• No results found

Benefits of restoring ecosystem services in urban areas

N/A
N/A
Protected

Academic year: 2022

Share "Benefits of restoring ecosystem services in urban areas"

Copied!
8
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

Benefits of restoring ecosystem services in urban areas T Elmqvist

1

, H Seta¨la¨

2

, SN Handel

3

, S van der Ploeg

4

,

J Aronson

5,6

, JN Blignaut

7

, E Go´mez-Baggethun

8,9

, DJ Nowak

10

, J Kronenberg

11

and R de Groot

4

Citiesareakeynexusoftherelationshipbetweenpeopleand natureandarehugecentersofdemandforecosystemservices andalsogenerateextremelylargeenvironmentalimpacts.

Currentprojectionsofrapidexpansionofurbanareaspresent fundamentalchallengesandalsoopportunitiestodesignmore livable,healthyandresilientcities(e.g.adaptationtoclimate changeeffects).Wepresenttheresultsofananalysisof benefitsofecosystemservicesinurbanareas.Empirical analysesincludedestimatesofmonetarybenefitsfromurban ecosystemservicesbasedondatafrom25urbanareasinthe USA,Canada,andChina.Ourresultsshowthatinvestingin ecologicalinfrastructureincities,andtheecologicalrestoration andrehabilitationofecosystemssuchasrivers,lakes,and woodlandsoccurringinurbanareas,maynotonlybe ecologicallyandsociallydesirable,butalsoquiteoften, economicallyadvantageous,evenbasedonthemost traditionaleconomicapproaches.

Addresses

1StockholmResilienceCenter,StockholmUniversity,SE-10691 Stockholm,Sweden

2DepartmentofEnvironmentalSciences,UniversityofHelsinki, FIN-15140Lahti,Finland

3DepartmentofEcology,Evolution,&NaturalResources,Rutgers University,NewBrunswick,NJ08901-1582,USA

4EnvironmentalSystemsAnalysisGroup,WageningenUniversity, 6700AAWageningen,TheNetherlands

5CEFE(UMR5175_CampusduCNRS)34293,Montpellier,France

6MissouriBotanicalGarden,St.Louis,MO63110,USA

7DepartmentofEconomics,UniversityofPretoria,Pretoria,SouthAfrica

8NorwegianInstituteforNatureResearch(NINA),0349Oslo,Norway

9InstituteofEnvironmentalScienceandTechnology(ICTA),Autonomous UniversityofBarcelona(UAB),CampusUAB,Barcelona,Spain

10USDAForestService,SUNY-ESF,Syracuse,NY13210,USA

11FacultyofEconomicsandSociology,UniversityofLodz,POW3/5, 90-255Lodz,Poland

Correspondingauthor:Elmqvist,T(thomas.elmqvist@su.se)

CurrentOpinioninEnvironmentalSustainability2015,14:101–108 ThisreviewcomesfromathemedissueonOpenissue

EditedbyEduardoSBrondizio,RikLeemansandWilliamDSolecki

Received22December2014;Revised28April2015;Accepted03May 2015

http://dx.doi.org/10.1016/j.cosust.2015.05.001

1877-3435/#2015TheAuthors.PublishedbyElsevierLtd.Thisisan openaccessarticleundertheCCBYlicense(http://creativecommons.

org/licenses/by/4.0/).

Introduction

Weareenteringanewurbanerainwhichtheecologyof theplanetasawholeisincreasinglyinfluencedbyhuman activities, with cities as crucial centers of demand for ecosystemservicesandsourcesofenvironmentalimpacts [1,2].Approximately60% oftheurbanlandexpectedto exist 2030 is forecast to be built in 2000–2030 [3].

Urbanization thereforepresentsfundamentalchallenges but also unprecedented opportunities to enhance the resilience and ecological functioning of urban systems.

Forexample,urbanecosystems,thatis,theurban‘green and blue infrastructure’, may have a crucial role in in- creasing the adaptive capacity to cope with climate change [4,5]. Analyses of urban investments in green infrastructureandecosystem-basedadaptationtoclimate changearegaininginterest,particularlysincesuchinvest- ments simultaneouslygeneratemanyother servicesen- hancinghumanwell-being [e.g.[3]].

Furthermore, there is a growing interest in restoring urbanecosystems,spurredinpartbycommitmentsmade bythepartiestotheConventiononBiologicalDiversity to restore at least 15% of degraded ecosystems by 2020[6].Investinginurbangreenandblueinfrastructure constitutesatangiblecontributionthatcitiescanmaketo theUnitedNations’agendaonaGreenEconomyforthe 21stcentury[7]andtheSustainableDevelopmentGoals (SDGs). Although several recent studies highlight the importanceofurbanecosystemservices[e.g.[8,9,10,11]]

still,ecosystemdynamicsinurbanlandscapesarepoorly understood[12,13],especiallywhenitcomestodesign- ing,creatingandrestoringecologicalprocesses,functions, andservicesin urbanareas[12,14].

Here, we analyze to what extent investments in green infrastructure in urban landscapes can bring multiple monetaryand non-monetarybenefitstosociety andhu- manwell-being,contributingtomaintenanceofbiodiver- sity,and developmentofmoreresilient urban areas.

Urbanecosystem services

Urbanecosystemservicesaregeneratedinadiversesetof habitats, including: green spaces, such as parks, urban forests,cemeteries,vacantlots, gardensandyards,cam- pus areas, landfills; and blue spaces, including streams, lakes,ponds,artificialswales, andstormwaterretention ponds.Urbanecosystemservicesaregenerallycharacter- izedbyahighintensityofdemand/useduetoaverylarge number of immediate local beneficiaries, compared for

(2)

example to ecosystem services generated in rural areas distant from densely populated areas. Box 1 contains examples of important services provided by green and blueinfrastructureinurban areas.

Monetarybenefits ofurban green spaces Wepresentananalysisofmonetarybenefitsofecosystem services provided by urban forests/woodlands based on 25 studies done in urban regions (20 in the USA, 4 in China and 1 in Canada) (Table 1). We restricted the literature search to include only studies in which esti- mates of monetary values of benefits were calculated, based on a quantification in biophysical terms (e.g.

amounts of C stored/sequestered by trees per hectare

peryear).The estimatesof ecosystemservicesgiven in Table1arecomparableexceptfortheestimatesgivenfor Beijing,Guangzhou,HangzhouandLanzhouChina.The estimate for these Chinese cities are derived from a literature review that is comprised of varying methods usedtoestimate theecosystem services.The estimates fortheremainingcitiesarebasedonastandardizeddata collection and analyses procedure using local field and environmental data. Thus some differences between estimates for Chinese cities and the remaining cities could be due to differences in methodologies used.

Moreover the analyzed studies included only five out ofmanymorepotentiallyrelevantservicesgeneratedby urbanforest/woodlandecosystems.

TheElectronicSupplementaryMaterial(ESM)provides adetaileddescriptionof theestimatesoffiveecosystem servicesin selectedcase studycities:(1) local pollution removal, (2) carbon sequestrationand storage,(3) regu- latingwaterflows,(4)climateregulation/coolingeffects, and (5) aesthetics, recreation and other amenities. The detailsgiveninESMincludeadescriptionofecosystem service indicators and the methods used for monetary valuationin each of thestudies. To standardizevalues, theywerefirstcalculatedasLocalCurrencyUnit/ha/year using available information in the articles or finding additional information (by communication with the authors of the original or review publication). Subse- quently values were converted into 2013 prices. Final- ly—when applicable—these latter values were convertedintoUSDusingthepurchasingpowerparity- conversionfactors.Allconversionfactorsusedarebased on the World Bank’s World Development Indicators databaseof2014.

Table1 representsquantification offiveservicesgener- ated in urbanwoodlands (with variable tree cover): (1) pollutionremoval(kg/ha/y),(2)C-sequestration(tons/ha/

y), (3) C-storage (tons/ha/y), (3) storm water reduction (m3/ha/y),and (4)energysavings(kWh/ha/y).

InTable2,thebenefitsprovidedbygreenspaceinurban areas are summarized and the monetary estimates are givenasUS$/ha/year.12

Box1 Examplesofservicesprovidedbygreenandblue infrastructureinurbanareas

Microclimateregulation:Urbanparksandvegetation,including greenroofsandgreenwalls,reducetheurbanheatislandeffect[12].

DatafromManchester(UnitedKingdom)showthata10%increase intreecanopycovermayresultina3–48Cdecreaseinambient temperature[15]andsavelargeamountsofenergyusedinair conditioning[16].Thecoolingeffectoftreesincitiesmaycontribute significantlytoreduceenergyneedsfromfossilfuelsandcutcarbon emissions[17].

Waterregulation:Interceptionofrainfallbytrees,othervegetation, andpermeablesoilsinurbanareascanalsobecrucialinreducing thepressureonthedrainagesystemandinloweringtheriskof surfacewaterflooding[12].Urbanlandscapeswith50–90%

imperviousgroundcovercanlose40–83%ofincomingrainfallto surfacerunoffwhereasforestedlandscapesonlyloseca.13%of rainfallinputfromsimilarprecipitationevents[12,18].

Pollutionreductionandhealtheffects:Urbanvegetationiswidely reportedtoimproveairquality[19,20]althoughthiseffectcanbe contextdependentduetothehighspatialandtemporalvariabilityin andamongcities[21,22].Manyotherpotentiallypositivepublic healthbenefitshavebeenidentified[23,24].Greenareaaccessibility hasbeenlinkedtoreducedmortality[25]andimprovedperceived andactualgeneralhealth[26].Thedistributionandaccessibilityof greenspacetodifferentsocio-economicgroups,however,often revealslargeasymmetriesincities[27,28],contributingtoinequityin bothphysicalandmentalhealthamongsocio-economicgroups[29].

Habitat:Animportantcharacteristicofurbanareasistheirmosaicof habitatsandasurprisinglyhighdiversityofplantandanimalspecies [30–32].Inadditiontotheinnate,orinherentvalueofspeciesand biodiversity,thisservicealsoprovidesdeeplyimportantbenefitsfor manycitizensormanyorallcultures,andalsofornationalandlocal governmentstryingtoimplementtheircommitmentstoreduce biodiversitylossandrestoring15%ofalldegradedecosystems (including10%oftheoceans).

Culturalservices:Manyculturalservicesareassociatedwithurban ecosystemsandthereisevidencethatbiodiversityinurbanareas playsapositiveroleinenhancinghumanwell-being.Forexample, Fulleretal.[33]haveshownthatthepsychologicalbenefitsofgreen spaceincreasewithbiodiversity,whereasa‘greenview’froma windowincreasesjobsatisfactionandreducesjobstress[34].Many studieshaveshownanincreasedvalueofpropertywithgreater proximitytogreenareas[35].Diverseecosystemsinurbanareas mayalsobeimportantinprovidingdesignfeaturesthatcanbe utilizedinthecontextofeco-designandbio-mimicryinarchitecture andurbanplanning[36].

12Inpracticallyallthestudiesselectedforourarticle,themonetary valueswereexpressedaseconomicbenefitsfortheentirecityperyear.

Tomaketheeconomicbenefitscomparable betweencities,wefirst calculatedtheproportionofthegreenareainthetotalcityarea(often givenas%canopycover).Togetthevalueperhaofurbangreenareaper year,wedividedthetotalecosystembenefitacityderivesbytheamount (inhectares)ofurbangreenarea.Inafewcaseswheretheproportionof greenareainagivencitywasnotindicated,weapproachedtheauthors of the respective studies to provide the missing information (EG McPhersonandWYChen,personalcommunication). In thecase of Chinesecities,allthedata(originallygiveninpublicationswrittenin Chinese)wereobtainedfromthereviewbyJimandChen[37].Dueto thescarcityofdataonecosystemservicesinurbanizedsettingsitisalso possiblethatbenefitsofsomeecosystemservicesareoverestimated.

(3)

The data from the above-cited studies support the finding that theanalyzed ecosystemsprovide between US$3212and17772ofbenefitsperhaperyear.These estimatesexcludesomeveryimportantbenefits,suchas positivehealtheffectsandsocialwelfarerelatedtonon- usevalues,andconsequentlyshouldbetreatedasvery conservativeestimates.Toputthevaluesoftheabove- mentionedmonetarybenefitsinperspective,wepresent data on costs ofurban ecological restoration interven- tions, which includes costs for planning, preparation, soil restoration, plant propagation, planting, and man- agement.Even inhighlydegraded urbanareas, restor- ing ecological structure and functionalityis—perhaps surprisingly—often possible [38]. Urban soils almost by definition are most often profoundly modified, de- pleted and often chemically stressful to organisms.

Indeed, they are often polluted, compacted, sealed, and lackingin microbialorganisms importantfor plant growth.In arestorationcontext, theymustbe cleaned up,decontaminated(wherepossibleandcost-effective), and ameliorated in broad terms, biophysically, chemi- cally, and aesthetically [39]. Such biochemo-physical

Table1

Quantificationofurbanecosystemservicesinbiophysicalunits.Amountspresentedareaveragesperhectareoflandareawithtreecover (amountsgiveninparenthesesareinunitsperhectarewithhightreecover).Fordetails,seeESM.

Cityorstate Pollution

removal (kg/ha/y)

Csequestration (tons/ha/y)

Cstorage (tons/ha/y)

Stormwater reduction (m3/ha/y)

Energy savings (kWh/ha/y)

Reference

Beijing 132 1400 JimandChen[37]

Casper,WY 6.2(69.9) 0.20(2.2) 6.2(69.7) 72(808) Nowaketal.[65]

Chicago,IL 13.5(74.9) 0.38(2.1) 10.9(60.3) 317(1760) Nowaketal.[66]

Guangzhou 42.4 4.0 25.0 14.1 JimandChen[37]

Hangzhou 167 JimandChen[37]

Indiana(urbanareas) 13.6(67.6) 0.59(2.9) 17.7(88.0) 377(1875) Nowaketal.[67]

Kansas(urbanareas) 14.6(104.6) 0.40(2.8) 10.4(74.2) 253(1809) Nowaketal.[68]

Lanzhou 4.1 22.7 JimandChen[37]

LosAngeles,CA 14.7(71.4) 0.36(1.8) 9.4(45.9) 653(3168) Nowaketal.[69]

Minneapolis,MN 18.3(53.8) 0.53(1.6) 15(44.1) 1111(3258) Nowaketal.[70]

Modesto,CA 210 18.4 - 390 16.8 McPhersonetal.[71],

McPhersonand Simpson[72]

Morgantown,WV 23.4(59.0) 1.2(3.1) 34.6(87.4) 1085(2741) Nowaketal.[73]

Nebraska(urbanareas) 32.0(213.6) 0.40(2.7) 10(66.7) 455(3036) Nowaketal.[68]

NewYork,NY 19.0(91.0) 0.48(2.3) 15.3(73.3) 1014(4851) Nowaketal.[74]

NorthDakota(urbanareas) 1.3(48.3) 0.08(2.8) 2.1(77.8) 129(4768) Nowaketal.[68]

Philadelphia,PA 15.3(73.5) 0.43(2.1) 14.1(67.7) 836(4020) Nowaketal.[75]

Sacramento,CA 9.3 2.02 66.3 1000 9800 McPherson[76],

Scottetal.[77], Xiaoetal.[78], Simpson[79]

SanFrancisco,CA 10.7(66.7) 0.39(2.4) 14.7(91.8) Nowaketal.[80]

Scranton,PA 15.6(70.9) 0.88(4.0) 20.3(92.4) 361(1639) Nowaketal.[81]

SouthDakota(urbanareas) 10.3(60.8) 0.22(1.3) 5.3(31.4) 237(1393) Nowaketal.[68]

Syracuse,NY 15.2(56.6) 0.77(2.9) 23.1(85.9) 372(1383) Nowaketal.[82]

Tennessee(urbanareas) 39.1(103.6) 1.28(3.4) 24.4(64.7) 1843(4888) Nowaketal.[83]

Toronto,Canada 29.9(112.4) 0.73(2.8) 17.4(65.3) 646(2430) Nowaketal.[84]

Washington,DC 23.8(68.0) 0.92(2.6) 29.8(85.2) 1766(5045) Nowaketal.[85]

Wisconsin(urbanareas) 17.6(65.8) 1.0(3.7) 15.3(57.3) 409(1530) BuckelewCumming etal.[86]

–:notavailable.

Table2

AveragevalueinUS$/ha/y(2013)ofselectedservicesprovided bygreenspacesinurbanareas

Service Averagevalue

(US$/ha/y*)

Range 1.Pollutionandairquality

regulation 647(n=9) 60–2106

2.Carbonsequestration

(annualflow) 395(n=5) 58–702

Carbonstorage

(stockvalue) 3125(n=3) 1917–5178

3.Stormwaterreduction 922(n=6) 615–2540 4.Energysavings/

temperature regulation

1412(n=4) 34–1908 5.Recreationandother

amenityservices 6325(n=2) 2133–10517 6.Positivehealtheffects 18870(n=1) N/A Total(excl.healtheffects

andcarbonstorage) 9701US$/ha/year 3212–17772

* SeeESMfordetails.

(4)

remediationorrecuperationcanhoweveroftenbehigh- ly successful, and organic matter content in particular can be increased through links to urban composting initiatives and through manipulation of vegetation and plant community structure [40]. Thanks in part toinnovativeusesoforganicurbanwastesandadvances inecotoxicologyandphytoremediation,therearemany successfulexamplesofurbanecologicalrestorationand rehabilitation projects, including sites of former land- fills, former industrial areas, vacant lots, and other

‘brown’areas [41].

Inouranalysesweusedthefollowingestimatesofresto- rationcostsofurbanpubliclandin theUSAinUS$per hectare(includingcostsforplanning,preparation,modest soilrestoration,plant propagation,and planting):mead- ow/grassland$26000,andwoodland$49000.13

Giventhat theserestoration effortstook place in urban areas,andinvolvedmoreinfrastructureandmoresophis- ticatedtechniquesthanmightbeneededinextra-urban areas,theytendtobemoreexpensivethanmostoftheir rural counterparts. De Groot et al. scrutinized over 200 peer-reviewed scientific papers from which they identified 94 restoration case studies with meaningful cost data [42]. The benefit–cost (BC) ratios calculated

here for urban woodland restoration,14 the minimum benefitandmaximumcostcombinationyieldsaBCratio of 1.21 and the maximum benefit and minimum cost combination yields a BC ratio of 6.57. These values compare favorably to therange of BC ratios calculated bydeGrootetal.[42]forninenon-urbanecosystemtypes, including wetlands, lakes/rivers, tropical forests, wood- land/shrubland, coral reefs and grasslands.As shown in Figure1,thoseratiosrangedfromabout0.05to35,with thebulkof ratiosfallingbetween5and20.

Itisimportantto notethatwhenanyecosystemunder- goesrestoration,thereisoftenatimelag ofadecadeor more before the values as expressed in Table 2 are realized and that a 100% habitat restoration effect is unlikely based on present technology and knowledge base.Wethereforeassumedamaximumof 75%success

Figure1

0

Cor al reefs

Coastal systems

Fresh w ater (Riv

ers/Lak es)

Coastal w etlands

Urban w oodlands Inland w

etlands Tropical f

orest

Temper ate f

orest Woodlands

Grasslands 5

Benefit-cost ratios (as a ratio)

10 15 20 25 30 35 40

Current Opinion in Environmental Sustainability

Benefit–costratiosofrestoringurbanwoodlands(grey)inrelationtoratioscalculatedforninedifferentecosystemtypes[42].

13Dataestimatesaremeansbycurrentlandscapearchitectureworkers inNewYorkCity(MarchaJohnson,NYCParksDepartment),Baltimore (KeithBowers,Biohabitats,Inc.),Boston(NinaChase,SasakiAssoci- ates),LosAngeles(M.Sullivan,MiaLehrer+Associates)andPhila- delphia(DavidRobertson,PennypackEcologicalRestorationTrust).

14Weusedatermof20yearsandasocialdiscountrateof8%.We considerthisas veryconservativeas thebenefitsof restorationcan, potentially,lastformuchlonger.Thediscountrateisalsohigh,adding moreweighttothecostthantothebenefits.Weusedtheseparameters inconjunctionwithaminimumcostofrestorationofUS$26000/haanda maximumvalueofUS$49000/ha.Wefurthermoremadeprovisionforan annualoperatingcostfromyear2onwardsof5%ofthecostofrestora- tion. With respect to benefits, we assumed a minimum value of US$14418/haandamaximumvalueofUS$231,925/ha.Thiswetook fromTable2adding25%ofthehealthbenefittothestatedminimum valueand75%ofthehealthbenefittothemaximum.Thebenefitswere phasedinatarateof10%(year2),20%,(year3),40%(year4),60%(year 5),and75%(year6andbeyond)oftheaforementionedlevelstorespect thefact(1)ittakestimeforecosystemvaluestoberestored,and(2) restoringtoa100%levelisunlikely.Themaximumcostandminimum benefitcombinationyieldsaBCratioof1.21andtheminimumcostand maximumbenefitcombinationyieldsaBCratioof6.57.

(5)

rate forallourcalculations,based onmeta-analysisdata for wetland restorations reported by Moreno-Mateos et al.[43].

Non-monetarybenefitsofurbanecosystemservices Because manybenefitsproducedbyecosystemservices cannot be readily or adequately captured by monetary metrics, growing attention is being paid to the non- monetarybenefitsofecosystemservices[13,44,45]such ashealth,aestheticsandeducationforallages.Arangeof additional,moresubtlebenefitscanaccruefromrestored urban ecosystemssuch asenhanced socialcohesionand trust, human well-being, sharpened sense of place and space-specific—values called sense of identity [46,47]

(Box1).

Many such non-monetary benefits have now been em- piricallydefinedorevenmappedandmeasuredincities worldwide, especiallythoserelated tophysical andpsy- chologicalhealth[24].Forexample,accesstogreenspace in cities was shown to correlate with longevity [48], recoveryfromsurgeries[49],reducedstress[50,51],men- tal health [52] and self-reported perception of health [26,53],allofwhich translateintohigherwell-being.

Green spaces in urban areas have also been shown to influence social cohesion by providinga meeting place where users develop and maintain neighborhood ties [54,55]. Research conducted in Stockholm found sense of placetobeamajordriverforenvironmentalsteward- ship,withintervieweesshowingstrongemotionalbondsto theirplotsandthesurroundinggardenareas[56].Urban ecosystemsalsoprovideopportunitiesforcognitivedevel- opmentandeducationofyoungchildren[57].Basedona largesampleofcasestudiesindifferentcountries,Groen- ing documentedthe important role thatschool gardens playedineducationandenhancementofurbanlifequality withinthelastcentury.Cognitivedevelopmentinurban greenareasincludesthedevelopmentandtransmissionof local ecological knowledge [52,54,55]. Many examples alsodemonstratehowlocalgreeningpracticesbecomea sourceofresilienceinchaoticpost-disasterandpost-con- flictcontextsasdiverseaspost-KatrinaNewOrleansand inMonroviaaftertheLiberiancivilwar[58].Thereisalso a growing literature on ‘ecosystem disservices’

[59,60,61],whichareimportanttoincludeinthefuture analyses, but so far there are limited quantifications of theseduetomethodologicalchallenges.

Finally, additional benefits stems from the ‘insurance value’ relatedtothecontributionofurbangreen infra- structuretoenhancingthecapacityofcitiestorespond and adapt in the face of disturbance and change and reduce risks of, for example, flooding [62–64]. With climate change and sea level rise already occurring in many coastal cities, the capacity of ecosystems of

reducing risks will play an essential role inmitigating new physicalstresses.

Conclusion

Investing in restoring, protecting,and enhancing green infrastructureandecosystemservicesincitiesisnotonly ecologically and socially desirable. It is also very often economically viable, even under prevailing economic models,providedthatthemultipleservicesandalltheir associatedbenefitsforthelargenumberofbeneficiariesin citiesareproperlyquantifiedandrecognized.Suchinfor- mationisessentialtoincludeindecision-makingprocess- es related to land use and management in urban landscapes,andtohelpguideurbanandlandscapeplan- ners,architects,restorationpractitioners,andpublicpolicy makers,aswellasprivateandinstitutionalstakeholders.

Eventhougheconomiccalculationsprovideusefulargu- mentsforenvironmentalimprovements,theyareinsuffi- cient to fully capture, measureor monitorthe scopeof benefitsrelatedtorestoringecosystemservicesin cities.

Indeed, many important ecosystem services were not takenintoaccountinthefewpublishedstudiesfeaturing economicassessmentsofurbangreeninfrastructureben- efits considered here,including multiplehealtheffects, provisioning services, and social well-being related to non-use values. Much further works is needed to ade- quately captureandvisualizethesevalues.

Acknowledgments

WethanktheTEEBteamandteamleaderPavanSukhdevforinspiring discussionsandcrucialviews.Thisstudyhasbeenpossiblethroughsupport toT.ElmqvistfromFormasandBiodiversathroughtheURBESproject andtoT.ElmqvistandJ.KronenbergbyGREENSURGE,EUFP7 collaborativeproject,FP7-ENV.2013.6.2-5-603567.

Appendix A. Supplementary data

Supplementary data associated with this article can be found,intheonlineversion,athttp://dx.doi.org/10.1016/j.

cosust.2015.05.001.

References and recommendedreading

Papersofparticularinterest,publishedwithintheperiodofreview, havebeenhighlightedas:

ofspecialinterest ofoutstandinginterest

1. SoleckiW,SetoKC,MarcotullioPJ:It’stimeforanurbanization science.EnvironSciPolicySustainDev2013,55:12-17.

2. HodsonM,MarvinS:Urbanismintheanthropocene:ecological urbanismorpremiumecologicalenclaves?City2010,14:298-313.

3.

ElmqvistT,FragkiasM,GoodnessJ,Gu¨neralpB,MarcotullioPJ, McDonaldRI,ParnellS,ScheweniusM,SendstadM,SetoKC (Eds):etal.: Urbanization,BiodiversityandEcosystemServices:

ChallengesandOpportunities.Springer;2013.

The most comprehensive monographon urban ecosystemservices, providinganoverviewofpracticalandtheoreticalaspectsofthebenefits thatpeoplederivefromurbanecosystemsandoftheirmanagement.

4. KatesRW,WilbanksTJ:Makingthegloballocalrespondingto climatechangeconcernsfromtheground.EnvironSciPolicy SustainDev2003,45:12-23.

(6)

5. SoleckiW,MarcotullioPJ:Climatechangeandurban biodiversityvulnerability.In Urbanization,Biodiversityand EcosystemServices:ChallengesandOpportunities.Editedby ElmqvistT,FragkiasM,GoodnessJ,Gu¨neralpB,MarcotullioPJ, McDonaldRI,ParnellS,ScheweniusM,SendstadM,Seto KC.etal.: Springer;2013:485-504.

6. CBD:Waysandmeanstosupportecosystemrestoration(UNEP/

CBD/SBSTTA/15/4).SecretariatoftheConventiononBiological Diversity;2011.

7. UNEP:TowardsaGreenEconomy:PathwaystoSustainable DevelopmentandPovertyEradicationASynthesisforPolicy Makers.UNEP;2011.

8. Go´mez-BaggethunE,GrenA˚,BartonDN,LangemeyerJ, McPhearsonT,O’FarrellP,AnderssonE,HamsteadZ,KremerP:

Urbanecosystemservices.In Urbanization,Biodiversityand EcosystemServices:ChallengesandOpportunities.Editedby ElmqvistT,FragkiasM,GoodnessJ,Gu¨neralpB,MarcotullioPJ, McDonaldRI,ParnellS,ScheweniusM,SendstadM,Seto KC.etal.: Springer;2013:175-251.

9.

HaaseD,FrantzeskakiN,ElmqvistT:Ecosystemservicesin urbanlandscapes:practicalapplicationsandgovernance implications.AMBIO2014,43:407-412.

Introductiontoaspecialissueonthegovernanceofurbanecosystem services.

10. DobbsC,NitschkeCR,KendalD:Globaldriversandtradeoffsof threeurbanvegetationecosystemservices.PLoSONE2014, 9:e113000.

11. KroegerT,EscobedoFJ,HernandezJL,VarelaS,DelphinS, FisherJRB,WaldronJ:Reforestationasanovelabatementand compliancemeasureforground-levelozone.PNAS2014, 111:E4204-E4213.

12. PatakiDE,CarreiroMM,CherrierJ,GrulkeNE,JenningsV, PincetlS,PouyatRV,WhitlowTH,ZippererWC:Coupling biogeochemicalcyclesinurbanenvironments:ecosystem services,greensolutions,andmisconceptions.FrontEcol Environ2011,9:27-36.

13.

Go´mez-BaggethunE,BartonDN:Classifyingandvaluing ecosystemservicesforurbanplanning.EcolEcon2013, 86:235-245.

Anoverview ofvariousvaluationmethodsavailablefor valuingurban ecosystemservices.

14. ReyBenayasJM,NewtonAC,DiazA,BullockJM:Enhancement ofbiodiversityandecosystemservicesbyecological restoration:ameta-analysis.Science2009,325:1121-1124.

15. GillSE,HandleyJF,EnnosAR,PauleitS:Adaptingcitiesfor climatechange:theroleofthegreeninfrastructure.Built Environ2007,33:115-133.

16. Nicholson-LordD:GreenCities:AndwhyWeNeedThem.New EconomicsFoundation;2003.

17. AkbariH:ShadetreesreducebuildingenergyuseandCO2

emissionsfrompowerplants.EnvironPollut2002,116(Suppl.

1):S119-S126.

18. KayeJP,GroffmanPM,GrimmNB,BakerLA,PouyatRV:A distincturbanbiogeochemistry? TrendsEcolEvol2006, 21:192-199.

19. EscobedoFJ,KroegerT,WagnerJE:Urbanforestsandpollution mitigation:analyzingecosystemservicesanddisservices.

EnvironPollut2011,159:2078-2087.

20. EscobedoFJ,NowakDJ:Spatialheterogeneityandair pollutionremovalbyanurbanforest.LandscUrbanPlan2009, 90:102-110.

21. VosPEJ,MaiheuB,VankerkomJ,JanssenS:Improvinglocalair qualityincities:totreeornottotree? EnvironPollut2013, 183:113-122.

22. Seta¨la¨ H,ViippolaV,RantalainenA-L,PennanenA,Yli-PelkonenV:

Doesurbanvegetationmitigateairpollutioninnorthern conditions? EnvironPollut2013,183:104-112.

23. TzoulasK,KorpelaK,VennS,Yli-PelkonenV,KazmierczakA, NiemelaJ,JamesP:Promotingecosystemandhumanhealthin

urbanareasusinggreeninfrastructure:aliteraturereview.

LandscUrbanPlan2007,81:167-178.

24. DouglasI:Urbanecologyandurbanecosystems:

understandingthelinkstohumanhealthandwell-being.Curr OpinEnvironSustain2012,4:385-392.

25. MitchellR,PophamF:Effectofexposuretonatural environmentonhealthinequalities:anobservational populationstudy.Lancet2008,372:1655-1660.

26. MaasJ,VerheijRA,GroenewegenPP,deVriesS,

SpreeuwenbergP:Greenspace,urbanity,andhealth:how strongistherelation? JEpidemiolCommunityHealth2006, 60:587-592.

27. PickettSTA,CadenassoML,GroveJM,GroffmanPM,BandLE, BooneCG,BurchWR,GrimmondCSB,HomJ,JenkinsJCetal.:

Beyondurbanlegends:anemergingframeworkofurban ecology,asillustratedbytheBaltimoreEcosystemStudy.

BioScience2008,58:139.

28.

ErnstsonH:Thesocialproductionofecosystemservices:a frameworkforstudyingenvironmentaljusticeandecological complexityinurbanizedlandscapes.LandscUrbanPlan2013, 109:7-17.

Animportantpaperemphasizingtheenvironmentaljusticeaspectsofthe benefitsthaturbaninhabitantsderivefromnature.

29. BirdW:NaturalThinking:InvestigatingtheLinksbetweenthe NaturalEnvironment,BiodiversityandMentalHealth.Royal SocietyfortheProtectionofBirds;2007.

30. MuellerN,WernerP,KelceyJG:UrbanBiodiversityandDesign.

Wiley-Blackwell;2010.

31. MellesS,GlennS,MartinK:Urbanbirddiversityandlandscape complexity:species-environmentassociationsalonga multiscalehabitatgradient.ConservEcol2003,7:5.

32. McKinneyML:Effectsofurbanizationonspeciesrichness:

areviewofplantsandanimals.UrbanEcosyst2008, 11:161-176.

33. FullerRA,IrvineKN,Devine-WrightP,WarrenPH,GastonKJ:

Psychologicalbenefitsofgreenspaceincreasewith biodiversity.BiolLett2007,3:390-394.

34. LeeJ,ParkB-J,TsunetsuguY,KagawaT,MiyazakiY:Restorative effectsofviewingrealforestlandscapes,basedona comparisonwithurbanlandscapes.ScandJForestRes2009, 24:227-234.

35. BranderLM,KoetseMJ:Thevalueofurbanopenspace:

meta-analysesofcontingentvaluationandhedonicpricing results.JEnvironManag2011,92:2763-2773.

36. NinanKNN:ConservingandValuingEcosystemServicesand Biodiversity:Economic,InstitutionalandSocialChallenges.

Earthscan;2009.

37. JimCY,ChenWY:Ecosystemservicesandvaluationofurban forestsinChina.Cities2009,26:187-194.

38. SocietyforEcologicalRestoration:SERInternationalPrimeron EcologicalRestoration.SocietyforEcologicalRestoration;2004.

39. HarrisJ:Soilmicrobialcommunitiesandrestorationecology:

facilitatorsorfollowers? Science2009,325:573-574.

40. VauramoS,Seta¨la¨ H:Urbanbelowgroundfood-webresponses toplantcommunitymanipulationimpactsonnutrient dynamics.LandscUrbanPlan2010,97:1-10.

41. USEPA:EcologicalRevitalization:TurningContaminated PropertiesIntoCommunityAssets.U.S.EnvironmentalProtection Agency;2009.

42. DeGrootRS,BlignautJ,VanDerPloegS,AronsonJ,ElmqvistT, FarleyJ:Benefitsofinvestinginecosystemrestoration.

ConservBiol2013,27:1286-1293.

43. Moreno-MateosD,PowerME,Comı´n FA,YocktengR:Structural andfunctionallossinrestoredwetlandecosystems.PLoSBiol 2012,10:e1001247.

Referanser

RELATERTE DOKUMENTER

A closer look at Norway’s natural capital—how enhancing urban pollination promotes cultural ecosystem services in Oslo.. E

The InVEST (or Lonsdorf) pollination model, on which the continental-scale ESTIMAP model was based, predicts the relative abundances of bees in landscapes by

Ecosystem service criteria, scaling and deficit mapping in MCDA The spatial prioritization of green roofs was based on a multi-criteria decision approach where criteria are defined

People in rural areas, compared to people in urban and semi-urban areas, have stronger intentions to start a business and are more likely to be involved in new business

The main focus of this study was to conduct a comparative assessment of the effects of different source locations and wind velocities on dispersion and deposition patterns of

The present report details the methodology and parameters used for high-fidelity computational fluid dynamics (CFD) simulations of wind in large urban areas.. In particular, a 150 km

Destination viability, and how to improve this at the ecosystem level, is a key concern for tourism destination research, as well as related areas such as place, urban, and

The analysis contributes to experimental application and development of the SEEA EEA for urban ecosystems, by combining land use/land cover maps with satellite images of