• No results found

On complex dynamics in a Purkinje and a ventricular cardiac cell model

N/A
N/A
Protected

Academic year: 2022

Share "On complex dynamics in a Purkinje and a ventricular cardiac cell model"

Copied!
21
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

ContentslistsavailableatScienceDirect

Commun Nonlinear Sci Numer Simulat

journalhomepage:www.elsevier.com/locate/cnsns

Research paper

On complex dynamics in a Purkinje and a ventricular cardiac cell model

André H. Erhardt

a,1,

, Susanne Solem

b,1

aDepartment of Mathematics, University of Oslo, P.O. Box 1053 Blindern, Oslo 0316, Norway

bDepartment of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim 7491, Norway

a r t i c l e i n f o

Article history:

Received 5 May 2020 Revised 12 August 2020 Accepted 27 August 2020 Available online 2 September 2020 2010 MSC:

37G15 37N25 35Q92 65P30 92B05 Keywords:

Nonlinear dynamics Cardiac cells

Reaction–diffusion system Andronov–Hopf and period doubling bifurcation

Deterministic chaos

a b s t r a c t

Cardiacmusclecellscan exhibitcomplexpatterns includingirregular behavioursuchas chaos or (chaotic) early afterdepolarisations (EADs), which can lead to sudden cardiac death.Suitablemathematicalmodelsand theiranalysishelptopredicttheoccurrenceof suchphenomenaandtodecodetheirmechanisms.Thefocusofthispaperistheinves- tigationofdynamicsofcardiacmusclecellsdescribedbysystemsofordinarydifferential equations.Thisisgenericallyperformedby studyingaPurkinje cellmodel andamodi- fiedventricularcellmodel.Wefindchaoticdynamicswithrespecttotheleakcurrentin thePurkinje cell model,and EADsand chaos withrespect toareduced fastpotassium currentand anenhanced calciumcurrentinthe ventricular cell model — featuresthat havebeenexperimentallyobservedandareknowntoexistinsomemodels,butarenew tothemodelsunderpresentconsideration.Wealsoinvestigatetherelatedmonodomain modelsofbothsystemstostudysynchronisationandthebehaviourofthecellsonmacro- scaleinconnectionwiththediscoveredfeatures.Themodelsshowqualitativelythesame behaviourtowhathasbeenexperimentallyobserved.However,forcertainparameterset- tingsthedynamicsoccurwithinanon-physiologicalrange.

© 2020TheAuthor(s).PublishedbyElsevierB.V.

ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Nowadays,mathematicalmodellingandnumericalsimulationsareessentialandstandardapproachestostudyandanal- yse realworld problemsand phenomenain life science. One major aim is the understanding of complexdynamics and behaviourofthesesystems.Forthispurpose,bifurcationtheoryhasproventobeaveryhelpfulandpowerfultoolinorder toinvestigatedynamicalsystemsandtheir(complex)dynamics,see[1–5]foran overview.Furthermore,numericalbifurca- tionanalysishasbecomeaprofitabletoolinthestudyof(forinstance)climate,neuronalandcardiacmodels.

Cardiacmusclecellscanexhibitcomplex patternsofoscillations likespikingandbursting,whichisrelatedtoioncur- rentinteractionsoftheconsideredcell.Asidefromnormalactionpotentialsofacardiacmusclecell,certainkindsofcardiac arrhythmiacanoccur. Thisincludesspecifictypesofabnormalheartrhythms, whichcanleadto suddencardiac death.In

Corresponding author.

E-mail addresses: andreerh@math.uio.no (A.H. Erhardt), susanne.solem@ntnu.no (S. Solem).

1The authors have contributed equally to the content of this manuscript.

https://doi.org/10.1016/j.cnsns.2020.105511

1007-5704/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

(2)

addition,irregular behaviour,such as(deterministic)chaos orchaotic earlyafterdepolarisations, hasbeenobservedinex- perimentalaswell asincomputational studies,see[6,7] andthereferencestherein.It isthereforehighlyinteresting and importanttounderstandthecomplexbehaviourandmechanismofsuch biologicalphenomena.Moreover, cardiacdynam- icsorheart rhythmscan be quitesensitive totheinfluence ofcertain drugs,whichhasbeen investigatedexperimentally butalso incomputational studies,seee.g. [8–10].Inlater years,the focushas beentocontinuously move towards inter- disciplinaryresearch, includingbiology,computer science,andmathematics, totackletheseissues.As aconsequence,the numberofexistingmathematicalmodelsbasedonexperimentaldataisalsocontinuouslyincreasing.

Thedevelopmentofagoodandprecisemathematicalmodelisessentialtodesignnumericalexperimentsforthestudy of cardiac dynamics,butalso forthe investigation ofthe influence ofcertain externaleffects such as drugsor oxidative stress. Tothisend, mathematicalanalysisisa keyto decodeoccurringphenomenaandtovalidate aderived modelinall details.Thenewlygainedinformationoftheconsideredmodel,canthenbeeitherusedtoimprovethemodelortoproceed withtheoriginalaspiration,e.g.theinvestigationofoptimalpropertiesofdrugs[9].

To this end, bifurcation theory has been utilised to investigate the dynamics of cardiac muscle cells in recentyears, see e.g. [11–14]. Continuing on this lineof research, this paper highlights how useful bifurcation theory can be forthe understanding of complexcardiac dynamicsand howit can be applied to find hiddenfeatures and dynamicsof cardiac singlecellmodelsdescribedbyordinarydifferentialequations(ODEs)throughnumericalinvestigations.

Intheend,itisthesynchronisationofalargegroupofcellsthatdecideswhetheracardiacarrhythmiaspreadsordies out. Forthisreason, a briefstudyof howthe micro-scale singlecellfeatures of thesemodels affectthe behaviour ofan ensembleofcellsatthemacro-scalelevel(cm)isprovided.Thisisdonebyanup-scalingoftheODEsystemtoaPDE–ODE monodomainmodel.

Alloftheabove willbedone byan in-depthmathematicalandnumericalinvestigationofthetwocardiac cellmodels introducedin[15,16],whereoneisamodelofaPurkinjecell,andtheotheramodelofahumanventricularcell.Inpartic- ular,wefindnewfeaturesoftheconsideredmodels,suchaschaosandearlyafterdepolarisations,andinvestigatehowthis affectsgroupsofcellsatthetissuelevel.

Wefindchaotic dynamicsinbothmodelsconsidered.Similarchaoticdynamicstowhatwediscovercanbeobservedin experiments,cf.[6].However,thedynamicsseemstoappearinanon-physiologicalrange.Thiseitherrequirestheimprove- mentofthemodelsortheexperimentalvalidation.

Inaddition, wediscoverEADsinthe humanventricular cellmodel.Thisbehaviour doesseemtobe within thephysi- ologicalrange[17],whichisavalidationofthemodelinthiscase.Finally,weshow thatthe(in)validityofthemodels in termsofbeingwithinthephysiologicalrangecarriesovertothesynchronisationeffectsinthecorrespondingmonodomain models.Thesefindingsclearlyhighlighttheadvantagesofbifurcationtheoryintheanalysisofcardiacmusclecelldynamics bydetectingunexpectedormaybenon-physiologicalbehaviourofthemodel.

1.1. Outlineofthepaper

InSection 2we start witha mathematicalandbiological descriptionofthe modelsandproblemsunderinvestigation.

Abriefbackgroundonthemodellingofcardiac musclecellsandonup-scalingtoamonodomainmodelatthetissuelevel (cf.[18–20])isprovided.Furthermore,we performastabilityanalysisoftheODEsystemfromNoble[15],andshowhow toextendthisanalysistothemacro-scalemonodomainmodel.Theapproachisexplainedindetailforthefourdimensional model[15].However,theansatzcanalsobeusedformorecomplexmodels,see[21,22].

Thestructures ofthesystemsin[15,16]aresimilar.Nevertheless,thebehaviouranddynamicsthattheydisplay canbe quitedisparateduetodifferentcomplexityandparametersettings.InSection3,weapplyanumericalbifurcationanalysisin ordertoderiveacompleteunderstandingofthedynamicsofthemodelfromNoble[15]withrespecttocertainparameters.

Theanalysisisthenextendedtothecorrespondingmacro-scalemonodomainmodel.BasedontheresultsinSection3,we thencontinueouranalysisbystudyingatendimensionalversionofthemodelfromBernusetal.[16]inSection4.Finally, wecloseourpaperwithadiscussioninSection5andthenaconclusion.

2. Biologicalandmathematicalbackground

The historyof mathematicalmodelling ofaction potentials(APs) ofexcitable biologicalcells likeneurons andcardiac cellsstartswiththefamousandpioneeringHodgkin–Huxley(HH)modelfrom1952[23].In[23],theauthorsestablisheda mathematicalapproachthatcanbeusedtomodelAPsofexcitablebiologicalcellsbyasystemofODEs.Thefirstmodelof acardiaccellistheNoblemodelfrom1962[15]ofagenericPurkinjecell.In1991,LuoandRudypublishedanionicmodel forcardiacactionpotentialinguineapigventricularcells[24].Inthelastdecades,therehasbeenanimmensedevelopment inthemodellingofcardiacmusclecells,seee.g.[25–28].Theseconductance–basedmodelsrepresentaminimalbiophysical interpretationofanexcitablebiologicalcellinwhichcurrentflowacrossthemembraneisduetochargingofthemembrane capacitance andmovement of ions across ion channels,cf. Fig.1. Ion channels are selectivefor particular ionic species.

Ingeneral, an APisa temporary,characteristicvariance inthemembranepotential ofanexcitablebiological cellfromits restingpotential.ThemolecularmechanismofanAPisbasedontheinteractionofvoltage-sensitiveionchannels.Thereason fortheformationandthespecial propertiesoftheAPisestablishedin thepropertiesofdifferentgroupsofionchannels intheplasmamembrane.Aninitialstimulusactivatestheionchannelsassoonasacertainthresholdpotentialisreached.

(3)

Fig. 1. (a) Scheme of a cardiac muscle cell [26] , where SR denotes the sarcoplasmic reticulum, I NaCa= Na +/ Ca 2+exchanger current and I NaK= Na +/ K +pump current. (b) Physical system of a cardiac muscle cell. The dashed lines denote the ion currents, which are not included due to the lack of space.

Then, theseionchannels breakopen and/or up allowing an ioncurrent flow, which changes themembrane potential. A normalAPis always uniformandthe cardiacmuscle cell APis typicallydivided intofour phases:the restingphase, the upstrokephase,the(long)plateauphaseandtherepolarisationphase.Thismechanismisbasedonseveraldifferentcurrents.

Oneexample isthepotassium currentIK whichis usually dividedintoa fast(IKr)anda slowcurrent(IKs), cf.schemein Fig.1(a).

Thiselectrophysiologicalbehaviourcanbedescribedbytheordinarydifferentialequation:

Cm

dV

dt =−Iion+Istimulus,

whereV denotes the voltage(in mV) and t thetime (in ms), whileIion isthe sum ofall transmembrane ioniccurrents.

IstimulusrepresentstheexternallyappliedstimulusandCmdenotesmembranecapacitance.

The model in [15] contains a singlepotassium current IK, while the authors of [16] merged a fast (IKr) and a slow current(IKs) toderivetheir model,whichisbasedon thesystemin[29].Inthispaper,wewillslightlymodifythemodel fromBernus etal.[16],i.e.wereplaceIKby thecurrentsIKr andIKs fromPriebeandBeuckelmann [29].Furthermore,the differentioncurrentsmaydepend ondifferentgatingvariables,individual ionicconductancesGi andNernstpotentialsEi, i=Na,K,Ca,etc.,cf.Section2.1.

Wewanttohighlightthatcardiaccellmodelsusually havedifferenttimescalesandmayexhibit so-calledmixed-mode oscillations[30],cf.[31],and/orchaoticbehaviour,cf.[12,32–35],whichcanbelinkedtocertaincardiacarrhythmia.

Forinstance,ifthere are depolarisingvariations ofthemembrane voltage,we are speakingaboutafterdepolarisations (ADs).TheseADsaredividedintoearly(EADs)anddelayedafterdepolarisations (DADs).Thisdivisiondependsonthetim- ing obtaining the AP. EADsoccur eitherin theplateau orin the repolarisationphase ofthe APand are benefitedby an elongationoftheAP,whileDADsoccuraftertherepolarisationphaseiscompleted.EADsareresulting,forexample,froma reductionoftherepolarisingK+currentsoranenhancementinCa2+ currents,seee.g.[33].Triggersforthisarecongenital disordersofionchannelsortheingestionofmedicaments.Ingeneral,EADsareadditionalsmallamplitudespikes(mathe- maticallyspeakingmixed-modeoscillations),i.e.pathologicalvoltageoscillations,duringtheplateauorrepolarisationphase.

Theyarecausedby ionchannel diseases,oxidative stress ordrugs.Furthermore,thepresenceofEADsstrongly correlates withtheonsetofdangerouscardiacarrhythmias,includingtorsadesdepointes(TdP),whichisaspecifictypeofabnormal heartrhythmthat canleadtosuddencardiac death,see[17,36,37].Thus,itishighlyimportanttounderstandthecomplex behaviourofsuchbiologicalphenomena[38].

Finally,wewanttopointoutthatnotalloftheexistingcardiaccellmodelsmayincludecomplexdynamicssuchasEADs orchaos.

2.1. APurkinjecardiaccellmodel

First,wefocusonthemodelfromNoble[15],whichreadsasfollows:

dV

dt =−INa+IK+IL

Cm =:F, (1)

withthemembranecapacitanceCm=12 μF

cm2 andtheioncurrentsINa (sodium),IK(potasssium),andIL (leak current),de- scribedbyINa=(GNam3h+0.14)(VENa),

IK=

GK1n4+GK2exp

V+90 50

+GK2

80 exp

V+90

60

(

VEK

)

,

(4)

andIL=GL(VEL),respectively. Theindividual ionicconductances aregivenby GK1=GK2=1.2 cmmS2, GNa=400 cmmS2 and GL=0.075 cmmS2,whiletheNernstpotentialsaregivenbyEK=−100mV,ENa=40mV andEL=−60mV.Furthermore,the differentgatingvariablesm,handnsatisfythedifferentialequation

dy

dt =ay

(

1y

)

byy=ay

(

ay+by

)

y=y

(

V

)

y

τ

y

(

V

)

, (2)

whereyrepresentsthegatingvariablesm,handn,whiley:=y(V)=aya+yby denotestheequilibriumofthegatingvariable yand

τ

y:=

τ

y(V)= ay+1by itsrelaxationtimeconstantwith

ah=0.17exp

V+90 20

, bh= 1 1+exp

V+1042

, am= 0.1

(

V+48

)

1−exp

V+1548

, bm= 0.12

(

V+8

)

exp

V+8

5

−1, an= 0.0001

(

V+50

)

1−exp

V+5010

, bn=0.002exp

V+90 80

.

Noticethat thegatingvariables areimportantfortheactivation andinactivationofthedifferentioncurrents,whichis neededfortheioncurrentflows andtheresultingactionpotential. TheNoblemodel(1)describesthelonglastingaction andpace-maker potentials ofthe Purkinje fibresof theheart based on theHodgkin–Huxley formulation[23].While the sodiumcurrentisvery similartothe onefromHodgkinandHuxley[23],the potassiumcurrentdiffersinits formulation and thecalcium current ismissing. Nevertheless,the solutions to system(1) closely resemblesthe Purkinje fibre action andpace-makerpotentials.It isshownthatits behaviourin responsetoapplied currentsandtochangesinionic perme- abilitycorresponds fairly well withthatobserved experimentally.Furthermore,the Noblemodel(1) isoneofthe earliest mathematical modelsofcardiac APswhichis ableto produceacertain type ofcardiac arrhythmia,so-calledalternansin APduration (APD).ThesealternansinAPDisaresultofaperioddoublingbifurcationwithrespecttothecyclelength,see [39,40].Aperioddoublingbifurcationisacreationordestructionofaperiodicorbitwithdoubletheperiodoftheoriginal orbit.

In[15]theauthornumericallystudied theinfluenceoftheconductanceGL oftheleakcurrentonthetrajectoryofthe Noble model(1).We willextendthisnumericalstudyby usingbifurcationanalysisto deriveamoredetailedinsightinto thebehaviourofthesolutionsto(1)byvaryingGL,seeSection3.1.

2.1.1. Stabilityanalysis

The steady state or equilibriumof system (1) is determined by hh(V), mm(V), nn(V) andsolving the algebraicequation

F

(

V,h

(

V

)

,m

(

V

)

,n

(

V

))

=0. (3) This yields X=(V,h(V),m(V),n(V))T, whereX is depending onseveral systemparameters, cf. system(1). Furthermore,theJacobianoftherighthandsideofsystem(1)evaluatedatXisgivenby

J=

⎜ ⎜

⎜ ⎜

⎜ ⎜

⎜ ⎜

⎜ ⎝

F

V

F

h

F

m

F

n

1

τ

h

h

V

1

τ

h

0 0

1

τ

m

m

V 0

τ

1m 0

1

τ

n

n

V 0 0

1

τ

n

⎟ ⎟

⎟ ⎟

⎟ ⎟

⎟ ⎟

⎟ ⎠

X

, (4)

whereweusedthefactthat

V

yy

τ

y

yy

=

y

V

τ

y

(

yy

)

∂τVy

τ

y2

y≡y

= 1

τ

y

y

V .

Note that the location andstability ofX is dependingon the different systemparameters, e.g. varying GL changes the locationandthestabilityofX,whilevarying Cm changesonlythestability.Todeterminethestabilityoftheequilibrium onehastocalculatethesolution(s)ofthecharacteristicpolynomial

det

(

J

λ

14

)

=

λ

4+a1

λ

3+a2

λ

2+a3

λ

+a4=0, (5)

i.e.theeigenvaluesofJ,where a1:= 1

τ

h + 1

τ

m+ 1

τ

n

F

V,

(5)

a2:= 1

τ

h

1

τ

m

h

V

F

h

F

V

+ 1

τ

n

1

τ

h

n

V

F

n

F

V

+ 1

τ

m

1

τ

n

m

V

F

m

F

V

a3=1

τ

h

1

τ

m

τ

n

1

τ

m+

1

τ

n

F

V +

h

V

F

h

− 1

τ

n

n

V

F

n

1

τ

m

m

V

F

m

− 1

τ

m

τ

n

F

V +

n

V

F

n +

m

V

F

m

and

a4:=− 1

τ

h

τ

m

τ

n

h

V

F

h +

m

V

F

m+

n

V

F

n

F

V

.

Inaddition,theRouth–Hurwitzcriterion impliesthatall characteristicexponents

λ

i,i=1,...,4havenegativerealpartsif andonlyiftheconditions

1=a1>0,

2=a1a2a3>0,

3=a3·

2>0and

4=

3a21a4>0

holdtrue,see[3,4,41].Furthermore,ifall Hurwitzminorssatisfyi >0fori=1,· · ·,n−1andn=0,wherendenotes thedimensionofthesystem,weknowthatthesystemexhibitsanAndronov–Hopfbifurcation.Using4=0,weget

0=

λ

4+a1

λ

3+a2

λ

2+a3

λ

+a4=

λ

4+a1

λ

3+a2

λ

2+a3

λ

+a1a2aa3

1

a3

a1

=

λ

2+aa3

1

λ

2+a1

λ

+a1a2aa3

1

,

i.e.theequilibriumhasapairofpurelyimaginaryeigenvalues

λ

1,2=i

ω

0 with

ω

0=a3

a1 >0andtwofurthereigenvalues

λ

3,4= −a1±

a21−4a1aa2a3

1

2 =−

1±

21−42

1

2 .

Ingeneral,anAndronov–Hopfbifurcation correspondstothebirthofalimitcycle,whentheequilibriumchangesstability viaa pairofpurelyimaginary eigenvalues.Usually,an Andronov–Hopfbifurcation isconsidered asa triggertooscillatory behaviourindynamicalsystemsandmaycausenormalAPandcardiacarrhythmiainacardiaccellmodel.

Incasethatan=0,thenthesystemexhibitsafoldorsaddle–nodeorlimitpointbifurcation,i.e.theequilibriumhasat leastoneeigenvaluewhich isequaltozero.Alimit pointbifurcation isacollision anddisappearance oftwoequilibriain dynamicalsystems,whichisaturningpoint.

2.2.AmonodomainmodelofthePurkinjecardiaccellmodel

Besides the study of cardiac cell models an important focus is the behaviour anddynamics of severalcells, i.e. the dynamicsonamacro-scale(cm),wheremanycellsareconnectedtogetherandinteractingwitheachother.Tothisend,we considerthefollowingmonodomainmodel,i.e.extensionoftheODEmodel(1)toaPDE–ODEmodelincludinganadditional diffusionterm:

Cm

V

t =

λ

1+

λ χ

1

·

(

Mi

V

)

(

INa+IK+IL

)

y

t = y

τ (

yV

(

V

)

)

y, y=h,m,n in

, (6)

0=

ν

·

(

Mi

V

)

on

,

whereisa boundeddomain,Mi denotesthe intracellularconductivitytensor,

λ

theextra- tointracellular conductivity ratio,

χ

isthemembranesurfacearea perunitvolumeand

ν

istheunitnormal,cf.[42–44].System(6)isamonodomain

model,meaningthatequalanisotropyrates,i.e.Me=

λ

Miin mScm,areassumedinthemorecomplexbidomainmodel.Here,

λ

∈RisconstantandMe denotestheintracellular conductivitytensor.Furthermore,weuse 1λ+λMχi =3601 mS,whichisthe diffusionconstantoriginallyusedin[16],unlessotherwisestated.

Forabetter understandingofthebehaviourofcellsona macro-scalelevel,wefollowtheapproachfromLietal.[45], ChenandJiang[46],CaoandJiang[47]toderivealinearisedsystemofmodel(6).Firstofall,weknowthatonrectangle-like domains:=[0,1]× · · · ×[0,n]⊂RntheeigenvaluesandeigenfunctionsoftheNeumannproblem

u

k

(

x

)

=

μ

kuk

(

x

)

x

,

ν

·

(

uk

(

x

))

=0 x

(7)

(6)

are

μ

k(i)=

π

k

i

2

and u(ki)=cos

π

kx

i

k=0,1,2,..., i=1,...,n,

see [48].In general, theeigenvalue of the spectral problem (7)can be derived by multiplying the first equation ofsys- tem(7)byuk,integratingover,usingGreen’sformulaandapplyingtheboundarycondition.Then,onegetsfortheNeu- mannproblem(7)thefollowingeigenvalues:

μ

k=

uk

2L2()

uk

2L2() .

Now,weconsiderthelinearisedsystemofthemonodomainEq.(6)aroundanequilibriumXoftheODEsystem(3).It hastheform

t

⎜ ⎝

V h m n

⎟ ⎠

=D

⎜ ⎝

V h m n

⎟ ⎠

+J

⎜ ⎝

V h m n

⎟ ⎠

, (8)

whereD denotesthe4×4diffusionmatrixwithalmosteverywherezeroentriesexceptthefirstone,whichis D11=

λ

1+

λ

Mi

χ

1 Cm,

whileJ istheJacobianasstatedin(4).DefinethelinearoperatorLas

L

⎜ ⎝

V h m n

⎟ ⎠

:=D

⎜ ⎝

V h m n

⎟ ⎠

+J

⎜ ⎝

V h m n

⎟ ⎠

.

Then,considerthefollowingcharacteristicequation

L

ψ

1

..

ψ

.4

=

μ

ψ

1

..

ψ

.4

,

where(

ψ

1,,

ψ

4)TistheeigenfunctionofLcorrespondingtotheeigenvalue

μ

.Thus,let

ψ

1

..

ψ

.4

=

k=0

⎜ ⎝

Vk hk mk nk

⎟ ⎠

cos

π

kx

,

whereVk,hk,mkandnkaretime-dependentcoefficients.Wecanthenconcludethat

k=0

Jk

⎜ ⎝

Vk hk mk nk

⎟ ⎠

=

μ

k=0

⎜ ⎝

Vk hk mk nk

⎟ ⎠

,

with

Jk=

⎜ ⎜

⎜ ⎜

⎜ ⎜

⎜ ⎜

⎜ ⎜

Jk11

F

h

X

F

m

X

F

n

X

1

τ

h

h

V

1

τ

h

0 0

1

τ

m

m

V 0

1

τ

m 0

1

τ

n

n

V 0 0

1

τ

n

⎟ ⎟

⎟ ⎟

⎟ ⎟

⎟ ⎟

⎟ ⎟

, (9)

where

Jk11=

F

V

X

π

k

2

λ

1+

λ

M

χ

iC1m

k=0,1,2,3,....

(7)

Keepinmindthatsystem(7)haseigenvalues 0=

μ

0<

μ

1=

π

2

<

μ

2=4

π

2

<

μ

3=9

π

2

<· · · −→∞. Hence,thelinearisedsystem(8)hasinfinitelymanyJacobiansJk.

We continue by deriving an ODE model to represent the behaviour of the linearised system (8) for each mode k= 0,1,2,3,... in closeproximity to theequilibrium V. This is done by ensuring that the resulting system hasthe same equilibriumastheNoblemodel(1)andtheJacobianJk.

Then,weareinasituationwherewecananalysethebehaviourofasinglecellonamacro-scaleincludingtheinfluence ofthe diffusionterm(dependent onk) of themonodomain model(6). Thisallows usto gain intuition onhow thecells interact.TheresultingODEsystemreadsasfollows:

d dt

⎜ ⎝

Vk hk

mk nk

⎟ ⎠

=

⎜ ⎜

⎜ ⎜

⎜ ⎝

INa+IK+IL Cm

π

k

2

λ

1+

λ

Mi

χ (

VkV

)

Cm

(

h

(

Vk

)

hk

)

/

τ

h

(

Vk

) (

m

(

Vk

)

mk

)

/

τ

m

(

Vk

)

(

n

(

Vk

)

nk

)

/

τ

n

(

Vk

)

⎟ ⎟

⎟ ⎟

⎟ ⎠

, (10)

whereV is an equilibriumforEq.(3). Wehavedesignedthe locationof theequilibriumofsystem(10) tobe thesame asfor theNoble model(1). However, considering the stability analysisfrom Section 2.1,the stability ofthe equilibrium maybedifferent.The firstentryoftheJacobian J in (4)isreplacedby Jk11.Thus, alsothecoefficientsaj, j=1,...,4of thecharacteristicpolynomial(5)arechanged.Obviously,thiswillaffectthestabilityofthe system(10)dependent onthe parameters

λ

,Mi,

χ

,andk.Thisindicatesthatthecellularbehaviourofmodel(1)isnot(necessarily)one-to-onetransferred tothebehaviour anddynamicsofthemonodomainEq.(6).Nevertheless,itisagoodstartingpointtostudythedynamics ofa singlecellbefore extendingthe analysistothe macro-scale. Dohowevernote that the modek=0doesgive usthe samedynamicsasthatoftheODEsystem(1).

Inthediscrete setting,ifwechoosek= h12,wherehdenotesthegridsize,andk=h12 isthebiggest eigenvalueforthe discretelaplacian,theterm

( π

k

)

2

λ

1+

λ

Mi 2

χ

1 Cm =−

π

2

h4

λ

1+

λ

Mi 2

χ

1 Cm =−

π

2

h4 1 2

1 4320

mScm2

μ

F

in(10)tendsto−∞andblows upash→0,whichshouldstabilise(10)forlargemodesk(orrefinedgridsizeh).Looking atthecoefficientsaj, j=1,...,4ofthecharacteristicpolynomial(5),wecanseethat a1,a2 anda3 willtendto∞,while a4 willtendto−∞ashtendstozeroandktendsto∞.Thisimpliesthat

1=a1>0,

2=a1a2a3>0,

3=a3·

2>0and

4=

3a21a4>0

andthus,thenumericsofthePDEwillstabilisefordecreasinggridsize,whichistobeexpected.

Thesameanalysiscanbeusedon2Ddomains=[0,]×[0,],, >0,byconsideringtheslightlydifferentterm

( π

k

)

2

λ

1+

λ

M

χ

iC1m

1 2+ 1

2

.

Asimilarmodificationappliestoa3Dcubeorcuboid.Foramoregeneralgeometryonecanexpectthattheadditionalterm derivingfromthelinearisationofthemonodomainmodel(6)ismorecomplicated.However, thegeneraldiscussionabove isexpectedtoremainvalid.

2.3.Aventricularcardiaccellmodel

Asmentioned,wefirstinvestigatetheNoblemodel(1).Indeed,wewillseethatthismodelhassomelimitations.There- fore,wewillalsostudyahumanventricularcellmodel,whichismoreadvancedduetothenumberofincludedioncurrents.

Thedescriptionofthesystemin[16]forepicardialcellsissimilartosystem(1),butitcontainsmoreioncurrentsandreads asfollows:

Cm

dV

dt =−Iion+Istimulus, (11)

whereIstimulusdenotesanexternalstimulusand

Iion=ICab+INaCa+INab+ICa+IK+INaK+INa+IK1+Ito

isdependingonthefastsodiumcurrentINa=GNam3

v

2(VENa),theslowcalciumcurrentICa=35GCad(V)f(VECa),the transientoutward currentIto=Gtor(V)to(VEto), thedelayed rectifier KcurrentIK andthe inward rectifier K1current IK1=GK1K1(V)(VEK),respectively.

(8)

In [16] the authors studied system (11) witha delayed rectifier current IK=GKx2(VEK), while we are considering the delayed rectifier current IK=IKr+IKs from Priebe andBeuckelmann [29]. Here, the currentIKr=GKrxrrik(V)(VEK) denotestherapidlyactivatingcurrent,whileIKs=GKsx2s(VEK)istheslowlyactivatingcurrent.Includingthefastandslow potassiumcurrentwillmakesthedynamicsmorerealistic.

Furthermore,system(11)contains thebackground currentsICab andINab,the Na+/Ca2+exchanger currentINaCa and the Na+/K+ pumpcurrentINaK,cf.Fig.1(a).Noticethatthesystemisdependingon9gatingvariables,i.e.m,v,d,f,r,to,xr,xs

andK1,satisfyingthedifferentialEq.(2),whered,randK1areassumedtobeequaltotheirsteadystates.Wewillconsider allgatingvariablesasstatevariables,thereforethedimensionofthesystemis10.

Moreover, we useCm=1.534 cmμF2,cf. [29], whilethe individual ionic conductancesare given by GNa=16 cmmS2,GCa= 0.064 cmmS2,Gto=0.3 cmmS2,GKr=0.015 cmmS2,GKs=0.02 cmmS2 andGK1=2.5 cmmS2.TheequilibriaandtheJacobian aresimilarly determined asforthe Noblemodel (1). Theonly difference isthat we have6ODEs more toconsider. Thisincreasesthe 4×4matrixJ toa10×10matrix.FollowingthesameapproachasinSection2.2,wecanderivefromthemonodomain modelrelatedtosystem(11)withIstimulus=40cmμA2 andadurationof2s,i.e.

Cm

V

t =

λ

1+

λ

1

χ

·

(

Mi

V

)

Iion+Istimulus,

y

t =

y

(

V

)

y

τ

y

(

V

)

, y=m,

v

,d,f,r,to,xr,xs,K1 in

(12)

withNeumannboundarycondition

ν

·(Mi

V)=0on

,thefollowingODEsystem

d dt

⎜ ⎜

⎜ ⎜

⎜ ⎜

⎜ ⎜

⎜ ⎜

⎜ ⎝

Vk mk

v

k

dk

fk rk tok

xrk

xsk

K1k

⎟ ⎟

⎟ ⎟

⎟ ⎟

⎟ ⎟

⎟ ⎟

⎟ ⎠

=

⎜ ⎜

⎜ ⎜

⎜ ⎜

⎜ ⎜

⎜ ⎜

⎜ ⎜

⎜ ⎜

⎜ ⎜

⎜ ⎜

⎜ ⎜

IionIstimulus

Cm

π

k

2

λ

1+

λ

Mi

χ (

VkV

)

Cm

(

m

(

Vk

)

mk

)

/

τ

m

(

Vk

) ( v

(

Vk

)

v

k

)

/

τ

v

(

Vk

) (

d

(

Vk

)

dk

)

/

τ

d

(

Vk

) (

f

(

Vk

)

fk

)

/

τ

f

(

Vk

) (

r

(

Vk

)

rk

)

/

τ

r

(

Vk

) (

to

(

Vk

)

tok

)

/

τ

to

(

Vk

)

(

xr

(

Vk

)

xrk

)

/

τ

xr

(

Vk

) (

xs

(

Vk

)

xsk

)

/

τ

xs

(

Vk

) (

K1

(

Vk

)

K1k

)

/

τ

K1

(

Vk

)

⎟ ⎟

⎟ ⎟

⎟ ⎟

⎟ ⎟

⎟ ⎟

⎟ ⎟

⎟ ⎟

⎟ ⎟

⎟ ⎟

⎟ ⎟

(13)

whereV theequilibriumofthevoltageVofsystem(11).Notethatthestabilityanalysisforsystem(10)andtheprevious discussionalsoholdstrueforsystem(13).

2.4. Numericalmethods

Forour simulations wewill useMATLAB R2019b andtheode solver ode15switha relative toleranceof 10−13 andan absolute tolerance of 10−18. For the monodomain models, the pdepe solver is used. Moreover, as initial values for sys- tem(1)wewilluseV0=−79.04mV,h0=0.81,m0=0.045andn0=0.52,whileforthesecondmodel(11)weutiliseV0=

−93.3701mV, m0=0.0004,

v

0=0.9990, f0=0.8797,xr0=0.0042,to0=0.9999,d0=0.0000,r0=0.0000,K10=0.0419 andxs0=0.0912,aslong we donot specify anythingelse. The desiredbifurcation diagramswill be derived utilisingthe MATLABtoolboxesMATCONTandCL_MATCONT[49–51],whicharenumericalcontinuationpackagesforinteractivebifurca- tionanalysisofdynamicalsystems.

3. DynamicsoftheNoblemodel

In[15],theauthormentionedachangeinthedynamicsofsystem(1)byvaryingtheleakconductanceGL.Wewillshow thatchangingGL hasinfluenceontheperiodoftheAPaswellasifthesystemconvergesintoastableequilibriumornot.

InFig.2,thetrajectory ofsystem(1)isgivenfortwodifferentvaluesoftheleakconductanceGL,i.e.GL=0.075 cmmS2 and GL=0.18 cmmS2. InFig.2(a), system(1)revealsa periodictrajectory representingtwo APsofa cardiac singlecell,while in Fig.2(b)thetrajectory needs certainamountoftime to reachastableperiodic patternalso representingAPs.Thisshows that system (1)is sensitive with respectto GL, which mayhave an influence on the amplitudeandthe period T ofthe trajectorygivenbyV(t+T)V(t)=0.Inaddition,theinitialvaluealsohasaninfluenceontheappearingpattern(atleast locally).

(9)

Fig. 2. Different action potentials: Simulation of system (1) (default setting) with two different values of the leak conductance G L, where these values are chosen according to the observation in [15] .

Fig. 3. Bifurcation diagram in 2D: Projection onto the ( G L, V )-plane showing the equilibrium curve and the first two limit cycle branches.

3.1. Bifurcationanalysisofsystem(1)withrespecttoGL

We now systematically investigate the behaviour described above utilising numerical bifurcation analysis as done in [31,52].Ourfirststepistodetermineabifurcationdiagramwithrespecttotheleakcurrent,i.e.wechoosetheleakconduc- tanceGLasthebifurcationparameter.NoticethatwewillonlyconsiderpositivevaluesofGL,sincetheyarethephysiologi- callyrelevantones.Mathematicallyandnumericallywecaneasilyextendthebifurcationdiagramalsotonegativevaluesof GL.

Westartby determiningtheequilibriumcurve, i.e.we calculatefordifferentvaluesofGL thecorrespondingequilibria, whichgivesusthedesiredequilibriumcurve.Moreover,wedeterminethestabilityofeachequilibria.Theequilibriumcurve wecaneasily calculatewithaself-writtenroutine.However, toderiveadetailedenoughbifurcationdiagram efficiently,it isadvisabletousearobustcontinuationalgorithmastheonementionedinSection2.4.

Thebifurcationdiagramofsystem(1)relatedtoGLexhibitsanunstable(blackdashedline)andastable(blacksolidline) equilibriumbranch,seeFig.3.Theequilibriumcurve changesstabilityviaasupercritical Andronov–Hopfbifurcation(blue dot,GL≈0.200883cmmS2)withanegativefirstLyapunovcoefficient.FromthesupercriticalAndronov–Hopfbifurcationastable limitcyclebranch(solidblueline)bifurcates,whichbecomesunstable(dashedblueline)viaaperioddoublingbifurcation (solidredsquare,GL≈0.187785cmmS2).Then,thelimitcyclebranchgainsstabilityagainviaalimitpointofcyclebifurcation (solidgreensquare,GL≈0.193546cmmS2).Furthermore,thislimit cyclebranchcontainsasecondperioddoublingbifurcation, whichisalsoconnectedtothefirstoneviaasecondlimitcyclebranch,cf.Figs.3and4.

ThebifurcationdiagraminFig.3onlyincludesthefirsttwolimitcyclebranches,asincludingfurtherdetailswouldnot beparticularlyvisible.Indeed,furtherbranchesexistaswewillseebelow.

Togetherwith Figs. 4 and5,a nice graphical explanation ofthe observations in[15] appears. We canidentify values ofGL for whichsystem (1) oscillatesor hasa stable equilibrium. Even more,we can determine the maximal amplitude

(10)

Fig. 4. Bifurcation diagram in 2D: Zoom of Fig. 3 also including the third limit cycle branch.

Fig. 5. Bifurcation diagram in 3D: Projection onto the ( G L, n, V )-plane including several trajectories of system (1) for different values of G L.

ofan oscillationcorresponding toGL.Inaddition, wealsoget thecorresponding periodofeachlimit cycle.We havethat theperiodTforGL=0.075 cmmS2 isapproximately564.1345ms,whileforGL=0 cmmS2 we haveT≈839.5015ms andforGL= 0.18 cmmS2 wehaveT ≈ 324.2749ms.Thus, we knowthatthe patternofthetrajectory repeats fasterifGL increasesbefore itconvergesintoastableequilibriumforGL toolarge,whichexplainstheobservationsfromNoble[15].Furthermore,from Fig.3weobservethatthemaximalamplitudeisdecreasingwhileGL increases.

InFig.4athirdlimitcyclebranchisalsoincludedandwefocusonasmallerrangeofGL values,whereinterestingdy- namicsmayappear.Thenextadditionallimitcyclebranchesbehaveverysimilarlytothethirdone,i.e.theyarebifurcating fromaperioddoublingbifurcation,theylosestabilityviaafurtherperioddoublingbifurcation,andstayunstableuntilthey convergeintoaperioddoublingbifurcationofthepreviouslimitcyclebranch.Onlythesecondlimit cyclebranchbehaves slightlydifferent— itbifurcatesfromthefirstperioddoublingbifurcation(GL≈0.187785cmmS2),becomesunstableviaalimit point ofcyclebifurcation, gains stabilityagainvia asecond limit point ofcycle bifurcation andfinally,loses stabilityvia a furtherperioddoublingbifurcation (GL≈0.187308cmmS2). Then,itstays unstableuntilit convergesintoaperioddoubling bifurcationofthefirstlimitcyclebranch,cf.Fig.4.

Startingfromthesecondlimitcyclebranch,system(1)exhibitsastableperioddoublingcascade,whichisusuallyaroute tochaos,cf.e.g.[35].However,inthebifurcationdiagraminFig.5,whereseveraltrajectories(redlines)arehighlightedfor differentvaluesofGL,noirregularorchaoticbehaviournoradditionaloscillationscanbeseen.

The reasonis quite simple: The system exhibits a stable limit cyclebranch fromthe first limit cycle branch, which

“surrounds” the interesting dynamics of the Noble model(1),cf.Figs. 3and4.Hence,for the standard initial condition we do notget anysudden changein thedynamics.The trajectory will jumpon tothe “outer” stablelimit cyclebranch and staysthere.

Referanser

RELATERTE DOKUMENTER