• No results found

Valuation and Risk Management in the Norwegian Electricity Market

N/A
N/A
Protected

Academic year: 2022

Share "Valuation and Risk Management in the Norwegian Electricity Market"

Copied!
21
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

P.BJERKSUND, H.RASMUSSEN,ANDG.STENSLAND

Abstract. Thepurposeofthispaperistwo-fold: Firstly,weanalyzeoption

value approximation of traded options inthe presence of a volatility term

structure. Theoptionsareidentiedas: \European"(writtenontheforward

priceofafutureowdelivery);and(ii)Asian. Bothtypesareinfactwritten

on(arithmetic)priceaverages. Secondly,adoptinga3-factormodelformarket

risk whichiscompatiblewiththe valuationresults,wediscuss riskmanage-

mentintheelectricitymarketwithintheValueatRiskconcept.Theanalysis

is illustrated by numericalcases from the Norwegian electricity derivatives

market.

1. Introduction

Historical time series, implicit volatilities of quoted option prices, as well as

theexperienceofprofessionaltradersand brokers,clearlyindicatethepresenceof

a volatility term structure in the Norwegian electricity derivatives market. The

purpose of this paper is to analyse the implications of this volatility term struc-

ture for: (i)valuation of themostfrequently traded options;and (ii)market risk

management.

Our startingpointis to representthe electricityforwardmarket atdate t bya

forwardprice function f(t;T), which maybe interpreted as the forwardprice at

date t ofa hypotheticalcontractwith deliveryat date T (i.e., with aninnitese-

mal deliveryperiod). Intheelectricityforwardmarket,theunderlyingquantityis

deliveredasaowduring aspecic futuretime period. Thiscontractmaybein-

terpretedasaportfolioofhypotheticalsingle-deliverycontracts,hencetheforward

pricefollowsfromthefunction f(t;T)byno-arbitrage.

Assuming lognormality, we representtheuncertaintyin theforwardmarket at

date t bya volatility function ( t;T t), which correspondsto the Black'76

implicit volatilityofaEuropeanoptionwithtimeto exercise t written onthe

future forwardpricef(t;T)withtimetodeliveryT t.

However, the traded \European" electricity option is written on the forward

price of a contract with deliveryas aconstantow during a specic future time

period. Following Kemna and Vorst (1990), we adopt the Black'76 concept for

approximatingtheoptionvalue,andobtainthetheoreticalforwardpriceaswellas

anapproximatedplug-involatility.

The traded Asian optionis written on theaverage spot priceobserved during

aspecic period. Theexercisedateof theoptiontypicallycoincides withthelast

observationdate. WeobtainthetheoreticalforwardpriceandtheBlack'76plug-in

volatility.

Date: February2.2000.

BjerksundandStenslandarebothprofessorsattheNorwegianSchoolofEconomicsandBusi-

nessAdministration(NHH) inBergen. RasmussenispartnerofVizRiskManagementServices

inBergen,andholdsaDr.Oecon. degreefromNHH.

We thankP.E.Manneand participants ofthe XVIIFIBEannual conference inBergenfor

usefulcomments.

(2)

Next, weturnto riskmanagementwithin theValueat Riskconcept. Theidea

of Value at Risk is to quantify the downside risk of the future market valueof a

givenportfolioatachosenhorizondate. Werepresentthemarketriskbya3-factor

model which is compatible with ourforwardpricedynamics assumption. We use

Monte Carlo simulation in order to generate the probability distribution of the

future portfoliomarketprice.

Theadvantageofintegratingvaluation andriskmanagementis: (i)themarket

riskexposureofafuturepositionisconsistentwiththecurrentforwardandoption

prices;and(ii)wemayuseouroptionvaluationapproximationresultstocalculate

conditional futureoptionvalues.

2. The model

2.1. The forward market. Research onvaluationofcommodityderivativesand

managementofcommoditymarketriskhasbeenanexpandingareawithinnance

during the last decade. At the sametime, the use of various bilateral OTC ar-

rangements in the industry has increased, and new commodity derivatives have

beenintroducedin thenancialmarketplace.

Formanycommodities,theforwardpricesindicate anon-constantconvenience

yield(e.g.,seasonalpattern). Moreover,thecommodityoptionmarketpricesclearly

indicate that the constant volatility assumption of Black'76 is violated for most

commodities. Typicallytheimplicitvolatilityadecreasingandconvexfunctionof

time tomaturity.

GibsonandSchwartz(1990)developatwo-factormodelforoilderivatives,where

the commodity spot price is geometric Brownian, and the instantaneous conve-

nienceyieldratefollowsamean-revertingOrnstein-Uhlenbeckprocess. Withinthis

model, closed form solutionsexist forthe forwardprice aswell asEuropean calls

(see Bjerksund (1991)and Jamshidianand Fein (1990)). Hilliardand Reis(1998)

investigateseveralalternativemodels,includingthecasewherethespotpriceisa

mixedjump-diusionprocess. Forasurveyonalternativemodelsforvaluationand

hedning,seeSchwartz(1997).

Models where assumptions on spot price and convenience yield dynamics are

starting points will typically predict forward prices which are dierent from the

ones observedinthemarket. UsingthegeneralHeath,Jarrow,andMorton(1992)

approach, Milterson and Schwartz (1998) develop a general framework for com-

modityderivativesvaluationandriskmanagementwithstochasticinterestratesas

wellas stochastic convenience yield. Thismodelcan be calibratedto the current

forwardmarket.IntheirGaussianspecialcasethecalloptionvalueessentiallyboils

downtoageneralisedversionofBlack'76.

Our model assumptions may be considered as a special case of the gaussian

Miltersen-Schwartz model. Complicating the picture in the case of electricity

derivatives,however,is thefact that thephysical "underlyingasset"isaconstant

ow received during aspecic time period, rather than one "bulk"delivery at a

specic date.

Turningtoourmodel,werepresenttheforwardmarketatdatetbyacontinuous

forward price function, where f(t;T) denotes the forward price at date t on a

contractwith deliveryat date T t. Considera forward contractwith delivery

date T, and assume the following forward price dynamics at date t T (with

respecttotherisk-adjustedmartingaleprobabilitymeasure)

df(t;T)

=

a

+c

dW

(t); (1)

(3)

wherea,b,andcarepositiveconstants,anddW (t)istheincrementofastandard

Brownian motion with expectation E

t [dW

(t)] =0 and Var

t [dW

(t)] = dt. By

construction, the expectation of Eq. (1) is zero with respect to the martingale

measure.

The abovecorrespondsto the forwardpriceof this contractat thefuture date

2[t;T]beinglognormal,andgivenbythefollowingstochasticintegral

f(;T) = f(t;T)

exp (

Z

t

a

T s+b +c

dW

(s) 1

2 Z

t

a

T s+b +c

2

ds )

:

Observethat E

t [1

f(;T)] =f(t;T), which conrmsthat the forwardprice is a

martingalewithrespect tothe-probabilitymeasure.

Now,consider ahypotheticalEuropeancalloptionwith timeto exercise t,

writtenonthefutureforwardpricef(;T)onacontractwithtimetodeliveryT t.

It follows from the literature(see, e.g., Harrison and Kreps(1979) and Harrison

and Pliska(1981))that themarket valueofthe optioncanberepresentedby the

expected(usingthemartingalemeasure)discounted(usingtherisklessrate)future

pay-o. With thefuture forwardprice beinglognormal, thecallvalueisgivenby

theBlack'76formula

V

t h

1

(f(;T) K) +

i

= E

t h

e r( t)

(f(;T) K) +

i

= e r( t)

f(t;T)N(d

1 ) e

r( t)

KN(d

2

); (2)

where N()isthestandardnormalcumulativeprobabilityfunction,

d

1

ln(f(t;T)=K)+ 1

2

2

( t)

p

t

; (3)

d

2

d

1

p

t; (4)

s

Var

t

ln

f(;T)

f(t;T)

=( t) : (5)

Observethat thekey input of Black'76 is: (i)the forwardprice at date t of the

underlyingassetf(t;T);and(ii)theuncertaintyoftheunderlyingasset,represented

bythevolatility.

Theassumed dynamicstranslatesinto thevolatility beingafunction oftime

to exercise(oftheoption), t,andtimetodelivery(oftheunderlying forward),

T t,andgivenby

= ( t;T t)

= s

Var

t

ln

f(;T)

=( t) ; (6)

(4)

where 1

Var

t

ln

f(;T)

f(t;T)

= Var

t Z

s=

s=t

df(s;T)

f(s;T)

(7)

=

a 2

T s+b

2acln(T s+b)+c 2

s

s=

s=t :

In the following, werepresent theforwardmarket at date t bythe forward price

function f(t;T)andthevolatilityfunction ( t;T t).

3. European option

3.1. Forward on a ow delivery. Intheelectricityforwardmarket,theunder-

lying physical commodity is deliveredduring a specic time period [T

1

;T

2 ] as a

constantow(atarateof(T

2 T

1 )

1

unitsperyear). Weobservedeliveryperiods

on contractsranging from onedayto one year, depending on theremainingtime

to deliveryofthecontract.

Werepresenttheforwardmarketatdatetbytheforwardpricefunction f(t;s),

tsT. Byvalueadditivity,themarketvalueatdate tofreceivingoneunitof

thecommodityfromdatesT

1 toT

2

(atarateof1=(T

2 T

1

))issimply

V

t

"

Z

T2

T

1 1

s f(s;s)

T

2 T

1 ds

#

= Z

T2

T

1 e

r(s t) f(t;s)

T

2 T

1

ds; (8)

where t T

1

<T

2

. In arational market, theforwardpriceF(t;T

1

;T

2

)is deter-

mined such that themarket valueat datet of thepaymentsequalstherighthand

sideoftheequationjustabove. Indeed,inthehypotheticalcaseofup-frontpayment

at datet,theforwardpricewouldcoincide withtherighthandsidejustabove.

Now,supposethattheforwardpriceispaidasaconstantcashowstreamduring

thedeliveryperiod(atarateofF(t;T

1

;T

2 )=(T

2 T

1

)pertimeunit). Atdatet,the

net market valueofentering thecontractiszero, leadingto thefollowingforward

price

F(t;T

1

;T

2 )=

Z

T

2

T1

w(s;r)f(t;s)ds; (9)

where

w(s;r)= e

rs

R

T

2

T1 e

rs

ds

: (10)

Consequently, theforwardpriceF(t;T

1

;T

2

) may beinterpreted astheaverageof

theforwardpricesf(t;s)overthedeliveryperiod[T

1

;T

2

],withrespecttotheweight

function 2

which reectsthetimevalueofmoney.

3.2. Call option valuation. The European calls which are traded in the elec-

tricityderivatives market are typicallywritten on a forwardprice. Inparticular,

consider aEuropeancalloption written onthe pay-o F(;T

1

;T

2

)with strike K

andexercisedate T

1

. Observethattheexercisedateoftheoptionprecedesthe

deliveryperiodoftheunderlyingforwardcontract.

1

Toestablishtherstequality,applyIto'slemma

Var

t

ln

f(;T)

f(t;T)

=Var

t

"

Z

s=

s=t

df(s;T)

f(s;T)

Z

s=

s=t 1

2

df(s;T)

f(s;T)

2

#

;

inserttheassumedforwardpricedynamics,andobservethatthesecondintegralisdeterministic

asofdatet. ThesecondequalityfollowsfromthefactthatBrownianmotionshaveindependent

incrementsacrosstime.

2

Observethatw(s;r)>08s2[T

1

;T

2 ]and

R

T

2

T

w(s;r)ds=1.

(5)

FollowingKemnaandVorst(op.cit.),weapproximatetheoptionvaluewithinthe

Black'76framework. Wehavealreadyobtainedthetheoreticalforwardpriceofthe

underlying uncertainpay-o, F(t;T

1

;T

2

). In addition, weneed an approximated

volatilityparameter. ApproximatetheforwardpricedynamicsfortT

1 by

3

dF(t;T

1

;T

2 )

F(t;T

1

;T

2 )

Z

s=T

2

s=T1 1

T

2 T

1 df(t;s)

f(t;s) ds

=

a

T

2 T

1 ln

T

2 t+b

T

1 t+b

+c

dW

(t): (11)

Next,obtaintheapproximatedvariance

Var

t

ln

F(;T

1

;T

2 )

F(t;T

1

;T

2

= Var

t Z

t

dF(s;T

1

;T

2 )

F(s;T

1

;T

2 )

ds

=

a

T

2 T

1

2 Z

t

ln T

2 s+b

T

1 s+b

2

ds (12)

+

2ac

T

2 T

1 Z

t ln

T

2 s+b

T

1 s+b

ds+c 2

Z

t ds;

where therstandthesecondintegralsare

Z

t

ln T

2 s+b

T

1 s+b

2

ds = h

(x+)( ln(x+)) 2

2(x+)ln (x+)ln (x )

+4aln(2)ln

x

2

4dilog

x+

2

(13)

+(x )(ln (x )) 2

4 i

X()

X(t)

;

Z

t ln

T

2 s+b

T

1 s+b

ds = [(x+)ln (x+)

(x )ln(x ) 2]

X()

X(t)

; (14)

where wedene

1

2 (T

2 T

1

); (15)

X(s) b+ 1

2 (T

2 +T

1

) s; (16)

andwhere thedilogarithmfunction isdenedby 4

dilog(x)= Z

x

1 ln (s)

1 s

dswherex0 (17)

see, e.g.,AbramowitzandStegun(1972).

Now,consideraEuropeancalloptionwithexercisedate writtenontheforward

price F(;T

1

;T

2

), where t < T

1

< T

2

The option value at date t can now

3

Theapproximationproceedsinthefollowingtwosteps

dF(t;T1;T2)

F(t;T

1

;T

2 )

Z

s=T

2

s=T

1 w(s;r)

df(t;s)

f(t;s) ds

Z

s=T

2

s=T

1 w(s;0)

df(t;s)

f(t;s) ds:

4

Thefunctionisapproximatednumericallyby

dilog(x)= 8

<

: P

n

k =1 (x 1)

k

k 2

for0x1

1

2 ( ln(x))

2 P

n

k =1

((1=x) 1) k

k 2

forx>1

(6)

be approximatedby Black'76, using the forward priceF(t;T

1

;T

2

) above and the

volatilityparameterv

E

v

E

v

E

( t;T

1 t;T

2 t)

= s

Var

t

ln

F(;T

1

;T

2 )

F(t;T

1

;T

2 )

=( t) (18)

The volatility parameterv

E

associatedwith theEuropeanoptionisafunction of

the time to maturity of the option( t), thetime to start of delivery (T

1 t),

andthetimeto stopofdelivery(T

2 t).

4. Asian option

Asianoptionsarewrittenontheaveragespotpriceobservedduringaspecicpe-

riod[T

1

;T

2

],withexercisedate T

2

. Withcontinuoussampling,the(arithmetic)

averageofthespot pricesf(s;s)observedfromT

1 toT

2

isdened by

A(T

1

;T

2 )

Z

T

2

T1 1

T

2 T

1

f(s;s)ds: (19)

WeareinterestedinevaluatingacalloptionwithstrikeKandexercisedateT

2 ,

writtenonthearithmeticaverageA(T

1

;T

2

). Forsimplicity,wedealwiththecaseof

tT

1

rst. Withthefuturespotpricesbeinglognormal,thereisnoknownproba-

bilitydistributionforthearithmeticaverage. WithintheBlack'76framework,the

optionvalueapproximationproblemboilsdown tondingthetheoretical forward

priceandareasonablevolatilityparameter.

Now,itfollowsfromthemartingalepropertyofforwardpricesthattheforward

price onacontractwritten on (the cash equivalentof) A(T

1

;T

2

) withdeliveryat

date T

2 is

F

t [A(T

1

;T

2

)] = E

t

"

Z

T

2

T1 1

T

2 T

1

f(s;s)ds

#

= Z

T2

T

1 1

T

2 T

1

f(t;s)ds: (20)

ObservethattheforwardpriceF

t [A(T

1

;T

2

)]simplyisthe(equallyweighted)arith-

meticaverageofthecurrentforwardpricesoverthesamplingperiod[T

1

;T

2 ]. This

forwardpricemaybeinterpretedasthecostreplicatingthiscontractinthemarket.

5

Turning tothe Black'76volatilityparameter,approximate thedynamicsof the

underlying forwardpriceatdate 2[t;T

2 ]by

dF

[A(T

1

;T

2 )]

F

[A(T

1

;T

2 )]

Z

s=T2

s=maxft;T1g 1

T

2 T

1

df(;s)

f(;s) ds

= 8

<

: n

a

T2 T1 ln

T

2 +b

T1 +b

+c o

dW

() when T

1

n

a

T2 T1 ln

T

2 +b

b

+ T

2

T2 T1 c

o

dW

() when >T

1

(21)

5

Assumeforthe momenta discretetimemodelwherethe deliveryperiod[T1;T2]isdivided

intontimeintervalsoftimelenghtt. Considerthefollowingstrategy: Attheevaluationdate

t, buye r(T

2 (T

1 +it))

(1=n) unitsforward foreachdelivery T1+it,i=1;:::;n. Astime

passesandthecontractsaresettled,invest(ornance)theproceedsatthe risklessinterestrate

r. AtthedeliverydateT

2

,thepay-ofromthestrategyis P

n

i=1 (1=n)f(T

1

+it;T

1 +i

t) P

n

1=1

(1=n)f(t;T1+it),wherethersttermrepresentsthedesiredspotprice,andthe

(7)

Obtaintheapproximatedvarianceby

Var

t

ln

A(T

1

;T

2 )

F

t [A(T

1

;T

2 )]

= Var

t

"

Z

=T2

=t dF

[A(T

1

;T

2 )]

F

[A(T

1

;T

2 )]

ds

#

=

a

T

2 T

1

2 Z

T1

t

ln T

2

+b

T

1

+b

2

d

+

2ac

T

2 T

1 Z

T1

t ln

T

2

+b

T

1

+b d+c

2 Z

T1

t

d (22)

+

a

T

2 T

1

2 Z

T

2

T1

ln T

2

+b

b

2

d

+

2ac

T

2 T

1 Z

T2

T

1 ln

T

2

+b

b T

2

T

2 T

1 d +c

2 Z

T2

T

1

T

2

T

2 T

1

2

d;

where therstand thesecond integralsareevaluated byinserting =T

2

in Eqs.

(13)-(16)above,andthefourthandthefthintegralsare

Z

T

2

T1

ln T

2

+b

b

2

d = b

h

y(ln(y)) 2

2yln (y)+2y i

y

1

(23)

Z

T

2

T1 ln

T

2

+b

b

T

2

T

2 T

1

d =

b 2

1

2 y

2

ln (y) yln(y)+y 1

4 y

2

y

1

T

2 T

1

(24)

where

y= T

2 T

1 +b

b

: (25)

TheBlack'76volatilityparameterv

A

isnowfoundby

v

A

v

A (T

1 t;T

2 t)

= s

Var

t

ln

A(T

1

;T

2 )

F

t [A(T

1

;T

2 )]

=(T

2

t): (26)

Observethatthevolatilityparameterv

A

isafunctionoftimetotherstsampling

date, T

1

t,andtimeto thelast samplingdate,T

2

t,wherethelattercoincides

withtime toexerciseoftheoption.

Next,considerthecasewheretheoptionisevaluatedwithinthesamplingperiod,

i.e., T

1

< t T

2

. It follows immediately from the denition of the arithmetic

averagethat

A(T

1

;T

2 )=

t T

1

T

2 T

1 A(T

1

;t)+ T

2 t

T

2 T

1 A(t;T

2

): (27)

Consequently,withT

1

<tT

2

,thecalloptionproblemisequivalentto

V

t h

1

T

2 ( A(T

1

;T

2 ) K)

+ i

= T

2 t

T

2 T

1 V

t h

1

T

2 (A(t;T

2

) K

0

) +

i

; (28)

where

K 0

T

2 T

1

T

2 t

K

t T

1

T

2 t

A(T

1

;t); (29)

i.e., aportfolioof T2 t

T

2 T

1

calloptions,eachwrittenontheaverageovertheremain-

ing sampling period [t;T

2

] where the strike is adjusted for the already observed

prices. Inthenon-trivialcase ofK 0

>0, thevalueof theadjusted optioncanbe

evaluated byinsertingT =t andK =K 0

in the evaluation procedure above. In

(8)

thedegeneratecaseof K 0

0,itwillalwaysbeoptimaltoexercisethecall,which

reduces theadjustedoptiontoaforwardwithcurrentvalue

V

t h

1

T

2 (A(t;T

2

) K

0

) +

i

=e

r(T2 t)

(T

2 t)

1 Z

T

2

t

f(t;s)ds K 0

!

: (30)

5. Valuation: An example

5.1. Current termstructure. TheNordicelectricitymarketNORDPOOLcon-

sistsofseveralforwardandfuturescontracts. Thetradedcontractandtheirmarket

pricesatDecember15. 1999arefoundin Exhibit1.

InsertExhibit1here

Based onthebid/askprices,weconstructacontinuous forwardpricefunction.

The forward function is given by the smoothest function that prices all traded

contractsonNORDPOOL within thebid/askspread. Theforwardpricefunction

at December151999isrepresentedbythecontinuousyellowcurveinFigure 1.

InsertFigure1here.

The redhorisontal lines in Figure 1correspond to thequoted forwardpriceof

eachtradedcontract.

5.2. Volatility. Thevolatilityin forwardpricesfalls rapidlyin this market. The

volatilityon asingledaydeliverystartingin oneweekmight be 80%, whereasa

similar deliverystartingin 6monthswill typicallyhavelessthan20%immediate

volatility.

InsertFigure 2here

Figure 2showstheforwardpricefunctionandthevolatilitycurveatDecember

151999forthefollowingcalendaryear(i.e.,2000).

5.3. Contract valuation. In thefollowing, we consider three valuation casesas

of December15. 1999 . The rstcase corresponds to the contract "FWYR-2000

Asian/M", see the rst line in Exhibit 2. The strike of the option is 120 and

the contract expiresat December31. 2000. The contract is subject to "monthly

settlements",whichmeansthatthecontractrepresentsaportfolio12monthlyAsian

options,where each optioniswritten onthemonthlypriceaverageand settledat

theendofthemonth.

InsertExhibit2here

The second caseis aEuropeanput optionwith strike120 andexpiration date

December311999,writtenontheforwardpriceontheforwardcontractondelivery

fromJanuary1.2000toJune30.2000. Thevalueoftheoptionandtheunderlying

contractarefoundinlines3and2in Exhibit2.

ThethirdcaseisaEuropeanputoptionwithstrike120andexpirationdateJune

30.2000,writtenontheforwardpriceontheforwardcontractondeliveryfromJuly

1.2000toDecember31.2000. Thevalueoftheoptionandtheunderlyingcontract

are foundin lines4and5.

InsertExhibit3here

Exhibit 3 considers the rst case in moredetail. Each line corresponds to an

Asianoptionwithstrike120writtenonamonthlypriceaveragewithexpirationat

theendofthemonth. ObservethatasseenfromDecember15.1999,thevolatility

oftheunderlyingmonthlypriceaverageisadecreasingandconvexfunctionofthe

deliverymonth (e.g., January43.8%; June30.3 %;December 24.4%). Byvalue

additivity, the value of each monthly option adds up to the value of the quoted

(9)

6. Value atRisk

The idea of Value at Risk (VaR) is to focus onthe downside market risk of a

givenportfolio atafuture horizondate. Foradiscussionon VaR,see Hull(1998)

andJorion(1997).

Evidencesuggeststhateventhoughaone-factormodelmaybeadequateforval-

uationinamulti-factorenvironment,ittypicallyperformspoorlyasatoolforrisk

management(e.g., dynamic hedging). Inthe following, we discuss athree-factor

ValueatRisk(VaR)model,whichisconsistentwiththevaluationandapproxima-

tionresultsabovefollowingfrom Eq.(1)above.

In order to obtain a richer class of possible forward price functions, assume

the followingforwardprice dynamics (with respect to the martingale probability

measure)

df(t;T)

f(t;T)

= a

T t+b dW

1 (t)+

2ac

T t+b

1

2

dW

2

(t)+cdW

3

(t); (31)

where a, b, and c are the positive constants from Eq. (1) above, and dW

1 (t),

dW

2

(t), anddW

3

(t)areincrementsofthree uncorrelatedstandardBrownianmo-

tions. Observethat theinstantanous dynamics of Eq. (31) just above is normal

with zeroexpectation andvariance

Var

t

df(t;T)

f(t;T)

= (

a

T t+b

2

+ 2ac

T t+b +c

2 )

ds; (32)

whichisconsistentwiththedynamics ofEq.(1)above.

It follows that the forward price function f(;T) at the future date is the

stochastic integral

f(;T) = f(t;T)exp (

Z

t a

T s+b dW

1 (s)

1

2 Z

t

a

T s+b

2

ds )

exp 8

<

: Z

t

2ac

T s+b

1

2

dW

2 (s)

1

2 Z

t

2ac

T s+b ds

9

=

;

(33)

exp Z

t

c dW

3 (s)

1

2 Z

t c

2

ds

:

Inaddition,theforwardmarketatthefuturedate isrepresentedbytheassociated

Black'76implicitvolatilityfunction( ;T ),where2[;T]istheexercise

date oftheoption,andT isthedeliverydateoftheunderlying forward.

Consideraportfolio ofelectricity derivativesat thefuture date . Theideaof

VaR is to analyse the downside properties of the probability distribution of the

future portfoliovalue. Weapplythesimulationmethodologyinorder to generate

this probability distribution, from which Value at Risk can be calculated. The

procedureconsistsofthefollowingsteps(whicharerepeated): First,usearandom

generatorto drawapossiblerealisationforthefuture forwardpricefunction con-

sistent withEq. (33)above. Second, use theabove valuation and approximation

resultstocalculatetheassociatedmarketvalueofeachposition,conditionalonthe

realised forward price function (as well asthe future implicit Black'76 volatility

function). Thirdly, calculate the conditional market valueof the portfolio (which

followsimmediatelyfrom valueadditivity). Now,foralargenumberofiterations,

we approximate the probability distribution of the future portfolio value by the

(10)

7. Value at Risk: Anexample

7.1. Price path simulations. Eq. (33) describes how the future forward price

function issimulatedfrom currentmarketinformation. Thef(t;T)function isthe

forwardpriceattimetfordeliveryattimeT. Theparametersa,b,andcareinputs

to thevolatilityfunction.

InsertFigure 3here

Inordertosimulatepossiblepricepaths,weuseEq. (33)repeatedly. InFigure3

we present 100 simulated week prices based on this model. In each simulated

path thefollowingprocedureis followed. First,theforwardfunction nextweekis

simulated,integratingthiscurvefromzeroto7daysgivestherstweekprice. Next

weuse this newforwardcurve in combination with thevolatilitycurveto obtain

the forwardcurvein the next stepand so on. In this wayweobtain the correct

andlargeshort-termvolatilityinpricesinadditiontothemuchsmallervolatilityin

pricesasseenfromtoday. Weobservethatthesimulationmodelgivesasubstantial

meanreversioninprices.Thisisinaccordancewithempiricaldata. Theadvantage

ofthis methodisthatcurrentinformationaboutthevolatilitycurveandtheterm

structure ofpricesissuÆcienttoperformthissimulation.

7.2. Valueat Riskcalculation. Inthefollowing,wefocusonthedownsiderisk

of a given nancial portfolio of forwards and options. Assume that we want a

probability distributionwhich represents thepossiblefuture market valuesof the

portfolio in one week. First we simulate the termstructure starting in oneweek

using Eq. (33). For each simulation we nd the market value of all instruments

in the portfolio. By assigning equal probability to each simulation, this gives a

distributionoffuturemarketvalues.

InsertFigures4,5,and6here.

Wehavechosenaverysimpleexampleportfolio. Itconsistsofaforwardcontract

for therst6monthsin year2000and aput optionwithexercisedate atthelast

dayof1999,writtenonthesameforward. Thestrikeontheoptionis120. Figure4

gives the distribution in one week for the forward contract. Figure 5 gives the

similar information for theput option. In Figure 6 we give thestatistics for the

totalportfolio. Theexampleillustratestheriskreductioneectfromtheoptionon

thetotalportfolio.

8. Conclusions

Thepurposeofthispaperistoderiveadecisionsupportmodelforprofessionals

in theelectricitymarketforvaluationandriskmanagement. Thepaperappliesre-

sultsandmetodsfromnance,andincorporatesthefactthatelectricityderivatives

are writtenonacommodityowratherthanabulkdelivery.

The electricity derivatives market is represented by a forward price function

following from the quoted priceson traded contracts. Themarket uncertaintyis

modelledbyavolatilityfunctionbeingadecreasing(andconvex)functionoftime.

Thepaperpresentsvalueapproximationresultsfor"European"aswellasAsian

calloptions. The3-factormarketriskmanagementmodelpresentedinthepaperis

compatible withtheseresults,andcanbeusedforquantitifyingthefuture market

riskofgivenportfolios(includingVaR).

Appendix

This appendix evaluates Eq. (12) above. Dene the new integration variable

x = 1

(T

2 T

1

) s with upper and lower limitsX(t) b+ 1

(T

2 +T

1

) t and

(11)

X()b+

2 (T

2 +T

1

) ,andtheconstant

2 (T

2 +T

1

),andwriteEq. (12)as

Var

t

ln

F(;T

1

;T

2 )

F(t;T

1

;T

2

=

a

T

2 T

1

2 Z

X(t)

X()

ln

x+

x

2

ds

+ 2ac

T

2 T

1 Z

X(t)

X() ln

x+

x

ds+c 2

( t)

Observethat with b>0and t< T

1

<T

2

,wehavex+>0and x >0

forx2[x;x ]Now,usethefollowingtworesults:

6

Z

ln

x+

x

2

dx = (x+)( ln(x+)) 2

2(x+)ln (x+)ln (x )

+4aln(2)ln

x

2

4dilog

x+

2

+(x )( ln(x )) 2

4;

Z

ln

x+

x

dx = (x+)ln (x+) (x )ln (x ) 2;

where

dilog(x) Z

x

1 ln(s)

1 s ds:

Substitute theresultsintothevarianceexpression,toobtainthedesiredresult.

References

Abramowitz, M. andI.Stegun (1972): Handbook of mathematical functions, New

York: Dover.

Bjerksund, P. (1991): Contingent claims evaluation when the convenience yield

is stochastic: Analytical results, Working PaperNo. 1/1991, Institute of Fi-

nanceand ManagementScience, NorwegianSchoolofEconomicsand Business

Administration.

Gibson,R.,andE.S.Schwartz(1990): StochasticconvenienceYieldandthePricing

ofOilContingentClaims,JournalofFinance45(July),pp.959-976.

Harrison, M.J., and D. Kreps (1979): Martingales and arbitrage in multiperiod

securitymarkets,Journalof Economic Theory20(July),pp.381-408.

Harrison, J.M., and S. Pliska(1981): Martingales and stochastic integralsin the

theory of continuous trading, Stochastic Processes and Their Applications 11,

pp.313-316.

Heath, D., R.A. Jarrow, and A.J. Morton (1992): Bond pricing and the term

structureofinterestrates,Econometrica60,pp.77-105.

Hilliard, J.E., and J. Reis (1998): Valuation of commodity futures and options

under stochastic convenience yields, interest rates and jump diusions in the

spot, JournalofFinancial andQuantitative Analysis33(March), pp.61-86.

Hull, J.C. (1998): Introduction to Futures and Options Markets, Third Edition,

NewJersey: Prentice-Hall, pp.338-358.

Jamshidian, F., andM. Fein, 1990: Closed-formsolutionsfor oilfutures and Eu-

ropeanoptionsintheGibson-Schwartzmodel: Anote, WorkingPaper,Merrill

LynchCapitalMarkets.

6

Itisstraightforwardtoverifytheseresult,usingthefactthat

@

@x

dilog(x)= ln(x)

1 x :

(12)

Jorion,P.(1997): ValueatRisk: TheNewBenchmarkforControllingMarketRisk,

NewYork: McGraw-Hill.

Kemna, A.G.Z. and A.C.F. Vorst(1990): A pricing method foroptionsbased on

averageassetvalues,Journalof BankingandFinance14(March),pp.113-129.

Miltersen,K.R.,andE.S.Schwartz(1998):Pricingofoptionsoncommodityfutures

withstochastictermstructuresofconvenienceyieldsandinterestrates,Journal

ofFinancial andQuantitative Analysis33(March),pp.33-59.

Schwartz,E.S.(1997): Thestochasticbehaviorofcommodity prices: Implications

forvaluationandhedging,JournalofFinance52(July),pp.923-973.

E-mail address: petter.bjerksund@nhh.no

E-mail address: contact@viz.no

(13)
(14)

Figure 1: Forward prices

(15)

)L JXU H ) RUZDU GS ULF HD QG YRO DWL OLW\

0 20 40 60 80 10 0 12 0 14 0 16 0 18 0

12/15/99 12/29/99 1/12/00 1/26/00 2/9/00 2/23/00 3/8/00 3/22/00 4/5/00 4/19/00 5/3/00 5/17/00 5/31/00 6/14/00 6/28/00 7/12/00 7/26/00 8/9/00 8/23/00 9/6/00 9/20/00 10/4/00 10/18/00 11/1/00 11/15/00 11/29/00 12/13/00 12/27/00

'D WH Pr ic e

Vo l

(16)

Exhibit 2 : Contract valuation

(17)
(18)

Figure 3: Pric e path si m u lation

40 90 14 0 19 0 24 0 29 0

12/20/99

1/3/00

1/17/00

1/31/00

2/14/00

2/28/00

3/13/00

3/27/00

4/10/00

4/24/00

5/8/00

5/22/00

6/5/00

6/19/00

7/3/00

7/17/00

7/31/00

8/14/00

8/28/00

9/11/00

9/25/00

10/9/00

10/23/00

11/6/00

11/20/00

12/4/00

12/18/00

(19)

week, NOK.

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

499 606

5062465128875195275261675328085394485460895527295593705660105726505792915859315925 72

5992126058526124936191336257 74

632414

(20)

Figure 5: Distribution for the value of a put option on the forward contract first half of 2000 in one week, strike equal 120, NOK.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

0

1461 2922 4383 5844 7305 8766102271168813149 14610160711753318994204552191 6

233772483 8

26299 2776029221

(21)

put option, NOK.

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

528 826

5340055391845443645495435547235599025650825702615754415806205858005909795961596013 38

6065186116976168776220566272 36

632415

Referanser

RELATERTE DOKUMENTER

The market platform determines the market balance by optimising the use of resources over time, thereby achieving an optimal flexibility dispatch and local electricity price in

Traditionally, price providers in the Norwegian money market have therefore quoted Nibor using the in- terbank rate in USD and forward points between USD and NOK in the

Table 3 provides statistics on stock characteristics: price, dollar volume traded, number of trades, market capitalization, and market quality measures: quoted and relative

The Norwegian electricity market is part of a Nordic, competitive market and domestic supply and demand empirically affect the market price.. We have introduced an estimated

Equation (2) describes the long run equilibrium path for domestic prices as a function of competing prices, unit labour costs, the electricity price and the importshare...

The main results are displayed in table 1. This table shows that on average there will be a 10.3 percent increase in production costs. This will not fully be passed over to

In practice, this price premium will primarily depend on the electricity price vo- latility (influenced by VRE market share) and the plant capacity factor (lower plant

Current changes on the energy market bring many subsequent implications for the electricity systems (electricity grids and dispatchable power plants), electricity