• No results found

21129-174359-2-SP.pdf (1.701Mb)

N/A
N/A
Protected

Academic year: 2022

Share "21129-174359-2-SP.pdf (1.701Mb)"

Copied!
24
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

Supplementary file for: Kylin H., Hammar J., Mowrer J., Bouwman H., Edelstam C., Olsson M.

& Jensen S. 2015. Persistent organic pollutants in biota samples collected during the Ymer-80 expedition to the Arctic. Polar Research 34. Correspondence: Henrik Kylin, Henrik Kylin, Department of Thematic Studies—Environmental Change, Linköping University, SE-581 83 Linköping, Sweden. E-mail:

henrik.kylin@liu.se

Supplementary material:

Additional information on material and methods

Supplementary Table S1: Sample information, birds and mammals Supplementary Table S2: Sample information, Arctic char

Supplementary Table S3: Scientific names of analytes

Supplementary Table S4: Analyte concentrations in birds and mammals Supplementary Table S5: Analyte concentrations in individual Arctic char

Supplementary Table S6: Additional analyte concentrations, pooled Arctic char samples Supplementary Table S7: Analyte concentrations in auxiliary samples from the Baltic Sea Supplementary Table S8: Comparison of concentrations in samples from 1971 and 1980 Supplementary Table S9: Analyte concentration in samples (seals, fish, shrimps, ascidians)

collected 1983-84.

Additional information on material and methods

Sampling

Birds were shot with a narrow-gauge shotgun. In the west, except for one gull from

Longyearbyen, eiders and gulls were taken at the mouth of Isfjorden around Kapp Linné, while guillemots were taken on Prins Karls Forland. In the north and east eiders were sampled around Kinnvika on Nordaustlandet, gulls at Kinnvika and Kongsøya and guillemots on Kongsøya and Hopen. The ringed seals were shot with rifles. One polar bear was found dead on the ice

(emaciated with old skull injuries), the other drowned while under anaesthesia during sampling.

Details of individual samples are kept on file at the Swedish Museum of Natural History (SMNH 2011) and summarized in Supplementary Table S1.

Indigenous populations of anadromous, resident and landlocked populations of Arctic char were sampled with gillnets of multiple mesh size in six lakes located along a gradient from Kapp Linné in the south-west, northwards along the west coast of Spitsbergen, the smaller islands of Danskøya and Amsterdamøya, and at Kinnvika and Prins Oscars Land on northern

Nordaustlandet in the north-east (Fig. 1), using methods described by Hammar & Filipsson (1985). Supplementary samples of landlocked Arctic char were collected in 1981 from a Shetland loch as a southern and coastal reference in the North Atlantic Ocean. Detailed

information on sampling strategies and sites are from Hammar (1982, 1991, 2000) and the field

notes of Johan Hammar. Details for individual specimens are summarized in Supplementary

Table S2.

(2)

Analysis

Extraction and analyses were performed as described by Jensen et al. (1983) with an additional fractionation step (Atuma et al. 1986). The extraction method was developed to extract similar amounts of lipid as the method of Bligh & Dyer (1959). In short: (1) extraction by macerating the samples in organic solvent; (2) determining lipid content; (3) removing lipids by treatment with either (i) concentrated sulphuric acid or (ii) potassium hydroxide (the latter allows

determination of a wider range of cyclodienes); (4) separation after polarity using adsorption chromatography; (5) quantification by capillary column gas chromatography with electron capture detection (GC-ECD) using a Varian 3700 gas chromatograph (Varian, Mumbai, India), or, in the case of toxaphene and cyclodienes, by gas chromatography coupled to mass

spectrometry (GC-MS) using a Finnigan 4500 spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) using negative ion chemical ionization. GC-MS was also used to confirm results for other analytes if high backgrounds made quantification by GC-ECD difficult.

The analytical method and quality control/quality assurance followed the guidelines of the Swedish national environmental monitoring programme (SNEMP). The comparability of these data with other investigations is, therefore, similar to the comparability within the long

environmental monitoring time series of SNEMP. Bignert et al. (1993) have analysed sources of variability in the SNEMP 1968-1990 time series for persistent organic pollutants (POPs) and can be referred to for information on the importance of biological variation vs. the variation in analytical chemical methods. Data from the intercalibration of different quantification methods used over time within the SNEMP time series was used to recalculate the 1980 data to become comparable to the 1971 data (Supplementary Table S8).

Specifically for polychlorinated biphenyl (PCB), 31 individual congeners were determined and the parameter ΣPCB was the sum of the concentrations of these 31 congeners. Standards of the individual organochlorine pesticides were from the US Environmental Protection Agency, while the individual PCB congeners were synthesized in-house (Sundström 1974).

To enable the determination of PCB and organochlorine pesticides in the presence of high concentrations of toxaphene, the extracts were fractionated on deactivated alumina (Atuma et al.

1986). This procedure yields three fractions containing approximately 5, 60 and 35% of the total toxaphene, respectively. Most of the other analytes elute to 100% within one of the three

fractions, enabling identification and quantification by GC-ECD or GC-MS against a simplified toxaphene background. Supplementary Fig. S1 shows representative GC-MS chromatograms.

Polychlorinated terphenyls (PCT) were determined according to methods described by Renberg et al. (1978). The PCTs were determined as total-PCT (ΣPCT), the sum of ortho-, meta- and para-isomers of tetradecachloroterphenyl after perchlorination (isomer-specific data could not be reconstructed). For quantification the commercial product Aroclor 5460 was used as an external standard.

Note that detailed concentration data from one glaucous gull collected in 1979 and some other individual data have not been possible to recover. However, as these samples were

analysed together with the other samples, the sum parameters should be comparable between all

samples.

(3)

Principal component analysis

Principal component analyses (PCA) were used to compare pollutant patterns between samples and groups of samples, using MjM Software PC-ORD version 6.07 (www.pcord.com). PCA was done using correlation for the cross-products matrix, and a distance-based biplot was calculated for the response factors such as age and length. Compounds with no or few values above the limit of quantitation were excluded as they do not contribute towards co-occurrence from which patterns are inferred; the interest in the PCA is the patterns of co-occurrence of compounds, not the occurrence of rare compounds. Concentration data were relativized, i.e., the sum of the values per sample equals 1, and each value becomes a proportion of the sum of the total all concentrations of compounds in that sample. This allows comparisons of pollutant patterns between samples, the groups of samples represented by convex hulls in the Euclidean plane of the biplot. The data for polar bear and ringed seals were not included in the PCA because of few samples.

Other results of POPs in Svalbard biota from the early 1980s

Carlberg & Bøler (1985) report concentration data of some organochlorines and heavy metals in biota samples collected in western Svalbard in 1984. This investigation was done “In order to establish a background level of persistent chlorinated hydrocarbons and inorganic elements in biological material from Svalbard before a possible enhanced industrial activity in the area”

(Carlberg & Bøler 1985, p. 2). Some of these samples (seals, fish, shrimps, ascidians) were analysed by Jacques Mowrer under the auspice of Sören Jensen, shortly after the Ymer-80 samples and using the same methods (Supplementary Table S9). Unfortunately, it is not possible to reconstruct the data at the same depth as for the Ymer-80 samples; critical documents on quality control/quality assurance (QA/QC) and chromatograms and integrator data are missing and it is not possible to reconstruct concentrations for individual PCB congeners.

A complication in interpreting the data is that, judging from saved hand-written result tables, Carlberg & Bøler (1985) do not present the original data; the data presented have been recalculated. The exact reason is not known, but it is noteworthy that Carlberg & Bøler (1985) also report data on POP concentrations in bird samples analysed in a different laboratory (Norheim & Kjos-Hanssen 1984). These data were produced with packed-column

chromatography, and the quantification of PCB was based on one peak (CB153, 2,2’,4,4’,5,5’- hexachlorobiphenyl) only. It is possible, therefore, that the recalculations were done to make the data produced in the two laboratories comparable within the same report.

Direct comparison between the data from the Ymer-80 samples and the data presented by Carlberg & Bøler (1985) is meaningless. Although we cannot entirely vouch for the QA/QC procedures and that only the total PCB concentrations were determined, it is still worthwhile to present the original quantifications, i.e., the data before recalculation for the report by Carlberg

& Bøler (1985). These “original” concentrations (Supplementary Table S9) should give a more relevant comparison with the Ymer-80 samples as well as other, more recently analysed

samples. We also include data from two additional ringed seal samples that were not included by

(4)

Carlberg & Bøler (1985). However, we stress that critical information is missing and we cannot fully vouch for the accuracy of any of the data in Supplementary Table S9.

References

Atuma S.S., Jensen S., Mowrer J. & Örn U. 1986. Separation of lipophilic substances in environmental samples with special reference to toxaphene. International Journal of Environmental Analytical Chemistry 24, 213-225.

Bignert A., Göthberg A., Jensen S., Litzén K., Odsjö T., Olsson M., Reuthergårdh L. 1993. The need for adequate biological sampling in ecotoxicological investigation: a retrospective study of twenty years pollution monitoring. Science of the Total Environment 128, 121-139.

Bligh E.G., Dyer W.J. 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37, 911-917

Carlberg G.E. & Bøler J.B. 1985. Determination of persistent chlorinated hydrocarbons and inorganic elements in samples from Svalbard. Report 83 11 01-1. Oslo: Centre for Industrial Research.

Edelstam C., Hammar J., Jensen S., Mowrer J. & Olsson M. 1987. Miljögifter i Polarhavet.

Analysresultat från Ymer-expeditionen 1980. (Environmental pollutants in the Arctic Ocean.

Results from the Ymer expedition 1980.) In G. Hoppe et al. (eds.): Expeditionen Ymer-80: en slutrapport. (Expedition Ymer-80: a final report.) Pp. 174-182. Stockholm: Swedish Royal Academy of Sciences.

Hammar J. 1982. Röding i Arktis. (Arctic char in the Arctic.) Fauna och Flora 77, 85-92.

Hammar J. 1991. Speciation processes in the High Arctic: hardly as simple as the environment might suggest. International Society of Arctic Char Fanatics Information Series 5, 73-88.

Hammar J. 2000. Cannibals and parasites: conflicting regulators of bimodality in high latitude Arctic char, Salvelinus alpinus. Oikos 88, 33-47.

Hammar J. & Filipsson O. 1985. Ecological test fishing with the Lundgren gillnets of multiple mesh size: the Drottningholm technique modified for Newfoundland Arctic char populations.

Institute of Freshwater Research, Drottningholm, Report 62, 12-35.

Jensen S., Reutergårdh L. & Jansson B. 1983. Analytical methods for measuring

organochlorines and methyl mercury by gas chromatography. FAO Fisheries Technical Paper 212, 21-33.

Norheim G. & Kjos-Hanssen B. 1984. Persistent chlorinated hydrocarbons and mercury in birds caught off the west coast of Spitsbergen. Environmental Pollution Series A 33, 143- 152.

Renberg L., Sundström G. & Reutergårdh L. 1978. Polychlorinated terphenyls (PCT) in Swedish white-tailed eagles and in grey seals—a preliminary study. Chemosphere 7, 477- 482.

SMNH 2011. Swedish Museum of Natural History, environmental specimen bank. Accessed on the internet at

http://www.nrm.se/english/researchandcollections/environmentalresearchandmonitoring/envir onmentalspecimenbank.9000848_en.html visited on 4 October 2015.

Sundström G. 1974. Studies on the synthesis of

14

C-labelled and unlabelled chlorobiphenyls:

identification of chlorobiphenyls present in technical PCB mixtures and in human adipose

tissue. PhD thesis, Stockholm University.

(5)

Supplementary Table S1. Sample information for birds and mammals.

Sample Sample code in Species Sampling location

a

Body mass Sex Tissue Sample mass Lipid mass Lipid

No. specimen bank (g) (g) (mg) (%)

1 A80/6422 Brünnich's guillemot Svalbard, Tømmerneset, Kongsøya 920 Male Muscle 9.93 194.5 1.96

2 A80/6424 Brünnich's guillemot Svalbard, Kinnvika 890 Male Muscle 9.98 274.6 2.75

3 A80/6426 Brünnich's guillemot N 80° 34’ 56” E 41° 34’ 10” 980 Female Muscle 10.02 271.3 2.71

4 A80/6427 Brünnich's guillemot Hopen, Beisaren, Hermanseuskardet 920 Male Muscle 9.93 456.0 4.59

5 A80/6401 Glaucous gull Svalbard, Kapp Koburg, Kongsøya 1880 Missing Muscle 9.98 434.1 4.35

6 A80/6454 Glaucous gull Svalbard, Kinnvika, Claravågen 1605 Missing Muscle 9.93 310.7 3.13

7 A80/5117 (MA2) Polar bear

b

N 81° 00’ E 30° 00’ 95000 Male Muscle 9.96 76.5 0.77

8 MA3 Polar bear

c

N 80° 09’ E 30° 00’ 470000 Male Muscle 9.99 132.7 1.33

9 A80/6428 Common eider Svalbard, Kinnvika 2135 Female Muscle 10.00 303.9 3.04

10 A80/6429 Common eider Svalbard, Kinnvika 1662 Female Muscle 9.99 176.4 1.77

11 A80/6430 Common eider Svalbard, Kinnvika 1955 Female Muscle 10.21 310.0 3.04

12 A806431 Common eider Svalbard, Kinnvika 2300 Female Muscle 9.87 435.0 4.41

13 A80/6432 Common eider Svalbard, Kinnvika 1875 Female Muscle 9.96 187.0 1.88

14 C82/6150 Brünnich's guillemot Svalbard, Prins Karls Forland Missing Missing Muscle 4.89 141.5 2.89 15 C82/6151 Brünnich's guillemot Svalbard, Prins Karls Forland Missing Missing Muscle 2.03 61.2 3.01 16 C82/6152 Brünnich's guillemot Svalbard, Prins Karls Forland Missing Missing Muscle 3.71 85.1 2.29 17 C82/6253 Brünnich's guillemot Svalbard, Prins Karls Forland Missing Missing Muscle 3.14 90.4 2.88 18 C82/6154 Brünnich's guillemot Svalbard, Prins Karls Forland Missing Missing Muscle 3.78 102.8 2.72

19 C82/6155 Common eider Svalbard, Kapp Linné Missing Missing Muscle 4.06 138.5 3.41

20 C82/6156 Common eider Svalbard, Kapp Linné Missing Missing Muscle 5.42 176.4 3.25

21 C82/6157 Common eider Svalbard, Kapp Linné Missing Missing Muscle 4.06 125.9 3.10

22 C82/6158 Common eider Svalbard, Kapp Linné Missing Missing Muscle 4.15 102.4 2.47

23 C82/6159 Common eider Svalbard, Kapp Linné Missing Missing Muscle 5.45 109.6 2.01

24 C82/6160 Glaucous gull Svalbard, Kapp Linné Missing Missing Muscle 3.17 142.4 4.49

25 C82/6161 Glaucous gull Svalbard, Kapp Linné Missing Missing Muscle 2.97 226.6 7.63

26 C82/6162 Glaucous gull Svalbard, Kapp Linné Missing Missing Muscle 4.30 371.5 8.64

27 C82/6163 Glaucous gull Svalbard, Kapp Linné Missing Missing Muscle 4.30 361.5 8.41

28 C82/6164 Glaucous gull Svalbard, Kapp Linné Missing Missing Muscle 2.90 127.2 4.39

29 Missing Glaucous gull

d

Svalbard, Longyearbyen Missing Missing Muscle Missing Missing Missing

30 C81/6011 Common guillemot

e

Stora Karlsö, C Baltic 940 Female Muscle 10.07 337.1 3.35

31 C81/6012 Common guillemot

e

Stora Karlsö, C Baltic 920 Male Muscle 10.34 319.0 3.09

32 A81/5012 Ringed seal Svalbard, N 81° 50’ E 26° 33’ 28000 Male Blubber 5.00 4786.6 95.73

33 C81/5101 Ringed seal Svalbard, Kongsfjorden 58000 Male Blubber 5.01 4521.2 90.24

a

Location as given in the files of the Swedish Natural History Museum.

b

Found dead with skull injuries. Probably starved to death.

c

Drowned at sampling.

d

Sample collected 1979.

e

Samples 30 and 31 were included in the survey for comparison with the Arctic samples.

f

Sample collected 1981.

(6)

Supplementary Table S2. Sample information for Arctic char.

Sample no. Lake Longitude Latitude General System Date Individual life

history Length

(cm) Mass

(g) Sex Age Lipid

(%) Svalbard

3 Linnévatn 78° 05’ 17” N 13° 51’ 20” E Anadromous 1980-09-09 Smolt 24.6 95 M 12 1.04

4 Linnévatn 78° 05’ 17” N 13° 51’ 20” E Anadromous 1980-09-09 Smolt 26.2 137 F 7 2.18

6 Linnévatn 78° 05’ 17” N 13° 51’ 20” E Anadromous 1980-09-09 Smolt 20.0 56 M 11 0.372

7 Linnévatn 78° 05’ 17” N 13° 51’ 20” E Anadromous 1980-09-09 Resident 14.6 19 F 9 2.35

12 Linnévatn 78° 05’ 17” N 13° 51’ 20” E Anadromous 1980-09-09 Resident 13.8 17 F 7 1.5

13 Linnévatn 78° 05’ 17” N 13° 51’ 20” E Anadromous 1980-09-09 Resident 13.6 13 M 7 0.987

4 Diesetvatn 79° 06’ 34” N 11° 25’ 59” E Anadromous 1979-07-22 Anadromous 48.8 Missing F 9 2.99

5 Diesetvatn 79° 06’ 34” N 11° 25’ 59” E Anadromous 1979-07-22 Anadromous 42.7 Missing F 8 4.34

6 Jensenvatn 79° 42’ 20” N 10° 51’ 10” E Landlocked 1979-07-29 Resident 51.0 1260 M 13 5.19

7 Jensenvatn 79° 42’ 20” N 10° 51’ 10” E Landlocked 1979-07-29 Resident 44.0 980 F 11 5.65

8 Jensenvatn 79° 42’ 20” N 10° 51’ 10” E Landlocked 1979-07-29 Resident 38.4 590 M 7 11.6

9 Jensenvatn 79° 42’ 20” N 10° 51’ 10” E Landlocked 1979-07-29 Resident 57.5 1910 M 17 1.99

10 Jensenvatn 79° 42’ 20” N 10° 51’ 10” E Landlocked 1979-07-29 Resident 58.3 1990 M 16 3.69

11 Jensenvatn 79° 42’ 20” N 10° 51’ 10” E Landlocked 1979-07-29 Resident 59.0 1800 M 19 2.27

61 Annavatn 79° 45’ 43” N 10° 43’ 26” E Landlocked 1981-08-23 Resident 39.2 490 F 22 2.82

62 Annavatn 79° 45’ 43” N 10° 43’ 26” E Landlocked 1981-08-23 Resident 39.0 462 F 21 1.71

63 Annavatn 79° 45’ 43” N 10° 43’ 26” E Landlocked 1981-08-23 Resident 39.6 562 M 19 2.38

64 Annavatn 79° 45’ 43” N 10° 43’ 26” E Landlocked 1981-08-23 Resident 34.9 364 F 21 3.03

65 Annavatn 79° 45’ 43” N 10° 43’ 26” E Landlocked 1981-08-23 Resident 40.6 512 M 19 1.76

203 Wibjørnvatn 80° 03’ 44” N 18° 15’ 39” E Landlocked 1980-08-20 Resident 43.3 500 M 21 2.79

205 Wibjørnvatn 80° 03’ 44” N 18° 15’ 39” E Landlocked 1980-08-20 Resident 42.2 520 M 19 6.03

206 Wibjørnvatn 80° 03’ 44” N 18° 15’ 39” E Landlocked 1980-08-20 Resident 41.1 440 M 26 3.75

207 Wibjørnvatn 80° 03’ 44” N 18° 15’ 39” E Landlocked 1980-08-20 Resident 38.5 370 M 20 2.96

209 Wibjørnvatn 80° 03’ 44” N 18° 15’ 39” E Landlocked 1980-08-20 Resident 39.4 410 F 18 3.84

210 Wibjørnvatn 80° 03’ 44” N 18° 15’ 39” E Landlocked 1980-08-20 Resident 36.6 300 M 19 4.05

211 Wibjørnvatn 80° 03’ 44” N 18° 15’ 39” E Landlocked 1980-08-20 Resident 41.7 340 M 22 1.6

12 Arkvatn 80° 28’ 32” N 22° 49’ 42” E Anadromous 1980-08-16 Smolt? 28.8 160 M 16 3.2

13 Arkvatn 80° 28’ 32” N 22° 49’ 42” E Anadromous 1980-08-16 Smolt? 28.9 156 F 19 2.79

14 Arkvatn 80° 28’ 32” N 22° 49’ 42” E Anadromous 1980-08-16 Smolt? 28.4 150 F 16 2.8

15 Arkvatn 80° 28’ 32” N 22° 49’ 42” E Anadromous 1980-08-16 Smolt? 29.6 198 M 18 2.27

16 Arkvatn 80° 28’ 32” N 22° 49’ 42” E Anadromous 1980-08-16 Smolt? 29.5 150 M 15 1.65

17 Arkvatn 80° 28’ 32” N 22° 49’ 42” E Anadromous 1980-08-16 Resident? 18.9 54 M 11 3.22

18 Arkvatn 80° 28’ 32” N 22° 49’ 42” E Anadromous 1980-08-16 Resident? 12.8 14 M 7 4.59

19 Arkvatn 80° 28’ 32” N 22° 49’ 42” E Anadromous 1980-08-16 Resident? 15.4 25 F 13 3.09

Shetland

1 Girlsta Loch 60° 15’ N 01° 13’ W Landlocked 1981-04-29 Resident 21.7 70 F 5 0.99

2 Girlsta Loch 60° 15’ N 01° 13’ W Landlocked 1981-04-29 Resident 25.5 102 M 9 0.78

3 Girlsta Loch 60° 15’ N 01° 13’ W Landlocked 1981-04-29 Resident 22.7 84 M 6 0.82

4 Girlsta Loch 60° 15’ N 01° 13’ W Landlocked 1981-04-29 Resident 22.6 78 F 6 0.79

5 Girlsta Loch 60° 15’ N 01° 13’ W Landlocked 1981-04-29 Resident 21.7 74 F 5 1.00

(7)

Supplementary Table S3a. Scientific names of the analytes.

Common name /

abbreviation Systematic name CAS no.

Aldrin (1R,4S,4aS,5S,8R,8aR)-1,2,3,4,10,10-hexachloro-1,4,4a,5,8,8a-hexahydro-1,4:5,8-dimethanonaphthalene 309-00-2

α-Chlordane 1-Exo,2-exo,4,5,6,7,8,8-octachloro-2,3,3a,4,7,7a-hexahydro-4,7-methanoindene 5103-71-9 γ-Chlordane 1-Exo,2-endo,4,5,6,7,8,8-octachloro-2,3,3a,4,7,7a-hexahydro-4,7-methanoindene 5566-34-7 α-Chlordene 1,2,3,5,7,8-hexachloro-1,3a,4,5,6,6a hexahydro-, (1α,3aα,4β,5α,6aα)-1,4-ethenopentalene 56534-02-2

γ-Chlordene 2,3,3a,4,5,8-hexachloro-3a,6,7,7a-tetrahydro-(1α,3aβ,6α,7aβ,8R*)-1,6-methano-1H-indene 97906-34-8

o,p'-DDD 1,1-dichloro-2-(2-chlorophenyl)-2-(4-chlorophenyl)ethane 53-19-0

p,p'-DDD 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane 72-54-8 o,p'-DDE 1,1-dichloro-2-(2-chlorophenyl)-2-(4-chlorophenyl)ethene 3424-82-9

p,p'-DDE 1,1-dichloro-2,2-bis(4-chlorophenyl)ethene 72-55-9 o,p'-DDT 1,1,1-trichloro-2-(2-chlorophenyl)-2-(4 chlorophenyl)ethane 789-02-6

p,p'-DDT 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane 50-29-3 Dieldrin (1R,4S,4aS,5R,6R,7S,8S,8aR)-1,2,3,4,10,10-hexachloro-1,4,4a,5,6,7,8,8a-octahydro- 6,7-epoxy-1,4:5,8-

dimethanonaphthalene 60-57-1

Endrin (1R,4S,4aS,5S,6S,7R,8R,8aR)-1,2,3,4,10,10-hexachloro-1,4,4a,5,6,7,8,8a-octahydro-6,7-epoxy-1,4:5,8-

dimethanonaphthalene 72-20-8

HCB Hexachlorobenzene 118-74-1

α-HCH 1α,2α,3β,4α,5β,6β-hexachlorocyclohexane 319-84-6 β-HCH 1α,2β,3α,4β,5α,6β-hexachlorocyclohexane 319-85-7 γ-HCH

(lindane) 1α,2α,3β,4α,5α,6β-hexachlorocyclohexane 58-89-9

δ-HCH 1α,2α,3α,4α,5α,6β-hexachlorocyclohexane 319-86-8

Heptachlor 1,4,5,6,7,8,8-Heptachloro-3a,4,7,7a-tetrahydro-4,7-methano-1H-indene 76-44-8 Heptachlor-

epoxide 2,3,4,5,6,7,7-heptachloro-1a,1b,5,5a,6,6a-hexahydro-(1aα,1bβ,2α,5α,5aβ,6β,6aα)-2,5-methano-2H-

indeno [1,2-b]oxirene 1024-57-3

Methoxychlor 1,1,1-trichloro-2,2-bis(4-methoxyphenyl)ethane 72-43-5

Mirex 1,1a,2,2,3,3a,4,5,5,5a,5b,6-dodecachlorooctahydro-1H-1,3,4-(methanetriyl)cyclobuta[cd]pentalene 2385-85-5 PCB Polychlorinated biphenyls

a

PCT Polychlorinated terphenyls

b

Toxaphene Polychlorinated camphene

b

Trans-nonachlor 1,2,3,4,5,6,7,8,8-nonachloro-2,3,3a,4,7,7a-hexahydro-4,7-methano-1H-indene 39765-80-5

a

The structure of the individual congeners quantified are given in Supplementary Table S3b.

b

Individual congeners were not analysed,

concentrations are given based on a technical standard. See Renberg et al. 1978 (PCT) and Atuma et al. 1986 (toxaphene).

(8)

Supplementary Table S3b. Structures of individual PCB congeners included in this study.

Congener

no. Structure CAS no. Vector in

PCA plots

CB44 2,2’3,5’-Tetrachlorobiphenyl, 41464-39 4b

CB52 2,2',5,5'-Tetrachlorobiphenyl 35693-99-3 4a

CB64 2,3,4',6-Tetrachlorobiphenyl 52663-58-8 4c

CB70 2,3',4',5-Tetrachlorobiphenyl 32598-11-1 4d CB84 2,2',3,3',6-Pentachlorobiphenyl 52663-60-2 5c CB87 2,2',3,4,5'-Pentachlorobiphenyl 38380-02-8 5g CB92 2,2',3,5,5'-Pentachlorobiphenyl 52663-61-3 5b CB95 2,2',3,5',6-Pentachlorobiphenyl 38379-99-6 5a CB97 2,2'3',4,5-Pentachlorobiphenyl 41464-51-1 5f CB99 2,2',4,4',5-Pentachlorobiphenyl 38380-01-7 5e CB101 2,2',4,5,5'-Pentachlorobiphenyl 37680-73-2 5d CB105 2,3,3',4,4'-Pentachlorobiphenyl 32598-14-4 5j CB110 2,3,3',4',6-Pentachlorobiphenyl 38380-03-9 5h CB118 2,3',4,4',5-Pentachlorobiphenyl 31508-00-6 5i CB128 2,2',3,3',4,4'-Hexachlorobiphenyl 38380-07-3 6e CB135 2,2',3,3',5,6'-Hexachlorobiphenyl 52744-13-5 6a CB138 2,2',3,4,4',5'-Hexachlorobiphenyl 35065-28-2 6d CB149 2,2',3,4',5',6-Hexachlorobiphenyl 38380-04-0 6b CB153 2,2',4,4',5,5'-Hexachlorobiphenyl 35065-27-1 6c CB156 2,3,3',4,4',5-Hexachlorobiphenyl 38380-08-4 6g CB167 2,3',4,4',5,5'-Hexachlorobiphenyl 52663-72-6 6f CB170 2,2',3,3',4,4',5-Heptachlorobiphenyl 35065-30-6 7g CB171 2,2', 3,3',4,4',6-Heptachlorobiphenyl 52663-71-5 7d CB172 2,2',3,3',4,5,5'-Heptachlorobiphenyl 52663-74-8 7e CB177 2,2',3,3',4,5',6'-Heptachlorobiphenyl 52663-70-4 7c CB180 2,2',3,4,4',5,5'-Heptachlorobiphenyl 35065-29-3 7f CB183 2,2',3,4,4',5',6-Heptachlorobiphenyl 52663-69-1 7b CB187 2,2',3,4',5,5',6-Heptachlorobiphenyl 52663-68-0 7a CB196 2,2',3,3',4,4',5,6'-Octachlorobiphenyl 42740-50-1 8b CB199 2,2',3,3',4,5,5',6'-Octachlorobiphenyl 52663-75-9 8a

CB209 Decachlorobiphenyl 2051-24-3 10a

(9)

Supplementary Table S4a. Concentrations (μg g

-1

lipid) of HCB, individual PCB congeners and PCT in birds and mammals. PCB congeners are listed in elution order. “PCA id” refers to sample identification in Fig. 2.

Species Region HCB 52 44 64 70 95 92 84 101 99 97 87 110 135 149 118 153 105 138 187 183 128 167 177 171 156 172 180 170 199 196 209 ΣPCB ΣPCT Sample no. / PCA id.                                                                                                      

Brünnich’s guillemot

1 / BG1 N/E 0.70 –b – – – 0.77 – – tr 0.46 – – – – – 1.5 2.8 – 2.1 1.5 0.23 – 0.22 – – 0.43 0.45 2.1 0.71 0.81 0.56 0.13 15 – 2 / BG2    0.35 – – – – – – – 0.09 0.32 – – – – – 0.78 1.3 – 1.2 0.46 0.05 – 0.06 0.04 0.13 – 0.06 0.59 0.18 0.07 0.05 tr 5.4 – 3 / BG3    0.40 – – – – 0.46 – – 0.09 0.31 – – – – – 0.63 1.0 – 0.53 0.4 0.10 – 0.07 0.04 – 0.11 0.06 0.49 0.17 0.09 0.07 tr 4.7 – 4 / BG4    3.0 – – – – 2.2 – – 0.50 1.3 – – – 0.05 – 3.2 4.1 – 3.6 1.3 0.14 – 0.17 0.16 – 0.39 0.19 1.5 0.48 0.18 0.14 tr 20 – 14 / BG5 W 0.24 – – – – 0.15 – – 0.05 0.11 – – – – – 0.16 0.29 – 0.24 0.07 – – 0.01 – – – 0.01 0.12 0.04 0.01 0.01 – 1.3 – 15 / BG6    0.27 – – – – tr – – 0.07 0.14 – – – – – 0.18 0.36 – 0.32 0.11 – – – – – – – 0.15 0.06 0.02 – – 1.4 – 16 / BG7    0.23 trc – – – 0.79 – – 0.10 0.38 – – – 0.01 – 1.0 1.5 – 1.2 0.67 0.13 – 0.10 0.05 – 0.14 0.11 0.68 0.24 0.14 0.10 0.02 7.4 – 17 / BG8    0.13 – – – – tr – – tr 0.06 – – – – – 0.06 0.18 – 0.15 0.07 0.02 – 0.02 – – 0.02 0.01 0.09 0.03 0.02 0.01 – 0.74 – 18 / BG9    1.1 tr – – – 0.5 – – 0.07 0.29 – 0.03 – – – 0.60 0.86 – 0.80 0.23 0.30 – 0.04 0.03 – 0.07 0.03 0.32 0.1 0.04 0.03 – 4.3 – Glaucous gull

5 / GG1 N/E 1.3 tr – 0.36 – – – – 1.5 5.0 – 0.34 – 0.39 – 8.6 25 – 19 3.9 2.8 0.32 – 0.26 – 1.8 0.92 20 5.3 0.83 1.8 0.25 98 – 6 / GG2    0.50 tr – 0.34 – 0.3 – – 0.24 0.30 – 0.03 – 0.03 – 0.55 1.4 – 0.92    0.13 0.09 – 0.02 – 0.10 0.05 0.70 0.18 0.07 0.1 0.01 5.5 – 24 / GG3 W 3.1 tr – – – 3.9 – – 1.8 4.1 – 0.41 – 0.23 – 11 25 – 18 2.5 2.6 tr 0.79 tr – 2.4 0.67 23 5.3 0.90 2.6 0.42 110 35 25 / GG4    2.3 tr – – – 2.5 – – 1.9 3.0 – 0.33 – 0.23 – 6.1 15 – 12 3.8 1.0 0.30 0.28 0.31 – 1.3 0.81 10 2.8 1.1 1.2 0.23 65 20 26 / GG5    1.2 tr – – – 1.7 – – 1.0 2.1 – – – 0.18 – 3.6 9.3 – 6.9 1.5 1.0 0.69 – tr – 0.77 0.42 5.9 1.6 0.50 0.75 tr 38 14 27 / GG6    1.4 tr – – – 2.4 – – 1.1 2.7 – 0.25 – 0.26 – 5.0 10 – 8.2 1.6 0.58 1.0 – tr – 0.85 0.34 5.1 1.6 0.30 0.52 tr 42 29 28 / GG7    5.3 tr – – – 12 0.49 – 4.8 11 0.34 1.2 – 0.38 – 31 27 – 29 5.2 2.0 1.3 1.5 0.49 – 3.0 0.99 13 4.0 1.1 1.2 0.18 150 17

29    3.2 Md M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M 65 M

Common eider

9 / CE1 N/E 0.09 – – – – 0.08 – – 0.11 0.09 – – – 0.01 – 0.22 – – 0.37 0.11 – – 0.01 0.02 0.04 – 0.02 0.22 0.07 0.02 0.02 – 1.4 – 10 / CE2    0.12 – – – – – – – 0.14 0.05 – – – 0.01 – 0.04 0.66 – 0.23 – 0.08 – 0.03 0.02 0.03 – 0.02 0.44 0.09 0.03 0.05 – 1.9 – 11 / CE3    0.18 – – – – – – – 0.08 0.04 – – – – – 0.07 0.19 – 0.13 0.05 0.02 – – 0.01 0.01 – 0.01 0.11 0.04 0.02 0.02 – 0.80 – 12 / CE4    0.07 – – – – – – – 0.06 0.03 – – – – – 0.07 0.15 – 0.11 0.04 0.01 – – – – 0.01 – 0.05 0.01 – 0.01 – 0.55 – 13 / CE5    0.11 – – – – – – – 0.05 0.02 – – – – – 0.03 0.11 – 0.06 0.03 0.01 0.01 – – – 0.01 – 0.05 0.01 0.01 0.01 – 0.41 – 19 / CE6 W 0.15 0.12 0.08 – 0.13 0.60 0.07 – 0.33 0.11 0.09 0.13 0.26 0.03 – 0.41 0.67 – 0.48 0.15 0.07 0.03 0.04 0.03 – 0.05 0.01 0.27 0.06 0.03 0.03 tr 4.3 12 20 / CE7    0.14 0.16 0.09 – 0.15 0.71 0.11 – 0.27 0.15 0.10 0.16 0.3 0.02 – 0.34 0.35 – 0.33 0.08 0.03 0.06 – 0.02 – 0.04 0.01 0.12 0.04 0.04 0.05 0.10 3.8 29 21 / CE8    0.09 0.12 – – 0.10 0.52 0.07 – 0.19 0.09 0.08 0.11 0.22 0.02 – 0.18 0.15 – 0.18 0.04 0.01 0.02 – tr – 0.02 0.01 0.05 – 0.08 0.07 tr 2.3 8.0 22 / CE9    0.06 0.16 – – 0.16 tr 0.09 – 0.26 0.14 0.12 0.18 0.32 0.04 – tr 0.21 – 0.28 0.06 0.01 tr – tr – 0.05 – 0.07 0.03 0.11 0.07 tr 2.4 15 23 / CE10    0.08 0.15 – – tr 0.72 – 0.07 0.25 0.09 0.10 0.15 0.18 0.02 – 0.28 0.25 – 0.25 0.06 0.02 tr 0.03 tr – 0.04 0.01 0.10 0.04 0.04 0.03 0.03 2.9 21 Ringed seal

32 N/E 0.02 0.12 – 0.26 – 0.07 – 0.06 0.76 0.21 0.01 0.01 – 0.02 – 0.07 0.61 – 0.42 0.14 0.05 – – 0.02 0.01 – 0.01 0.25 0.01 0.02 0.02 – 3.2 – 33    0.01 0.07 – 0.33 – 0.04 – 0.04 0.33 – – 0.01 – – – 0.08 0.31 – 0.16 0.06 0.02 – 0.01 0.01 0.01 – 0.01 0.10 – 0.01 0.01 – 1.6 – Polar bear  

7a N/E    – – – – – – – 14 17 – – – 1.1 – – 110 – 9.7 – 0.93 – – – – – – 89 39 – – 0.68 280 – 8    0.06 – – – – – – – 0.26 0.20 – – – 0.01 – – 1.2 – 0.04 – – – – – – – – 1.0 0.62 – – – 3.5 –

a Found dead and emaciated with skull injuries. b – Concentration below the limit of detection (≤ 0.003 μg g-1 lipid). c tr – trace amounts, i.e., between the limit of detection and limit of quantification (0.003 μg g-1 lipid ≤ tr < 0.01 μg g-1 lipid).

d M – missing data.

(10)

Supplementary Table S4b. Concentrations (μg g

-1

lipid) of chlorinated pesticides in birds and mammals. “PCA id” refers to sample identification numbers in Fig. 2.

Species Region HCH Dieldrin Endrin Aldrin Heptachlor Heptachlor Chlordene Chlordane Trans- ΣChlor- Methoxy- DDE DDD DDT ΣDDT Mirex Toxaphene Sample no / PCA id α- β- γ- δ- epoxide α- γ- Oxy- γ- α- Nonachlor danes chlor o,p'- p,p'- o,p'- p,p'- o,p'- p,p'-

Brünnich’s guillemot

1 / BG1 N/E –b 0.02 0.01 – NQd NQ – – NQ – – 0.11 0.01 – 0.01 0.13 0.03 – 8.0 – – – 0.02 8.1 – M 2 / BG2 – tr – – NQ NQ – – NQ – – 0.12 – – 0.03 0.15 – – 3.5 – 0.05 – – 3.5 – M 3 / BG3 0.02 tr – – NQ NQ – – NQ – – 0.14 0.02 0.03 0.04 0.23 – – 3.1 – 0.04 – – 3.1 – M 4 / BG4 0.03 0.15 – – NQ NQ – – NQ – 0.03 0.73 0.08 0.06 0.20 1.1 0.08 – 12 – – – – 12 0.02 M 14 / BG5 W 0.02 – – – NQ NQ – – NQ 0.02 – 0.10 – 0.02 0.02 0.16 – – 0.98 – – – – 0.98 – M 15 / BG6 0.03 – – – NQ NQ – – NQ 0.13 – 0.15 – – – 0.28 – – 1.4 – – – – 1.4 – M 16 / BG7 – – – – NQ NQ – – NQ – – 0.28 – – – 0.28 – – 3.7 – – – – 3.7 – M 17 / BG8 – – – – NQ NQ – – NQ – – 0.02 – – – 0.02 – – 0.51 – – – – 0.51 – M 18 / BG9 – – – – NQ NQ – – NQ – – 0.15 – – – 0.15 – – 2.3 – 0.05 – – 2.4 – M Glaucous gull

5 / GG1 N/E – 0.13 – – NQ NQ – tr NQ tr – 1.6 0.14 – 0.25 1.9 0.03 – 27 – 0.41 – tr 27 – M 6 / GG2 – 0.04 – – NQ NQ – tr NQ 0.07 – 0.29 – – 0.06 0.42 – – 3.1 – 0.11 – tr 3.2 – M 24 / GG3 W – tr – – 1.6 tr – 0.56 2.1 0.02 0.03 1.7 0.06 – 0.12 4.6 0.07 – 34 – 0.24 – 0.09 34 – M 25 / GG4 – 0.09 – – 0.73 – – 0.23 1.1 tr – 1.5 0.08 0.03 – 2.9 – – 33 – 0.52 – tr 33 – M 26 / GG5 – tr – – tr – – 0.12 1.5 tr – 1.3 0.08 – 0.31 3.4 – – 20 – 0.18 – tr 20 – M 27 / GG6 – 0.20 – – tr – – tr 1.8 0.08 – 2.1 0.20 – 0.88 5.0 – – 24 – 0.84 – 0.12 25 – M 28 / GG7 0.01 0.24 – – 1.8 tr – 0.42 2.3 tr – 2.7 0.30 – 0.90 6.7 – – 38 – 1.1 – 0.11 39 0.04 M

29 0.75 4.2 – – Me M M M M M M M M M M M M – 26 – – – 0.12 26 M M

Common eider

9 / CE1 N/E – – – – NQ NQ – – NQ 0.05 – tr – – 0.02 0.07 – – 0.98 – 0.07 – – 1.1 – M 10 / CE2 0.04 – – – NQ NQ – – NQ 0.01 – 0.10 0.01 – 0.02 0.14 – – 0.94 – 0.03 – – 0.97 – M 11 / CE3 0.06 – – – NQ NQ – – NQ – – 0.06 – – 0.02 0.08 – – 0.46 – 0.03 – – 0.49 – M 12 / CE4 – – – – NQ NQ – – NQ – – 0.03 – – 0.02 0.05 – – 0.38 – 0.03 – – 0.41 – M 13 / CE5 – – – – NQ NQ – – NQ – – 0.03 – – 0.01 0.04 – – 0.24 – 0.02 – – 0.26 – M 19 / CE6 W trc tr – – tr – – 0.12 0.34 – – 0.10 – – 0.25 0.81 0.07 – 1.0 – 0.05 – 0.01 1.1 – M 20 / CE7 0.05 tr – – 0.02 – – 0.12 1.1 0.18 0.27 0.83 0.21 0.01 0.32 3.0 0.16 – 0.47 – 0.04 – 0.02 0.53 – M 21 / CE8 – – – – 0.06 – – 0.06 1.5 0.12 0.19 1.4 0.08 0.01 0.01 3.4 – – 0.18 – 0.02 – 0.02 0.22 – M 22 / CE9 – – – – tr – – 0.03 0.82 0.04 – 0.92 0.03 – 0.04 1.9 0.17 – 0.17 – 0.03 – tr 0.20 – M 23 / CE10 – tr – – tr – – 0.01 0.23 – – 0.48 – – 0.02 0.74 0.10 – 0.33 – 0.03 – tr 0.36 – M Ringed seal

32 N/E 0.06 – – – NQ NQ – – NQ – – 0.34 0.03 0.09 0.88 1.3 – – 0.08 – – – 0.91 0.99 – M 33 0.03 – – – NQ NQ – – NQ – – 0.09 – – 0.11 0.20 – – 0.06 – 0.26 – 0.29 0.61 – M Polar bear

7a N/E – – – – 16 – – 0.66 10 – – 8.6 0.58 – – 20 – M M M M M M – – M 8 0.02 – – – NQ NQ – – NQ 0.06 – 0.11 0.01 – 0.05 0.23 – – 0.33 – 0.04 – 0.03 0.40 – M

a Found dead and emaciated with skull injuries. b – Concentration below the limit of detection (≤ 0.003 μg g-1 lipid). c tr – trace amounts, i.e., between the limit of detection and limit of quantification (0.003 μg g-1 lipid ≤ tr < 0.01 μg g-1 lipid).

d NQ – not quantified. e M – missing data.

(11)

Supplementary Table S5a. Concentrations (μg g

-1

lipid) of individual PCB congeners in Arctic char samples. The congeners are listed in elution order. “PCA id” refers to sample identification numbers in Fig. 3 and Supplementary Figs. S2, S3 and S4.

Lake 52 44 64 70 95 92 84 101 99 97 87 110 135 149 118 153 105 138 187 183 128 167 177 171 156 172 180 170 199 196 209 ΣPCB Sample no / PCA id

Linnévatn

3 Sa/ Ln3 0.14 0.09 – 0.13 0.61 0.08 – 0.32 0.14 0.07 0.15 0.28 0.01 – 0.41 0.66 – 0.50 0.13 0.05 0.02 0.05 0.03 – 0.04 – 0.23 0.03 0.01 0.02 – 4.2 4 S / Ln4 0.12 –d) – 0.08 0.28 0.03 – 0.19 0.04 – 0.11 0.22 – – 0.15 0.11 – 0.16 0.02 0.01 – – – – 0.01 0.05 0.02 – – – 1.6 6 S / Ln6 0.72 0.16 – 0.26 1.2 0.14 – 0.66 0.27 0.18 0.26 0.52 0.08 – 0.82 1.5 – 0.96 0.30 0.14 0.09 0.08 0.06 – 0.20 0.06 0.64 0.24 0.06 0.05 0.05 9.7 7 Rb/ Ln7 0.03 0.01 – 0.01 0.07 0.01 – 0.03 0.01 – 0.02 0.04 – – 0.05 0.08 – 0.06 0.01 – – – – – – 0.03 0.01 – – – 0.47 12 R / Ln12 0.05 – – 0.01 0.10 0.02 – 0.07 – 0.01 0.01 0.06 – – 0.04 0.18 – 0.10 0.02 0.01 – – 0.01 – 0.01 – 0.03 – – – – 0.73 13 R / Ln13 0.07 0.01 – 0.03 0.12 0.01 – 0.07 0.03 0.02 0.03 0.05 0.01 – 0.08 0.15 – 0.10 0.03 0.01 – – 0.01 – 0.02 0.01 0.06 0.02 – – – 0.94 Diesetvatn

4 Ac/ Di4 0.01 0.01 – 0.01 0.04 – – 0.02 0.01 – 0.01 0.02 – – 0.03 0.04 – 0.03 0.01 – – – – – – – 0.02 0.01 – – – 0.27 5 A / Di5 0.04 – – 0.01 0.04 – – 0.02 0.01 0.01 0.01 0.04 – – 0.03 0.05 – 0.03 0.02 – – – – – – – 0.02 0.01 – – – 0.34 Jensenvatn

6 R / Je6 0.23 – – – 0.38 0.01 – 0.15 0.34 – 0.04 – 0.01 – 1.0 0.85 – 0.85 0.14 0.06 0.04 0.04 0.01 – 0.09 0.02 0.33 0.09 0.01 0.01 – 4.7 7 R / Je7 0.18 0.02 – – 0.17 – – 0.37 0.41 – – – 0.02 – 0.79 0.93 – 0.69 0.25 0.10 0.07 – – – 0.08 0.05 0.29 0.10 0.05 0.03 – 4.6 8 R / Je8 0.13 0.03 – – 0.09 – – 0.10 0.21 – – – 0.01 – 0.24 0.46 – 0.35 0.12 0.05 0.03 – – – 0.04 0.02 0.14 0.05 0.02 0.01 – 2.1 9 R / Je9 0.46 0.04 – – 0.48 – – 0.21 0.45 – 0.04 – 0.02 – 2.3 2.7 – 1.7 0.25 0.26 – 0.07 – – 0.24 0.05 0.35 0.20 0.09 0.09 – 10 10 R / Je10 0.28 0.06 – – 0.87 0.03 – 0.36 0.69 0.03 0.08 – 0.02 – 1.9 1.7 – 1.8 0.33 0.12 0.08 0.09 0.03 – 0.16 0.06 0.72 0.15 0.03 0.01 – 9.6 11 R / Je11 0.36 – – – 0.28 – 0.84 0.90 – – – – – 1.6 1.9 – 1.4 0.50 0.20 0.19 – – – 0.16 0.20 0.56 0.10 0.05 0.06 – 9.3 Annavatn

61 R /An61 0.69 0.06 – – 0.40 – – 0.18 0.37 – 0.04 – – – 1.1 2.3 – 2.1 0.25 0.26 – 0.09 – – 0.24 0.03 1.3 0.26 0.09 0.04 – 9.8 62 R / An62 0.37 0.15 – – 0.13 – – 0.20 0.31 – – – 0.02 – 0.45 0.81 – 0.68 0.25 0.04 0.03 – 0.04 – 0.08 0.01 0.29 0.09 0.05 – – 4.0 63 R / An63 0.94 0.38 0.07 – 0.24 0.02 – 0.11 0.27 – 0.03 – 0.03 – 0.50 1.0 – 0.8 0.16 0.06 0.10 – 0.01 – 0.09 0.03 0.34 0.10 – 0.02 – 5.3 64 R / An64 0.70 0.19 – – 0.16 0.09 – 0.19 0.30 – 0.06 – 0.01 – 0.61 1.6 – 1.2 0.33 0.14 0.03 0.04 0.03 – 0.13 0.08 1.1 0.28 0.11 0.02 – 7.4 65 R / An65 0.99 0.32 0.09 – 0.87 0.03 – 0.33 0.76 0.02 0.09 – 0.03 – 2.1 1.8 – 1.9 0.37 0.14 0.09 0.10 0.03 – 0.21 0.07 0.32 0.18 0.08 0.08 – 11 Wibjørnvatn

203 R / Wb203 0.19 0.05 – – 0.10 – – 0.29 0.31 – – – 0.01 – 0.34 0.28 – 0.20 0.07 0.03 0.07 – – – 0.08 – 0.05 0.03 – – – 2.1 205 R / Wb205 0.13 0.02 – – 0.08 – – 0.06 0.09 – – – – – 0.18 0.16 – 0.12 0.05 0.01 0.02 – – – 0.04 – 0.04 – – – 1.0 206 R / Wb206 0.14 0.03 – – 0.07 – – 0.21 0.20 – – – – – 0.30 0.21 – 0.14 0.05 – 0.04 – – – 0.05 – 0.04 0.02 – – – 1.5 207 R / Wb207 0.12 0.04 – – 0.17 – – 0.10 0.15 – 0.01 – 0.05 – 0.30 0.33 – 0.22 0.05 0.01 0.01 – – – 0.07 – 0.05 0.02 – – – 1.7 209 R / Wb209 0.13 0.03 – – 0.07 – – 0.21 0.23 – – – – – 0.30 0.20 – 0.14 0.05 – 0.04 – – – 0.06 – 0.04 – – – – 1.5 210 R / Wb210 0.13 – – – 0.11 – – 0.06 0.12 – 0.01 – 0.01 – 0.26 0.22 – 0.13 0.06 0.01 – – – – 0.04 – 0.04 – – – – 1.2 211 R / Wb211 0.25 0.10 – – 0.14 – – 0.43 0.40 – – 0.02 0.02 – 0.40 0.55 – 0.39 0.25 0.06 0.07 – – – 0.11 – 0.09 0.02 – – – 3.3 Arkvatn

12 S? / Ar12 0.13 0.04 – – 0.07 – – 0.23 0.27 – – – 0.01 – 0.26 0.21 – 0.14 0.05 0.02 0.05 – – – 0.06 0.02 0.04 – – – – 1.6 13 S? / Ar13 0.14 – – – 0.12 – – 0.05 0.11 – 0.01 – – – 0.22 0.20 – 0.15 0.06 – 0.03 – – – 0.06 – 0.03 0.02 – – – 1.2 14 S? / Ar14 0.17 0.02 – – 0.09 – – 0.05 0.08 – – – 0.03 – 0.15 0.17 – 0.11 0.05 0.01 0.01 – – – 0.03 – 0.03 0.01 – – – 1.0 15 S? / Ar15 0.07 – – – 0.04 – – 0.09 0.13 – – – – – 0.12 0.11 – 0.10 0.06 0.02 0.02 – – – 0.03 – 0.05 0.01 – – – 0.85 16 S? / Ar16 0.15 0.04 – – 0.30 – – 0.12 0.28 – 0.03 – 0.02 – 0.28 0.23 – 0.22 0.06 0.01 0.03 0.02 – – 0.05 0.02 0.04 – – – – 1.9 17 R? / Ar17 0.09 0.03 – – 0.05 – – 0.02 0.05 – – – 0.01 – 0.11 0.10 – 0.05 0.03 – 0.02 – – – 0.03 – 0.02 – – – – 0.61 18 R? / Ar18 0.06 0.01 – – 0.03 – – 0.07 0.09 – – – – – 0.12 0.08 – 0.06 0.02 – 0.02 – – – 0.02 0.01 0.02 – – – – 0.61 19 R? / Ar19 0.06 0.03 – – 0.05 – – 0.02 0.04 – – – – – 0.11 0.08 – 0.07 0.02 0.01 0.01 – – – 0.02 – 0.02 – – – – 0.54

   

(12)

Supplementary Table S5a. Continued.

Lake 52 44 64 70 95 92 84 101 99 97 87 110 135 149 118 153 105 138 187 183 128 167 177 171 156 172 180 170 199 196 209 ΣPCB Sample no / PCA id

Girlsta Loch

1 R / GL1 0.13 – – 0.08 0.58 0.07 – 0.15 0.08 0.10 0.11 0.26 0.01 – 0.27 0.18 – 0.35 0.10 0.01 0.06 0.06 0.02 – 0.02 0.01 0.12 0.08 0.05 0.07 0.03 3.0 2 R / GL2 0.36 0.07 – 0.22 0.88 0.07 0.06 0.84 0.46 0.30 0.13 0.65 0.12 – 1.1 1.3 0.02 0.88 0.37 0.14 0.07 0.09 0.10 – 0.13 0.01 0.64 0.28 0.09 0.03 0.19 9.6 3 R / GL3 0.36 0.09 – 0.15 0.88 0.11 – 0.33 0.18 0.08 0.16 0.41 0.02 – 0.47 0.68 – 0.40 0.13 0.09 0.06 0.05 0.02 – 0.06 0.01 0.23 0.14 0.07 0.09 0.13 5.4 4 R / GL4 0.19 – – – 0.52 – 0.07 0.25 0.09 0.11 0.16 0.19 0.02 – 0.58 0.35 – 0.25 0.09 0.02 – 0.05 – – 0.04 – 0.16 0.09 0.06 0.02 0.09 3.4 5 R / GL5 0.13 – – 0.14 – 0.09 – 0.22 0.13 0.12 0.18 0.30 0.04 – 0.00 0.21 – 0.27 0.04 – – – – – 0.03 – 0.09 0.03 – – 0.08 2.1

a

S – smolt.

b

R – resident.

c

A – anadromous.

d

– Concentration below the limit of detection (≤ 0.003 μg g

-1

lipid).

(13)

Supplementary Table S5b. Concentrations of (μg g

-1

lipid) of HCB, PCT, HCHs and DDT compounds in Arctic char samples.

Lake HCB ΣPCT HCH ΣHCH DDE DDD DDT

Sample no / PCA id α- β- γ δ- o,p'- p,p'- o,p'- p,p'- o,p'- p,p'-

Linnévatn

3 Sa / Ln3 0.07 0.83 0.18 0.06 0.01 – 0.25 – 0.38 – – – NQf

4 S / Ln4 0.05 0.28 0.27 0.05 0.04 – 0.36 – 0.31 – – – NQ

6 S / Ln6 0.10 1.1 0.15 0.10 0.02 – 0.27 – 1.0 – – – NQ

7 Rb / Ln7 0.02 –d 0.14 0.04 0.02 – 0.20 – 0.04 – – – NQ

12 R / Ln12 0.05 – 0.32 0.04 0.03 – 0.40 – 0.07 – – – NQ

13 R / Ln13 0.05 – 0.32 0.06 0.03 – 0.42 – 0.11 – – – NQ

Diesetvatn

4 Ac / Di4 0.08 – 0.19 – – – 0.19 – 0.06 – – – –

5 A / Di5 0.09 – 0.15 – – – 0.15 – 0.08 – – – –

Jensenvatn

6 R / Je6 0.15 – 1.0 0.08 0.06 – 1.1 – 0.61 – – – 0.03

7 R / Je7 0.19 – 1.1 0.07 0.06 – 1.2 – 0.56 – – – 0.03

8 R / Je8 0.11 – 0.99 0.12 0.03 – 1.1 – 0.20 – – – 0.02

9 R / Je9 0.13 – 0.75 0.07 0.05 – 0.87 – 2.3 – – – 0.02

10 R / Je10 0.13 – 0.62 0.02 0.03 – 0.67 – 1.8 – – – 0.03

11 R / Je11 0.13 – 0.81 0.05 0.05 – 0.91 – 1.9 – – – 0.03

Annavatn

61 R /An61 0.19 NQe 0.37 – 0.04 – 0.41 – 2.9 – – – NQ

62 R / An62 0.22 NQ 0.35 – 0.04 – 0.39 – 1.5 – – – NQ

63 R / An63 0.13 NQ 0.31 – 0.04 – 0.35 – 0.64 – – – NQ

64 R / An64 0.22 NQ 0.34 – 0.04 – 0.38 – 2.2 – – – NQ

65 R / An65 0.17 NQ 0.31 – 0.04 – 0.35 – 1.3 – – – NQ

Wibjørnvatn

203 R / Wb203 0.20 NQ 0.21 0.03 0.02 – 0.26 – 0.46 – – – –

205 R / Wb205 0.16 NQ 0.18 – 0.03 – 0.21 – 0.21 – – – –

206 R / Wb206 0.17 NQ 0.21 0.03 0.03 – 0.27 – 0.38 – – – –

207 R / Wb207 0.18 NQ 0.20 0.03 0.02 – 0.25 – 0.30 – – – –

209 R / Wb209 0.20 NQ 0.22 0.03 0.02 – 0.27 – 0.26 – – – –

210 R / Wb210 0.16 NQ 0.19 0.04 0.02 – 0.25 – 0.19 – – – –

211 R / Wb211 0.14 NQ 0.18 0.03 0.02 – 0.24 – 0.84 – – – –

Arkvatn

12 S? / Ar12 0.22 NQ 0.38 – 0.06 – 0.44 – 1.8 – – – –

13 S? / Ar13 0.22 NQ 0.36 – 0.04 – 0.40 – 3.5 – – – –

14 S? / Ar14 0.20 NQ 0.33 – 0.04 – 0.37 – 1.1 – – – –

15 S? / Ar15 0.18 NQ 0.32 – 0.04 – 0.36 – 2.5 – – – –

16 S? / Ar16 0.16 NQ 0.29 – 0.04 – 0.33 – 4.1 – – – –

17 R? / Ar17 0.20 NQ 0.38 – 0.04 – 0.42 – 0.44 – – – –

18 R? / Ar18 0.15 NQ 0.32 – 0.04 – 0.36 – 0.19 – – – –

19 R? / Ar19 0.19 NQ 0.35 – 0.05 – 0.40 – 0.66 – – – –

   

(14)

Supplementary Table S5b. Continued.

 

Lake HCB ΣPCT HCH ΣHCH DDE DDD DDT

Sample no / PCA id α- β- γ δ- o,p'- p,p'- o,p'- p,p'- o,p'- p,p'-

Girlsta Loch

1 R / GL1 0.09 NQ 0.10 0.03 0.05 – 0.17 – 0.53 – – – NQ

2 R / GL2 0.08 NQ 0.12 0.05 0.02 – 0.19 – 3.5 – – – NQ

3 R / GL3 0.09 NQ 0.11 0.05 0.04 – 0.19 – 1.9 – – – NQ

4 R / GL4 0.09 NQ 0.10 0.05 0.05 – 0.19 – 0.77 – – – NQ

5 R / GL5 0.09 NQ 0.14 0.05 0.06 – 0.25 – 0.37 – – – NQ

a

S – smolt.

b

R – resident.

c

A – anadromous.

d

– Concentration below the limit of detection (≤ 0.003 μg g

-1

lipid).

e

NQ – not quantified.

f

Not quantified because of co-elution with large toxaphene peak.

(15)

Supplementary Table S6. Concentrations (μg g

-1

lipid) of PCT and selected pesticides in pooled samples of Arctic char.

Lake PCT Dieldrin Endrin Aldrin Hepachlor Heptachlor Trans- Chlordene Chlordane ΣChlor- Methoxy- DDE DDD DDT ΣDDT Mirex Toxaphene fraction ΣToxaphene epoxide nonachlor α- γ- Oxy- γ- α- danes chlor o,p'- p,p'- o,p'- p,p'- o,p'- p,p'- 1 2 3

Jensenvatn –a 0.22 0.01 – 0.09 0.07 0.04 – – 0.07 0.02 0.02 0.30 – – 0.20 – trb – 0.01 0.21 – tr 0.24 2.0 2.2

Annavatn – 0.52 0.03 – 0.01 0.11 0.20 – – 0.11 0.01 0.07 0.60 – – 1.7 – 0.02 – 0.17 1.9 – – 0.80 0.31 1.1 Arkvatn

Smolt? – 0.50 0.04 – 0.11 0.13 0.40 – – 0.13 0.02 0.10 0.89 – – 2.0 – 0.06 – 0.40 2.5 – – 1.6 0.31 1.9 Resident? – 0.58 0.05 – 0.14 0.14 0.31 – – 0.14 0.03 0.11 0.87 – – 0.42 – 0.04 – 0.31 0.73 – – 1.3 0.70 2.0

a

– Concentration below the limit of detection (≤ 0.003 μg g

-1

lipid).

b

tr – trace amounts, i.e., between the limit of detection and limit of quantification (0.003 μg g

-1

lipid ≤ tr < 0.01 μg g

-1

lipid).

(16)

Supplementary Table S7 Concentrations of organochlorine contaminants (μg g

-1

lipid) in common guillemot (Uria aalge) from the central Baltic Sea. These samples were analysed together with the samples from Ymer-80 for comparison. The data have not been presented in full elsewhere and are included here to present as complete a data set as possible from the Ymer-80 survey.

Sample no 52 44 64 70 95 92 84 101 99 97 87 110 135 149 118 153 105 138 187 183 128 167 177 171 156 172 180 170 199 196 209 ΣPCB ΣPCT 30 –a – 3.4 – 2.6 – – 0.48 2.2 – 0.35 – – – 8.9 10 – 14 7.4 1.4 – 0.89 0.84 – 1.3 1.2 5.1 1.6 2.0 0.91 0.15 65 Mb 31 – – 2.2 – 1.1 – – 0.46 1.1 – 0.26 – – – 4.1 – – 7.5 6.1 1.1 – 0.55 1.2 – 0.70 1.1 3.2 1.2 1.7 0.92 0.27 35 M

Sample no HCB HCH Dieldrin Endrin Aldrin Hepachlor Heptachlor Chlordede Chlordane Trans- Methoxy- DDE DDD DDT ΣDDT Mirex Toxaphene α- β- γ- δ- epoxide α- γ- Oxy- γ- α- nonachlor chlor o,p'- p,p'- o,p'- p,p'- o,p'- p,p'-

30 3.4 – 0.17 – – NQc NQ – – NQ – – 0.18 – – – – – 19 – 0.13 – – 19 – M 31 2.5 – – – – NQ NQ – – NQ – – 0.02 – – – – – 13 – – – – 13 – M

a

– Concentration below the limit of detection (≤ 0.003 μg g

-1

lipid).

b

M – missing data.

c

NQ – not quantified.

(17)

Supplementary Table S8. Concentrations (μg g

-1

lipid) of ΣPCB and ΣDDT in samples of Brünnich's guillemot and polar bears collected on Svalbard in 1971 and 1980. The data from the 1971 samples are from Edelstam et al. (1987) and included here for completeness. Note that the 1971 data were produced with an older analytical method using packed column GC-ECD and not comparable to data from capillary column GC-ECD. The Ymer-80 data in this table have,

therefore, been recalculated based on an intercalibration of the methods to ensure consistency within SNEMP time series to make them comparable to the data from 1971.

ΣPCB ΣDDT

Mean Mean Range Range Brünnich's guillemot

1971

Adults, W Svalbard (n = 7) 12 5.6

7.3-16 3.2-8.4 1980

Adults, N/E Svalbard (n = 4) 18 5.2

7.0-33 2.4-9.4 Age unknown, W Svalbard (n = 5) 4.9 1.4

1.2-12 0.40-2.9 Glaucous gull

1971

Svalbard unspecified (n = 2) 130 34

61-200 30-38 1980

N/E Svalbard (n = 2) 100 12

10-190 2.5-21

W Svalbard (n = 5) 150 24

75-270 16-27 Polar bear

1971 (n = 2) 17 0.34

13-20 0.31-0.37

1980 (n = 1) 6.4 0.31

(18)

Supplementary Table S9. Concentrations (μg g

-1

lipid) of POPs in seals, fish and other animals collected in western Svalbard in 1984. These samples were analysed in the same laboratory and with the same methods as, but slightly prior to, the Ymer-80 samples. Unfortunately, the documentation has not been possible to reconstruct in full. These are the original data. Data regarding these samples presented by Carlberg & Bøler (1985) were, for unknown reasons, recalculated (see discussion in text above).

Species Lipid. HCB ΣPCB HCH Diel- En- Al- Hepta Heptachlor Chlordene Chlordane Nonachlor Methoxy- DDE DDD DDT ΣDDT Mirex Toxaphene Date % α- β- γ- drin drin drin chlor epoxide α - γ- Oxy- γ- α- Trans- Cis- chlor o,p'- p,p'- o,p'- p,p'- o,p'- p,p'- Ringed seal (Pusa hispida), liver, Hornsund

1984–09–13 3.3 0.02 0.76 0.05 –c 0.01 0.08 – – 0.01 0.04 0.28 0.11 tr tr 0.04 tr – 0.02 0.48 – 0.06 – 0.06 0.29 – NQ 1984–09–21 3.9 0.03 0.42 0.06 – tr 0.10 – – 0.01 0.04 0.28 – 0.11 tr tr 0.04 tr – 0.02 0.48 – 0.06 – 0.06 0.29 – NQ 1984–09–28 3.2 0.03 0.45 0.04 – tr 0.08 – – 0.01 0.03 0.21 0.01 0.07 tr tr 0.04 tr – 0.01 0.26 – 0.02 – 0.01 0.14 – NQ 1984–10–02 3.1 0.04 1.0 0.03 – tr 0.11 – – 0.02 0.03 0.16 – 0.12 tr tr 0.07 tr – 0.02 0.37 – 0.04 – 0.03 0.23 – NQ 1984–10–03 2.6 0.03 0.66 0.07 – tr 0.11 – – 0.01 0.02 0.21 – 0.16 tr tr 0.07 0.01 – 0.02 0.44 – 0.06 – 0.03 0.27 – NQ Kapp Linnéa

1983? 3.2 0.03 7.2 0.04 trd 0.01 NQe NQ – 0.01 NQ 0.59 0.01 0.86 tr 0.01 0.02 tr – 0.02 0.46 – 0.06 – 0.021 0.75 – NQ Ringed seal (Pusa hispida), blubber Hornsund

1984–09–13 82 0.02 1.6 0.07 tr tr tr – – 0.01 0.03 0.01 – 0.19 tr tr 0.11 0.02 – – 0.83 – 0.02 – 0.40 1.2 – 0.63 1984–09–21 90 0.01 0.84 0.14 tr 0.01 0.01 – – – 0.02 0.01 – 0.14 0.01 tr 0.16 0.04 – – 0.67 – 0.04 – 0.31 1.0 – 1.1 1984–09–28 84 0.01 1.0 0.05 tr tr 0.01 – – – 0.02 0.01 0.01 0.20 0.01 tr 0.18 0.03 – – 0.89 – 0.02 – 0.44 1.4 – 0.96 1984–10–02 79 0.02 2.3 0.06 tr tr 0.02 – – – 0.02 0.02 – 0.25 0.02 tr 0.26 0.06 – – 0.94 – 0.04 – 0.52 1.5 – 0.51 1984–10–03 90 0.01 0.78 0.08 tr tr 0.01 – – – 0.02 0.01 – 0.19 0.01 tr 0.1 0.02 – – 0.77 – 0.04 – 0.42 1.2 – 0.36 Kapp Linné

1983? 84 0.04 4.6 0.26 0.01 0.02 NQ NQ – 0.02 NQ 0.01 – 0.13 0.01 0.01 0.15 0.03 – – 0.92 – 0.03 tr 1.0 1.9 – NQ 1983? 96 0.02 5.1 0.14 0.01 0.01 NQ NQ – 0.03 NQ 0.01 – 0.25 0.01 0.01 0.23 0.04 – – 1.4 – 0.03 0.01 1.6 3.0 – NQ Bearded seal (Erignathus barbatus), liver, Hornsund

1984–09–21 3.5 0.48 4.3 0.05 tr tr 0.01 – 0.01 0.04 0.20 – 0.12 tr tr 0.12 tr – 0.01 2.5 – 0.31 – 0.31 2.9 – NQ 1984–10–01 2.9 0.30 3.5 0.04 – – 0.01 – 0.01 0.05 – – 0.11 tr tr 0.11 tr – 0.01 2.9 – 0.17 – 0.17 3.2 – NQ Bearded seal (Erignathus barbatus), blubber, Hornsund

1984–09–21 80 0.02 2.1 0.01 tr tr 0.02 0.02 – – 0.03 – – 0.14 tr tr 0.59 0.02 – tr 1.4 – 0.01 – 0.01 1.8 – Mf 1984–10–01 77 0.02 2.2 0.01 tr tr 0.02 0.03 – 0.02 0.01 – – 0.13 tr tr 0.29 0.02 – – 1.5 – 0.01 – 0.01 1.9 – 0.47 Cod (?)b, fillet, Kongsfjorden

1984–08–19 2.0 0.06 0.11 0.02 tr tr 0.04 – – tr 0.01 – – tr tr tr 0.04 tr – – 0.06 – 0.02 – 0.02 0.10 – M Plaice (Hippoglasoidus platesoidus), fillet, Kongsfjorden

1984–08–19 0.11 55 0.04 tr tr 0.05 0.01 – – tr 0.01 0.03 tr 0.12 0.05 0.01 0.08 0.04 – 0.01 0.15 – 0.01 – 0.07 0.24 – M Shrimps (Pandalus), Kongsfjorden

1984–08–19 0.01 34 0.02 – 0.01 – – – – 0.01 – – 0.01 – tr 0.01 – – – – 0.01 – – – – 0.01 – M Ascidian (Ascidiacea), Kongsfjorden

1984–08–20 0.07 0.49 – 0.10 – 0.02 0.05 0.04 – 0.04 0.02 tr – tr tr 0.01 0.02 – – 0.02 0.03 – – – 0.01 0.06 – 0.22

a

The Kapp Linné samples are poorly documented, e.g., sampling date are lacking. These samples were provided from Norwegian authorities and analysed in the same sequence as the data report by Carlberg & Bøler (1985). However, for unknown reasons they were not included in that report.

b

Species unclear due to varying and strange usage of both common and scientific names in the background material. Either cod (Gadus morhua) or polar cod (Boreogadus saida), but most likely the latter.

c

– Concentration below the limit of detection (≤ 0.003 μg g

-1

lipid).

d

tr – trace amounts, i.e., between the limit of detection and limit of

quantification (0.003 μg g

-1

lipid ≤ tr < 0.01 μg g

-1

lipid).

e

NQ – not quantified.

f

M – missing data.

(19)

Supplementary Fig. S1. Representative chromatograms (full scan GC-MS) of the fractions

obtained after fractionation on deactivated alumina of an Arctic char sample. Each chromatogram

is presented in two panels. Peak identifications: P – PCB; T – toxaphene.

(20)

Supplementary Fig. S1. Continued.

(21)

Supplementary Fig. S1. Continued.

(22)

Supplementary Fig. S2. Principal component analysis of relativized contaminant

concentrations in Arctic char. Vector numbers refer to individual PCB congeners, see Table

S3b.

(23)

Supplementary Fig. S3. Principal component analysis of relativized contaminant

concentrations in Arctic char. Vector numbers refer to individual PCB congeners, see Table

S3b.

(24)

Supplementary Fig. S4. Principal component analysis of relativized contaminant

concentrations in Arctic char. Vector numbers refer to individual PCB congeners, see Table

S3b.

Referanser

RELATERTE DOKUMENTER

In total, about 83–90% of reads 23 nt aligned to the reference genome were putative piRNAs table 2, with about 14–42% mapping to transposable elements supplementary table

Table 15: Sample depths and concentrations of PFOS, PFOA and 6:2 FTS in previous soil samples at the old FTS, together with measured concentrations in groundwater and surface

The F ST calculations based on 588 outlier loci (Supplementary information Table S1) for 2 groups, including 5 western (North Sea, Kattegat west Baltic) and 4 eastern Baltic

We validated MEMOTE using models from seven GEM collections (Fig. 2, Supplementary Table 1 and Supplementary Methods), that comprise manually and (semi)-automatically

Table 8: Hexanal concentrations from three different untreated samples of Scots pine wood panels during the testing period, with average concentrations, standard deviation (SD)

The recovery of protein analyte from water-soluble material was therefore evaluated in Paper I-III by comparing analyte signals from normal DBS samples (spiked blood was deposited

included in Table 1. Vertical distributions of maximum concentrations and of crosswind integrated concentrations are shown in Figures 3 and 4. Hence, the samples

Supplementary Table 1 | Levels of short chain fatty acid intermediates detected in human milk samples from atopic (n = 47) and non-atopic (n = 62) women at one month postpartum..