8 makes this approach difficult, and for thenon-simple flops practically impossible. Our argumentis conceptualanddoesnotrelyoncomputations.Thecoordinate-freeformu- lationofTheorems 6.3and 6.6makes theconjectures moretransparent andaccessible;

seeRemark6.7.ByaresultofO.VillamayorU.generatorsfortheblowing-upidealare readilyobtainedfromapresentationofthemodule[52],cf.commentsbelow(2.6.3).The singularitiesweworkwith arehenselisations offinite typealgebras andtheresultswill thereforehavefinite typerepresentationslocallyintheétaletopology.

In recent years there has been a lot of research linking properties of various non- commutative algebras and the flops, e.g.notably the description by W. Donovan and Wemyssof the Bridgeland–Chen autoequivalence interms of theuniversal familyof a non-commutativedeformationfunctor[14].J.Karmazyn[32] reconstructsthesmallpar- tialresolutionanditsflopbyaquiverGIT-constructionwheretheinputisendomorphism algebras.Wemyss[57] containsmanygeneralresultsdescribingflopsandminimalmodels ofsingularities (e.g.for cDVs) inhomologicalterms. Inparticular hedescribes flopsin terms of mutations, with applications to the GIT chamber structure. We offer on the otherhandadirectproofoftheoriginalCurto–Morrisonconjecturesusingdeformation theory where theblowing-up ideal forthe small, partial resolution is obtaineddirectly from the(parametrised)2-dimensional Wunrammodule.Moreover, any flopwith fixed RDPhyperplanesectionandDynkindiagramisapullbackfromapairofsuch‘universal’

blowing-ups. Wealsobelievethatthe geometric techniques usedinthis articlemaybe usefulinthestudy ofmoregeneralcontractions.SeeRemarks 6.5and6.9.

(5)

Theinventoryofthearticleisasfollows.InSection2wegivepreliminaryresultscon- cerning rationalsurfacesingularities, blowing-up incoherentsheaves, strict transforms onpartial resolutionsandtheirChernclassesandacohomologyandbasechangeresult suited to our needs. In Section 3 we define the deformation functors. We also give a result which implies the compatibilityof blowing-up in afamily of modules with base change.InSection4weprovearesultconcerning thefractionalidealwhichdefines the blowing-up,normalityofblowing-up,andtheblowing-upversionoftheMcKay–Wunram correspondence. In Section5we prove themain theorem throughseveral intermediate steps. Existence of versal base spaces and a classical result of Lipman follows. There is also an example (the fundamental module). The article ends in Section6 with our treatmentoftheCurto–Morrisonconjectures.

Acknowledgement. Part of this work was doneduring the first author’s most pleasant stayat NortheasternUniversity2013/14.

Theauthors thanktherefereeforadetailedandhelpfulreport.

2. Preliminaries

2.1. Partialresolutions ofrational surfacesingularities

Fix an algebraically closed fieldk. All schemes and maps are assumed to be above Speck andallschemesareassumedto benoetherian.

Definition 2.1. A singularity is anaffine scheme X = SpecA where A is algebraic (the henselisationofafinitetypek-algebrainamaximalideal).Apartial resolutionof X is aproperbirationalmapf: Y →X withY normal.IfY isregular,f isaresolution.Let E(f)⊂Y denotethe(non-reduced)closedfibreoffandletΣ(f) denotetheexceptional set of f;theminimal closed subsetofY suchthatf restrictedto itscomplementis an isomorphism. A partial resolution f is small if Σ(f) does not contain any divisorial components.

If Afurthermoreis anormal domainofdimension two,X iscalled anormalsurface singularity. Moreover,X isarational surfacesingularity ifthere isaresolution f such thatR1fOY = 0;[1]. Arational surfacesingularitywhich isadouble point iscalled a rational double point(RDP).

AnormalsurfacesingularityisanRDPifandonlyifitisaGorensteinrationalsurface singularity;cf. [6,4.19].RDPis alsoequivalent to DuValasdefinedin[40, 4.4];cf.[6, 3.31,4.1].Afinite moduleonanormalsurfacesingularity isreflexiveifand onlyifitis maximal Cohen–Macaulay(MCM).

A fundamentalreferenceforthefollowingresultsisLipman[41]. Proposition2.2will be usedwithoutfurthermentioning.

(6)

Proposition2.2([41,4.1,27.1]).LetX bearationalsurfacesingularityandf:Y →X a partialresolution.Let{Ei}iI denotetheprimecomponentsofE(f).Thereisaminimal resolutionofsingularitiesπ: ˜X →X (independentof f)suchthat:

(i) (Minimality) If f is a resolution of singularities then there exists a unique map g:Y →X˜ such thatf =πg.

(ii) (Singularities) Y has only rational surface singularities. If X is an RDP then Y hasonly RDP singularities.

(iii) (Contractingexceptionalcurves)Forany subsetJ⊆I thereexistsauniquepartial resolution g:YJ X and map h:Y YJ with f = gh such that g contracts exactlythecurves {Ei}i∈I\J.

Proof. Fortheminimalresolution,(i)and(ii)see[41,4.1and1.2].For(iii)see27.1and Remarks p.275in[41]. 2

Proposition 2.3. Let X be a normal singularity of dimension at least two and suppose f: Y X is a partial resolution. Let {Ei}i∈I denote the prime components of E(f).

AssumedimEi= 1 foralli∈I andR1fOY = 0.Then:

(i) Ej=P1 forallj,theintersections aretransversalandE(f)containsnoembedded components.

(ii) (Intersection numbers) Let L be an invertible sheaf on Y and C ∈ {Ei}i∈I.Put L.C = degC(L⊗ OC);cf. [41,§10-11].Then:

(a) L =OY ifandonly if L.C= 0forallC∈ {Ei}iI.

(b) L isgeneratedbyitsglobalsectionsifandonlyifL.C0forallC∈ {Ei}i∈I. In thatcase R1fL = 0.

(c) L isampleifandonlyifL.C >0forallC∈ {Ei}i∈I.InthatcaseL isvery ample forf.

(iii) (ThePicard group) For each i∈ I there is an effective prime Cartierdivisor Di

whichintersects∪i∈IEi transversallyinapointcontainedinEi.Moreover,{Di}i∈I

givesaZ-basis forPic(Y).

(iv) (Hyperplane sections) Assume f is small and dimX 3. Let g: H H de- note the strict transform along f of a hyperplane section H X defined by a non-zero-divisor u. Assume that H and H are normal. Then the restriction map Pic(Y)Pic(H) isanisomorphism. Moreover,

O(Di).E(f) =O(Di∩H).E(g).

Proof. (i) Note that 0 = R1fOY R1fOC for all subschemes C with support in

∪Ej. Itfollows thatpa(Ej)= 0 (whichimpliesEj =P1)and thattheintersections are transversal. Since fOY fOE(f) and fOY =OX by[49, Lemma 0AY8],itfollows thatH0(OE(f))=k andE(f) cannothaveembeddedcomponents.(ii)is[41,12.1].

(7)

(iii)Weimitatetheproofof[41,14.3].Lety ∈Eij=iEj beaclosedpointand¯ta generatorforthemaximalidealinOEi,y.Lett∈ OY,y bealiftingof¯t.Onemayassume thatnoEj isacomponentoftheprincipalCartierdivisor(t).Put(t)=Di+Di where Di(∪Ej)={y}and y /∈Di (usethatX is henselian). There isa mapθ: Pic(Y) HomZ(iZEi,Z) givenbyL (L.−).TheexistenceofDi showssurjectivityofθand (ii)shows injectivity.

(iv)Note thatthestrict transformequals thetotaltransform.Inparticular,{Ei}iI

are the prime components of g−1(x). The sequence (u,t) is OY,y-regular. It implies that the standard Cartier divisor in Pic(H) given in(iii) corresponding to the prime component Ei canbe taken to be Di∩H. Since OE(f),y =OE(g),y the moreoverpart follows. 2

Remark2.4.Notein(iii)thataCartierdivisorD whichintersectsi∈IEi transversally is containedinanyopen U ⊆Y whichcontainestheintersectionpoints.

2.2. Blowingupincoherent sheaves

Let X be a scheme, i: U X a non-empty open subscheme with complement Z, and F a quasi-coherent OX-module. Suppose f:Y X is ascheme map such that the restrictionfU of f to f1(U) is an isomorphismf1(U)=U.Let j: f1(U)→Y denotetheopeninclusion.DefinetheZ-stricttransformofF along f tobetheimageof the naturalrestrictionmap fF →jfU(F|U) –aquasi-coherent OY-module denoted fZF. Thekernel of therestriction map is the subsheafHf0−1Z(fF) ofsections with support in f−1(Z). Let U X be another open subscheme with f−1(U) = U and suppose F|UU is locally free and both f1(U) and f1(U) are dense in Y. Then fZF = fZF. We use the simplifiednotation fF for the maximal such U and call it the strict transform. If Y is integral then f1Z does not contain the generic point of Y andalllocal sections of Hf0−1Z(fF) aretorsion. If F|U is locally free(asinthe applications below),thenalltorsionlocalsectionsinfF havesupportinf1Zsincea locally freesheafhasnotorsion; i.e. Hf0−1Z(fF)= (fF)tors.

ThefollowingisaspecialcaseofGrusonandRaynaud’stheoremonflatteningblowing- up(withtheuniversalproperty); cf.[46, 5.2.2].

Proposition 2.5. SupposeX isascheme, U anopen subschemeof X and F acoherent OX-module such that F|U is locally free. Put Z = X\U. Then there is a projective scheme mapf:Y →X whichis universalwith respecttothefollowing propertiesfora scheme mapf: Y→X.

(i) Therestriction fU is anisomorphismand f −1(U)is denseinY. (ii) TheZ-stricttransformfZF islocallyfree on Y.

(8)

The proof realises Y as the scheme-theoretic closed image (so possibly with non- reduced structure;[21, 9.5]) of amap from U to the scheme of quotients QuotF/X/X; see[46,§5.2].DenoteY byBlZ,F(X).LetU⊆X beanotheropensubschemeofX with F|U locally freeand suchthat both U and U aredense inU ∪U. Put Z =X\U. Then BlZ,F(X) equalsBlZ,F(X). Thesimplifiednotation f: BlF(X)→X is used if U ismaximalwith F|U locallyfreeandf iscalledtheblowing-upofX in F.Notethat A. OnetoandE. Zatini[44] definedtheblowing-upastheclosureoftheimageofU with reducedstructure.Manyoftheirresultsextendtothenon-reducedcontext.

Asweshallconsiderbasechangesofblowing-ups,thefollowingcorollarywillbeuseful.

Corollary2.6. Given acommutativediagram of schememaps

Y2 f2

g Y1 f1

X2 p X1

andan open subschemeU1 ⊆X1. Put U2 =p1(U1)andZi=Xi\Ui. Assumethat fi

isan isomorphism above Ui and that fi−1(Ui)is dense inYi fori= 1,2.Suppose F is acoherent OX1-modulesuchthat F|U1 and(f1)Z1F are locallyfree.

(i) The naturalmapg((f1)Z1F)(f2)Z2(pF)isan isomorphism.

(ii) Iff1equalsBlZ1,F(X1)→X1andY2= BlZ1,F(X1)×X2,thenY2 isisomorphicto BlZ2,pF(X2) overX2.

Proof. (i)Thereisanaturalmap gHf0−1

1 Z1(f1F)−→Hf0−1

2 Z2((pf2)F) (2.6.1) inducing asurjection ϕ:g((f1)Z1F) (f2)Z2(pF). Since ϕ restricted to the dense (f1g)−1(U1) isanisomorphismandg((f1)Z1F) islocallyfree,ϕisanisomorphism.

(ii) By (i), (f2)Z2(pF) is locally free. By the universal property in Proposi- tion 2.5 there is an X2-map r: Y2 BlZ2,pF(X2). Similarly, there is an X1-map BlZ2,pF(X2) Y1, i.e. an X2-map s: BlZ2,pF(X2) Y2. By universality r and s areinverseisomorphisms. 2

Assume(forsimplicity)thatF hasaconstantrankrandletK(X) denotethesheaf ofmeromorphicfunctions;cf.[35],[49,Definition01X2] and[49,Lemma02OV].Ifr= 1 let Fn betheimage ofthenaturalmap Fn →i(F|Un).Then

BlF(X)= Proj

n0

Fn

(2.6.2)

(9)

is thescheme-theoreticclosedimageofU inP(F).Oneto andZatiniobservedthatthe Plücker embeddingoftheGrassmanngivesthefractionalidealsheaf

JFK= imr

F rF⊗OXK(X)=K(X) (2.6.3) for the blowing-up f: BlF(X) X; cf. [44, 1.4, 3.1], [52, 3.3].Villamayor has given an explicit description of an equivalent ideal. Suppose X = SpecA for a ring A and F is givenbyanA-module M.Choose ngeneratorsforM andletSyz(M) denote the kerneloftheresultingmapAn→M.Thenrk Syz(M)=n−randanychoiceofn−r elements inSyz(M) whichinducesgeneratorsforK(A)⊗Syz(M)=K(A)⊕n−r defines alinearmapψ:A⊕n−r→A⊕nsuchthattheidealofmaximalminorsofψisisomorphic to JMK.See[52,3.3].

Curto and Morrisondefines a‘Grassmann blowup’as theclosureinCN×Grass(n r,n) of a set defined interms of the smooth locus and the presentation matrix ϕ. In the case of a matrix factorisation of ahypersurface they state in [13, 2.1] a universal propertyforthenormalizationoftheGrassmannblowupfor‘birational’mapsh:Y →X suchthathM islocallyfree.ByourdiscussionandProposition2.2itfollowsthattheir normalizedGrassmannblowupequalsBlM(X) forRDPsonceweknow thatBlM(X) is normal.Normalityisnotobviousandwillbeprovedforareflexivemoduleonarational surfacesingularityinProposition4.2.

2.3. Stricttransformsand Chernclasses

The strict transform ofareflexive sheaf alonga resolution ofarational surfacesin- gularityislocallyfree;see[18,2.10] for quotientsingularties,thegeneralcaseiscitedin [4, 1.1].Esnault proves a characterisationof sheaves onthe resolution which arestrict transformsofreflexivemodulesin[17,2.2].Wegivethefollowingnaturalgeneralisation of Esnault’sresultwhichneedsaslightlydifferentproof.

Proposition 2.7. Letf:Y →X beapartialresolution ofarational surfacesingularity.

(i) SupposeM isareflexiveOX-module.ThenthestricttransformfM isareflexive OY-module generated by global sections, the natural map M ffM is an iso- morphism, andR1fHomY(fM ,ωY)= 0.In particular,fM islocally free ifY isregular.

(ii) IfF isareflexiveOY-modulewithR1fHomY(FY)= 0thenfF isareflexive OX-module. Moreover, if F is generated by global sections then the natural map ffF →F isan isomorphism.

Proof. (i)Put M =fM. As a quotient of fM, M is generated by global sections.

LetU denotethenon-singularlocusinX.Sincef isanisomorphismaboveU andfM istorsionfree,thenaturalmapα:M →fM isanisomorphismby[49,Lemma0AVS].

(10)

Alsonote thatM islocallyfreeonthecomplementofa0-dimensionallocussinceM is torsionfreeandY isnormal;cf.[7,Chap.VII,§4.9,Thm.6].

Thedualitytheorem [24,VII3.4] (cf.[12, 3.4.4])givesanisomorphism:

RfRHomY(M, ωY)−−−−−→ RHomX(RfM, ωX) (2.7.1) Rationalitygives RfM fM and the resulting spectral sequence gives short exact sequences:

0R1fExtp−1Y (M, ωY)−→ExtpX(M, ωX)−→fExtpY(M, ωY)0 (2.7.2) Since M is maximal Cohen–Macaulay, ExtpX(M,ωX) = 0 for all p > 0 which implies ExtpY(MY) = 0 because ExtpY(MY) has zero dimensional support for p > 0. It followsthatM ismaximal Cohen–Macaulay,i.e.reflexivesinceY is normal.Moreover, R1fHomY(M,ωY)= 0 by(2.7.2).Forlocalcohomology; cf.[10,Chap. 3].

(ii) Since Y is normal, F is maximal Cohen–Macaulay, so (2.7.1) gives (with F replacing M)anisomorphismRfHomY(F,ωY)RHomX(RfF,ωX).Theassoci- atedsecond quadrantcohomologicalspectralsequencegivesanexactsequence:

0→Ext1X(R1fF, ωX)→fHomY(F, ωY)→HomX(fF, ωX)

→Ext2X(R1fF, ωX)R1fHomY(F, ωY)→Ext1X(fF, ωX)→. . . (2.7.3) SinceRqfHomY(FY)= 0 forq >0,(2.7.3) gives

ExtqX(fF, ωX)=Extq+2X (R1fF, ωX) (q >0) (2.7.4) and the latter is zero by [10, 3.5.11], i.e. fF is maximal Cohen–Macaulay. Any map O⊕nY →F factorsas

OYn=ffOYn−→ffF −−→ρ F (2.7.5) henceiftheformerissurjectivesoisρ.ButsinceffF istorsionfree,ρisanisomor- phism. 2

Remark2.8.Theargumentin(ii)worksforanynormalsurfacesingularity.Seealso[39, 2.74].

Lemma 2.9.Suppose f:Y X is apartial resolution of a rational surface singularity and F is a locally free OY-module of rank r generated by global sections. A generic choiceof rglobal sectionsgives ashortexact sequenceof coherentOY-modules

α: 0→ OY⊕r

(s1,...,sr)

−−−−−−→F −→ OD0

whereD isan effective, affine,smoothdivisorintersecting E(f)red transversally.

(11)

Moreover, ther−1sections s2,. . . ,sr givea shortexactsequence β: 0→ O⊕r−1Y −−−−−−→(s2,...,sr) F −−→w rF 0 where w(m)=m∧s2∧ · · · ∧sr andrF =OY(D).

Proof. ByProposition2.3theprimecomponentsofE(f)redaresmooth.Thenαfollows as in [4, 1.2]. Pushout of O⊕rY F along the first projection O⊕rY → OY gives a s.e.s. 0→ OYr1 →F −→p E 0 whereE is an invertible sheaf by[51, 3.5.1]. Since im(s2,. . . ,sr)kerwthereisaninducedmapi:E rF withw=ip.Themapwis surjective sincepsplits locally. Theni is anisomorphism.Applying HomY(−,OY) to the induceds.e.s.0→ OY →E → OD0 givesthe s.e.s.0→E→ OY → OD 0 whichimpliesthatE =OY(D). 2

For a locally free sheaf F of rankr we use the notation c1(F) =rF. Note that Wunramin[58,A2] gavetwonon-isomorphicindecomposablereflexivemodulesofrank 3 onI7 withequalChernclasses.

2.4. Basechange andcohomology

We will need a base change result for Ext which is not covered by [20, 7.7.5]. Let f: Y X = SpecR and g: X S = SpecA be maps of schemes and E and F coherent OY-modules such that Y, E and F are S-flat. Assume that g is local (i.e.

given byalocal mapof localk-algebrasA→R)and f is proper.Put π=gf. Forany quasi-coherent OY-module G and any n, ExtnY(E, G) is a quasi-coherent OY-module, moreover,πExtnY(E,G) isquasi-coherentsinceπisproper;[49,Lemma01XJ].Alsonote thatExtnY(E,G) isnaturallyanR-modulewhichisfinitelygeneratedifG iscoherentby thelocal-to-globalspectralsequenceEp,q2 = Hq(ExtpY(E, G))ExtnY(E,G) andproper- ness ([19,3.2.1]).Thenaturalisomorphismof functorsfHomY(E,−)= HomY(E,−)˜ extendstoanisomorphismoftherightderiveduniversalδ-functors:

Extnf(E,−)= ExtnY(E,−)˜

n∈Z:QCoh(Y)−→QCoh(X) (2.9.1) whichrestrictsto functorsofcoherentsheavesCoh(Y)Coh(X).

Foreveryintegernwedefineafunctorofquasi-coherentsheaves

Fn:QCoh(S)−→QCoh(X) by Fn(I) = ExtnY(E,F⊗πI)˜. (2.9.2) ThefunctorgivenbyI→F⊗πI isexactsince F isS-flatand{Fn}n∈Zisacohomo- logicalδ-functor.Moreover,Fn(I) isacoherentOX-moduleifIisacoherentOS-module, and Fn commuteswithfiltereddirectlimits.Hencetheconditionsin[43,5.1-2] aresat- isfied andtheconclusionsapply totheexchangemaps

(12)

enI:Fn(OS)OXgI−→Fn(I) (2.9.3) whicharedefinedessentiallybyapplyingFn tothemultiplicationmaps·u:OS →I for u∈I,seethebeginningofSection4in[43] or[20,7.2.2].

Wefirstextendtheexchange mapto ordinaryfibreproductsby alocal scheme map p:T = SpecB→S.PutX:=ST andY:=ST.LetprX:X→X,q:Y→Y, g: X T, f: Y X and π = gf denote the projections. Suppose G is a quasi-coherentOY-module.ApplyingRftothenatural,functorialisomorphismin[24, II5.10] gives

R(prX)RHomf(LqE,G)RHomf(E,RqG). (2.9.4) NotethatLqE qE since E isS-flat.Moreover,qandprX areaffine,so (2.9.4) gives isomorphisms

η: ExtnY(E, qG)˜= (prX)ExtnY(qE,G)˜. (2.9.5) Suppose now that I is a quasi-coherent OT-module and let enI denote the exchange map enI: ExtnY(qE,qF)˜OX(g)I ExtnY(qE,qF⊗OY)I)˜. We define the (ordinary)basechangemapbnI bythefollowingcommutativediagram

prXExtnY(E,F)˜OX(g)I b

n I

a

ExtnY(qE, qF⊗OY)I)˜

prXExtnY(E, qqF)˜OX(g)I η

adid

ExtnY(qE, qF)˜OX(g)I

enI

(2.9.6)

whereaisinducedbythecanonicalmap F →qqF.

Tofit ourapplicationweassumeR ishenselian. LetgT:XT = Spec(RAB)h→T denote the projection where the h denotes henselisation in the canonical k-point. Let fT: YT XT denote the (ordinary) pullback of f to XT and let pX: XT X and pY: YT Y denote the induced projections. Put πT = gTfT, FT = pYF, and so on. Let h: XT X denote the henselisation map and hY: YT →Y the pullback of h. Flat base changeby hgivesacanonicalisomorphism (e.g.by Lazard’s theorem [49, Theorem 058G],[49,Lemma 07TB] and thelocal toglobalspectral sequence):

hExtnY(qE, qF⊗OY)I)˜= ExtnYT(ET,FTOYTπTI)˜ (2.9.7) ThereisalsoanisomorphismofOXT-modules

s: ExtnY(E,F)˜TOXTgTI−−−→ h

prXExtnY(E,F)˜OX(g)I

. (2.9.8) DefinetheOXT-linear(henselian)base change map

(13)

cnI: ExtnY(E,F)˜TOXTgTI−→ExtnYT(ET,FTOYTπTI)˜ (2.9.9) as thecompositionof h(bnI)swith (2.9.7). PutX0=SSpeck,Y0 =XX0, let E0 denotethepullbackof E toY0,andso on.

Proposition 2.10.Assumethebase changemap

cnk: ExtnY(E,F)˜0−→ExtnY0(E0,F0)˜ is surjective. Then:

(i) Forall local maps T →S and quasi-coherent OT-modules I, the basechange map cnI isanisomorphism.

(ii) Thefollowingstatements are equivalent:

(a) cn−1k issurjective.

(b) The OX-module ExtnY(E,F)˜isS-flat.

Proof. We first establish a compatibility of enpI with (prX)(enI). There is a natural isomorphism τ: F⊗OYπpI =q(qF⊗OY)I) with adjoint τad. Note that the canonicalmap F⊗πpI→qq(F⊗πpI) composedwith

qτad:qq(F⊗πpI)−→q(qF)I) (2.10.1) equals τ.LetubeanelementinIandlet·udenotethemapOS→pI.Tosimplifythe notationwealsowrite·uforsomeoftheinducedmapslikeid⊗π(·u) :F →F⊗πpI.

There isadiagram ofOX-linearmaps:

ExtnY(E,F)

(·u)

a ExtnY(E, qqF)

(qq(·u))

η ExtnY(qE, qF)

(q(·u))

ExtnY(E,F⊗πpI)

τ

a ExtnY(E, qq(F⊗πpI))

(qτad)

η ExtnY(qE, q(F⊗πpI))

ad)

ExtnY(E, q(qF⊗)I)) η ExtnY(qE, qF⊗)I) (2.10.2) Since η isfunctorial thediagram commutes.The compositionτadq(·u) isthe multi- plicationmap ·u:qF →qF)I.Thereisanaturalisomorphism

γ: (prX)

prXExtnY(E,F)OX(g)I∼= ExtnY(E,F)OXgpI. (2.10.3) With the compatibility in(2.10.2) one shows that (prX)bnI = (prX)[enIadid)a]

equals η τ∗ ◦enpI γ where γ, τ: ExtnY(E,F⊗πpI) ExtnY(E,q(qF⊗)I)

Referanser

RELATERTE DOKUMENTER

There had been an innovative report prepared by Lord Dawson in 1920 for the Minister of Health’s Consultative Council on Medical and Allied Services, in which he used his

In Chapter 5, Norway’s role in previous international arms reduction processes is discussed, leading to an outline of a possible role for Norway as an NNWS in a future

A UAV will reduce the hop count for long flows, increasing the efficiency of packet forwarding, allowing for improved network throughput. On the other hand, the potential for

This report presented effects of cultural differences in individualism/collectivism, power distance, uncertainty avoidance, masculinity/femininity, and long term/short

3 The definition of total defence reads: “The modernised total defence concept encompasses mutual support and cooperation between the Norwegian Armed Forces and civil society in

Also a few other cases (see table 4.1) shows.. This supports the hypothesis that the mean stream wise velocity in the linear sub-layer is the appropriate velocity scale for

The novel figure-of-8 cable cerclage enhanced fixation stability and reduced re- displacement of the posteromedial-buttress in cephalomedullary nailing of subtrochanteric

(2015) that the Taylor factor M of uniaxial deformations and the yield surface exponent a for FCC polycrystalline metals with random orientations, as predicted