• No results found

Heat transfer and pressure drop of supercritical CO2 in brazed plate heat exchangers of the tri-partite gas cooler

N/A
N/A
Protected

Academic year: 2022

Share "Heat transfer and pressure drop of supercritical CO2 in brazed plate heat exchangers of the tri-partite gas cooler"

Copied!
21
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

International Journal of Heat and Mass Transfer 178 (2021) 121641

ContentslistsavailableatScienceDirect

International Journal of Heat and Mass Transfer

journalhomepage:www.elsevier.com/locate/hmt

Heat transfer and pressure drop of supercritical CO 2 in brazed plate heat exchangers of the tri-partite gas cooler

Alireza Zendehboudi

a,,

, Zuliang Ye

a,b,,

, Armin Hafner

a

, Trond Andresen

c

, Geir Skaugen

c

aDepartment of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Kolbjørn Hejes v 1B, 7491 Trondheim, Norway

bSchool of Energy and Power Engineering, Xi’an Jiaotong University, 28 Xianning West Road, 710049 Xi’an, China

cSINTEF Energy Research, Sem Sælands vei 11, 7034 Trondheim, Norway

a rt i c l e i nf o

Article history:

Received 12 March 2021 Revised 22 June 2021 Accepted 23 June 2021 Available online 10 July 2021 Keywords:

Supercritical carbon dioxide Brazed plate heat exchanger Tri-partite gas cooler Heat transfer Pressure drop Correlation

a b s t r a c t

TheheattransfercharacteristicofsupercriticalCO2isanessentialresearchtopicduetoitssignificantin- fluenceontheperformanceofheatexchangersandsystems.Inthispaper,theheattransferandpressure dropofsupercriticalCO2 inthe brazedplateheatexchangers areexperimentallyresearched. Theheat exchangersbelongtoatri-partitegascoolerwhichcansimultaneouslyfulfillthedemandsofdomestic hotwaterandspaceheating.TheresultsdemonstratesthatthethermalresistanceintheCO2sideisthe mainfactorthatinfluencesthetotalheattransfer.TheincreaseofCO2inletpressurecanreducetheheat transfercoefficientsexceptatthehightemperatureregion.Theimprovementofheattransfercoefficient byincreasing theCO2 massflowrate ismore significantinthe spaceheating(SH)and domestic hot water (DHW)preheatinggas coolers,andislowestintheDHWreheatinggas cooler.The influenceof DHWinlettemperatureismoreobviousintheDHWpreheatinggascoolerthatconnectedtothewater inlet.TheinfluenceofwatermassflowrateisdifferentintheDHWandSHoperationmodes.Moreover, theeffects ofCO2 pressure andmassflowrate onthebuoyancy forcearediscussedandtheinfluence ofbuoyancyforceonheattransferisverified. Theinaccuracyofthecorrelationsfromtheliteratureis provedandthennewcorrelationsareestablished.Themeanabsoluterelativeerrorsofthenewcorrela- tionsare11.61%and12.82%fortheone-passandtwo-passconfigurations,respectively.Furthermore,the frictionalpressuredrop intheheatexchangersislow(upto36.51kPa) andbasicallyincreasesasthe Reynoldsnumberincreases.

© 2021TheAuthor(s).PublishedbyElsevierLtd.

ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/)

1. Introduction

According to the Kyoto Protocol,the HFC refrigerants that are extensively used have to be replaced due to their negative im- pactonthegreenhouseeffect[1].Naturalrefrigerantsare consid- ered to be the complete solutionfor the refrigerantreplacement predicament [2]. CO2 is an excellent candidate due to its non- toxicity, incombustibility,safety,lowcostandenvironmentallybe- nign(ODP=0,GWP=1)[3].Itiswidelyimplementedinrefriger- ation andheatpumpsystems,airconditioningandvariousindus- trialuses[4,5].GiventhatonecharacteristicofCO2isthelowcrit- icalpressureandtemperature, thetranscriticalcycleisintroduced to solvethe inefficiency problemof thesubcriticalcyclenearthe

Corresponding authors.

E-mail addresses: alireza.zendehboudi@ntnu.no (A. Zendehboudi), zuliangye@foxmail.com (Z. Ye).

Equal contribution as joint first authors (listed alphabetically).

criticalpoint[6].InthetranscriticalCO2cycle,theheatabsorption processoccursatthesubcritical pressurewhereas theheatrejec- tionprocesshappensatthesupercritical pressure[5].Forthewa- ter heating applicationthat requires a large temperaturelift, the transcriticalCO2 cycleshows a specialadvantage compared with thetraditionalrefrigerants[7].Thetemperatureglideofsupercrit- icalCO2 canreduce theheat transfertemperaturedifference,and decreasetheenergylossandentropygeneration[8,9].

TodemonstratethemeritsoftranscriticalCO2 heatpumpwa- terheater,SaikawaandKoyama[10]studiedthecoefficientofper- formance (COP) upper limit of heat pumpwater heater systems withdifferentrefrigerantsandtheCO2 systemobtainedthehigh- estvalue.TheperformanceofacommercialCO2 systemwascom- paredwiththatofasimilarR134asystembyNawazetal.[11],and it wasdiscovered that the CO2 heat pumpwater heater showed comparable efficiency. Regarding the further exploitation of the performance potential of the transcritical CO2 heat pump water heater,thedesignofseparatedgascoolers fordomestichotwater

https://doi.org/10.1016/j.ijheatmasstransfer.2021.121641

0017-9310/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

(2)

A. Zendehboudi, Z. Ye, A. Hafner et al. International Journal of Heat and Mass Transfer 178 (2021) 121641

Nomenclature

Symbols

A Heattransferarea[m2] b Corrugationdepthofplate[m]

cp Isobaricspecificheat[J(kgK)1] cp Averageisobaricspecificheat[J(kgK)−1] D Hydraulicdiameter[m]

G Massflux[kg(m2s)1] Gr Grashofnumber[-]

g Gravitationalacceleration[ms2] h Heattransfercoefficient[W(m2K)1] i Enthalpy[Jkg1]

k Thermalconductivity[W(mK)−1] L Port-to-portlengthofplate[m]

m Massflowrate[kgs1]

N Number[-]

Nu Nusseltnumber[-]

P Pressure[MPa]

p Corrugationpitchofplate[m]

Pr Prandtlnumber[-]

Pr AveragePrandtlnumber[-]

Q Heattransferrate[W]

Re Reynoldsnumber[-]

T Temperature[°C]

t Thicknessofplate[m]

u Flowvelocity[ms 1] V Volumetricflowrate[m3s1] W Widthofplate[m]

β

Chevronangleofplate[°]

p Pressuredrop[kPa]

T Logarithmicmeantemperaturedifference[K]

μ

Dynamicviscosity[Pas]

ρ

Density[kgm3]

ρ

¯ Averagedensity[kgm 3]

φ

Areaenlargementfactor[-]

Abbreviations

COP Coefficientofperformance DHW Domestichotwater GC Gascooler

HT Heattransfer

GWP Globalwarmingpotential ODP Ozonedepletionpotential PD Pressuredrop

SH Spaceheating Subscripts

ave Average

b Bulk

ch Channel

CO2 CO2 f Frictional g Gravitational

in Inlet

m Mean

meas Measured

mp Manifoldsandports out Outlet

p Plate

port Port tot Total

w Wall

water Water

(DHW)productionandspaceheating(SH)hasattractedattention duetothesuperiorcombinationwiththesupercritical exothermic process [12]. Nekså [13] firstly proposed the systemdesign with twogascoolersthatseparatelyfulfilltheheatingdemandofDHW and SH, and the CO2 from the discharge of compressor initially flows into the DHW gas cooler. Subsequently, the tri-partite gas coolerdesignwasputforwardbyStene[14]andcouldmatchthe temperatureprofilesofwaterandCO2 andimprovetheenergyef- ficiencyofcycle.AccordingtotheflowsequenceofCO2 fromcom- pressordischarge,thethreetube-in-tubeheatexchangerswerede- ployedforDHWreheating,SH,andDHWpreheating.Furthermore, withthetri-partitegascooler,theCO2systemcanbeveryefficient whentheSHdemandissmallcomparedtotheDHWheatingde- mand[15,16].

In the previous publications about the combination of DHW andSH, the heat exchanger type ofgas cooler is generallytube- in-tube.Comparedtothetube-in-tubetype, thebrazedplateheat exchanger can provide higher heat transfer performance because of the sinusoidal corrugated pattern, which generates an irregu- larflowfieldcoupledwithintenseturbulenceandcontinuousdis- ruption of boundary layers [17]. Moreover, the brazed plate heat exchangerhasa compactsize, operabilityathigherpressure,and lower cost than most other compact heat exchangers [18]. Many studies have been carried out on the heat transfer and pressure dropcharacteristicsinbrazedplateheatexchangers,andthesum- maryreview isshowninTable1. Thestudiedobjects HTandPD denotetheheattransferandpressuredrop,respectively.Itcan be seenthat thesingle-phase,two-phase boiling,two-phaseconden- sation andsupercritical fluid in the brazed plateheat exchanger havebeeninvestigated.However,theinformationaboutsupercrit- icalCO2 hasnotbeenpublishedyet.Inaddition,theexistingpub- lications on supercritical CO2 aremostly conductedbasedon the research of flowing in channel or tube [5,19,20]. The buoyancy force is an influentialfactor that affectsthe heat transfer perfor- manceandpressuredrop,dependingonthe operatingconditions andfloworientation [5].Fortheflowingincirculartubes, theef- fect of buoyancyon the heat transfer of supercritical fluids was extensively studied by Liaoand Zhao [21], Bruch etal. [22],Bae etal.[23],Liuetal.[24],KimandKim[25],Zhangetal.[26],and Xuetal.[27].Butmostofthesepublicationsfocused ontubesin the vertical direction, and only Forooghi and Hooman[28] stud- ied theinclinedcircular tube.Regarding the non-circulargeome- tries, onlya few studieshave beenreportedon theheat transfer ofsupercriticalfluidsinconcentricoreccentricannuli[29,30]and rectangular ducts[31].Besides, the buoyancyeffect inplate heat exchangershasbeenrarelystudiedintheliterature[32].Forooghi andHooman[33] numericallyinvestigatedtheeffectofbuoyancy onturbulentconvectionheattransferincorrugatedchannels.They found that if thewall heat flux waskept constant, the Reynolds numbermust be 3–7 timessmaller incorrugated channelscom- paredtoavertical tubesothat thebuoyancycould influencethe heattransfer.

The gas cooler is one of the key components in transcritical CO2 systems, andthe heattransfer and pressuredrop ofthe gas coolerrequiretobefocused[34],whichcancontributetotheper- formanceimprovementofgascoolerandsystem.Thebrazedplate heat exchanger isa promising technologyfor enhancing theeffi- ciencyof transcriticalCO2 heatpump. Nonetheless, regardingthe application of brazed plate heat exchanger to the tri-partite gas cooler,therelevantstudyisstillintheblankcondition.Tofillthe research gap,the experimentsare conducted toanalyze the heat transferandpressuredropofsupercriticalCO2inthebrazedplate heatexchangersthatconstitutethetri-partitegascoolerofatran- scriticalCO2 heatpumpwaterheater.Thepurposeofthispaperis toprovidea referenceforsimilarapplications andto proposethe heattransfercorrelationthatcanbeeasilyused.

(3)

A. Zendehboudi, Z. Ye, A. Hafner et al. International Journal of Heat and Mass Transfer 178 (2021) 121641 Table 1

Literature review of the studies on brazed plate heat exchanger.

Author Year Method Fluid Flow type Studied object Correlation

Focke et al. [35] 1985 Experimental Water Single-phase HT & PD Frictional factor & colburn j-factor

Martin [36] 1996 Theoretical Water Single-phase HT & PD Frictional factor & Nusselt number

Longo [37] 2008 Experimental R134a Two-phase

condensation

HT & PD Frictional pressure drop

Khan et al. [38] 2010 Experimental Water Single-phase HT Nusselt number

Huang et al. [39] 2012 Experimental R134a, R507A, R717, R12 Two-phase boiling HT & PD Frictional factor & Nusselt number

Forooghi and Hooman [40]

2014 Experimental 98%-pure Perfluoro-butane Supercritical fluid HT Nusselt number Huang et al. [41] 2015 Experimental Al 2O 3/water & MWCNT/water

nanofluids

Single-phase HT & PD Frictional factor & Nusselt number

Longo et al. [42] 2015 Experimental R236a, R134a, R410A, R600a,

R290a, R1270, R1234yf Two-phase boiling HT Heat transfer coefficient Nilpueng and

Wongwises [43]

2015 Experimental Water Single-phase HT & PD Frictional factor & Nusselt number

Sarraf et al. [44] 2015 Simulation Water Single-phase HT, PD & Flow

structure

Frictional factor & Nusselt number

Amalfi and Thome

[ 45 , 46 ] 2016 Experimental R245fa, R236fa Single-phase HT & PD Frictional factor & Nusselt number

Amalfi et al. [17] 2016 Experimental R245fa Two-phase boiling HT & PD Frictional factor Barzegarian et al. [18] 2016 Experimental TiO 2/water nanofluid Single-phase HT & PD Not available

Longo et al. [47] 2016 Experimental R1234ze(E) Two-phase boiling HT & PD Frictional pressure drop Desideri et al. [48] 2017 Experimental R245fa, R1233zd Two-phase boiling HT & PD Frictional pressure drop &

heat transfer coefficient Imran et al. [49] 2017 Experimental R245fa Two-phase boiling HT & PD Frictional factor & Nusselt

number

Nilpueng et al. [50] 2018 Experimental Water Single-phase HT & PD Frictional factor & Nusselt number

Pourhoseini et al. [51] 2018 Experimental Silver/water nanofluid Single-phase HT Not available

Shon et al. [52] 2018 Experimental R1233zd(E) Two-phase

condensation

HT & PD Frictional factor & Nusselt number

Miyata et al. [53] 2018 Experimental R134a R1234ze(E) Supercritical fluid HT Not available Longo et al. [54] 2019 Experimental R1234ze(Z), R1233zd(E) Two-phase boiling HT & PD Not available

Lee et al. [55] 2020 Experimental R1234ze(E) Supercritical fluid HT & PD Frictional factor & Nusselt number

Fazeli et al. [56] 2021 Experimental Water, MWCNT-CuO hybrid nanofluid

Single-phase HT & PD Heat transfer coefficient

2. Experimentalsetup 2.1. Systemdescription

To investigate theheat transferperformance in the tri-partite gascooler,atranscriticalCO2heatpumpwaterheatersystemises- tablished.TheschematicdiagramofthesystemisshowninFig.1. The system consists of the refrigerant circuit, DHW circuit, and SH watercircuit. The refrigerant circuit includes a compressor, a tri-partitegas cooler,ahigh-pressurevalve, anevaporator andan internal heat exchanger. The compressor is a reciprocating type, which hasarated displacementof9.48m3h 1.The tri-partite gascoolerismadeofthreebrazedplateheatexchangersthatwill beintroducedinthelatterparagraph.Thehigh-pressurevalvecan control the gas coolerpressure, andthe evaporationtemperature canbecontrolledbythebrineinlettemperatureoftheevaporator tofurthercontrolthegascoolerinlettemperature.

The DHW and SH water circuits have water pumps and sev- eral valves.The valves2and4 cancontrol thereturnwaterflow rates atthe DHW and SH outlets andmanipulate the water in- let temperatures(T5forDHWandT8forSH). Thevalves1and2 can control the DHW flowrate, and thevalves 3and 4can reg- ulatetheSHwaterflowrate.Thesystemcanoperateunderthree modes:DHWoperation,SHoperationandDHW+SHoperation.The designing heatingcapacitiesofthe DHW,SHandDHW+SHoper- ation modesare respectively10kW,8kWand10kW,whichcan provide the DHW outlettemperature of70 °C andthe SH water outlettemperatureof35°C.TheDHWpumpisturnedonandthe

Table 2

Geometrical characteristics of the three brazed plate heat exchangers.

Parameter Value

Port-to-port length L (mm) 154.0

Width W (mm) 76.0

Chevron angle β( °) 60

Corrugation depth b (mm) 1.38 Corrugation pitch p (mm) 2.7

Thickness t (mm) 0.23

Area enlargement factor φ 1.49

Total number of plates N p GC1: 34 GC2: 50 GC3: 14 Diameter of inlet/outlet port D port(mm) 14

SH pumpis stopped under the DHW operation mode, while the statusofthepumpsisoppositeundertheSHoperationmode.Un- der theDHW+SHoperation mode, bothwater pumpsare turned on.

2.2. Testedbrazedplateheatexchangers

The three brazed plate heat exchangers of the tri-partite gas cooler,whicharerepresentedasGC1,GC2andGC3(DHWreheat- inggascooler,SHgascoolerandDHWpreheatinggascooler),are developedby ALFA LAVAL.The usedAXP14 modelheat exchange plate hasa dimension of 190 mm length by 76 mm width. The detailed characteristics of the brazed plate heat exchangers are showninFig.2andTable2.TheGCshavedifferentfunctions:for theDHWheatingdemand,theinlet tapwaterisfirstlypreheated by the GC3, and then the intermediate temperature waterflows

(4)

A. Zendehboudi, Z. Ye, A. Hafner et al. International Journal of Heat and Mass Transfer 178 (2021) 121641

Fig. 1. Schematic diagram of the studied transcritical CO 2heat pump system.

Fig. 2. The schematic of the heat exchange plate [54] .

into the GC1 and is reheated to the required high temperature;

while the GC2 is used for the SH demand which has a moder- atetemperaturelevel.Thesupercriticalandhigh-temperatureCO2 fromthecompressorsuccessivelyflowsthroughtheGC1,GC2and GC3, andexchangesheatwithwaterinthecounter-flow configu- ration.

It is worth mentioning that the brazed plate heat exchangers usedinthisresearchhavetwotypesofinternalconfiguration:one- pass andtwo-pass,which isshowninFig.3. Fortheone-pass,it

meansthat thewaterandCO2 flow betweentheinletandoutlet distribution ports without changing the flow direction, and thus thewaterandCO2respectivelyflowupwardanddownward.While forthetwo-pass,thefluidsintheheatexchangerdeflectonce,and boththewaterandCO2 flowfirstdownwardandthenupward.In theexperiments,theGC2isalwaysone-pass,andtheGC1andGC3 are tested both with one-pass and two-pass configurations. The testsbasedonthecontrolvariablemethodareconductedwiththe one-passGC2andtwo-passGC1andGC3.Besides,theexperiments withtheone-passGC1andGC3arealsocarriedoutbutthedatais onlyusedforanalyzingthebuoyancyforceandthepressuredrop, andultimatelyfittingtheheattransfercorrelations.

2.3. Measuringdevices

Asforthemeasuringdevices,thelocationsoftheappliedtem- perature,pressureandflowratesensorsaredisplayedinFig.1.The Danfossdatarecordingsoftware(Minilog)isappliedtocollectand processtheoutputfromthesensors.Thetestfacilityunitisacom- prehensivetestrigwithmanypossibilitiesofexperimentalinvesti- gationsinvolvingtestingalargerangeofsystemconfigurationsand conditions.Atthebeginningofeachexperiment,theDanfossdata recordingsoftwareis switchedon,andthen the waterregulating valves are opened. The water circulation pumps and compressor are turned on. All the controllableprocess parameters are set to thedesiredvaluesintheMinilog.Thewaterinlettemperatureand massflowratesofCO2 andwaterareadjusted manuallybyregu- latingthevalvestosetthe heattransferbetweenwaterandCO2. During the experiments, the parameters logged into the Minilog arecontinually controlled byfollowing theprofiles plottedinthe

’Measurement/Graph’tag.

Oncethedesiredvaluesarereachedandaftersteady-statecon- ditionsof all parametersare achievedformore than20 min,the valuesarerecordedasasetofsteadydata.Thetime-averagedval- uesofthesteady-stateareusedforthisinvestigation.Thecharac- teristicsofthemeasuringdevicesareshowninTable3.

(5)

A. Zendehboudi, Z. Ye, A. Hafner et al. International Journal of Heat and Mass Transfer 178 (2021) 121641

Fig. 3. The (a) one-pass and (b) two-pass internal configurations of the brazed plate heat exchangers.

Fig. 4. Variation of isobaric specific heat and density of supercritical CO 2with the change of temperature under different pressures.

Table 3

Characteristics of the measuring devices.

Parameter Device Accuracy

CO 2pressure Cerabar PMP71 digital pressure transmitter ±0.25% of span Pressure difference Deltabar PMD75 differential pressure transmitter ±0.25% of span

Temperature PT 1000 ±0.15 °C

DHW flow rate FLR 1000 ±3% of span

CO 2and SH water flow rates Rheonik RHM 08 Coriolis flow meter ±0.1% of reading

3. Datareduction

Inthebrazedheatexchangers,theheattransferrateintheCO2 side(QCO2)canbeexpressedas:

QCO2=mCO2

(

iCO2,iniCO2,out

)

(1)

Where mCO2 isthe CO2 massflow rate;iCO2,in andiCO2,out are the CO2 enthalpy at the inletand outletof the heat exchangers.

Theheattransferrateinthewaterside(Qwater)canbedefinedas:

Qwater=mwatercp,water

(

Twater,outTwater,in

)

(2)

Where mwater is the watermass flow rate; cp,water is the spe- cificheat ofwater;Twater,outandTwater,in arethe wateroutletand

inlet temperatures ofthe heat exchangers. According to the heat balance,QCO2andQwateraretheoreticallysupposedtobeequal.In thepresentresearch,thedeviationsbetweenthesetwoheattrans- ferratesarelessthan5%.ThepropertiesofwaterandCO2arede- terminedbyusingREFPROP.

The totalheat transfer coefficient (htot) is calculatedbased on the averaged heat transfer rate (Qave), the heat transfer area (A) andtheactualmeantemperaturedifference(T):

htot= Qave

A

T (3)

wheretheaveragedheattransferratecanbeexpressedas:

Qave= QCO2+Qwater

2 (4)

(6)

A. Zendehboudi, Z. Ye, A. Hafner et al. International Journal of Heat and Mass Transfer 178 (2021) 121641

Fig. 5. Total and CO 2heat transfer coefficients versus CO 2mean temperature under different pressures.

The commonly used logarithmic meantemperature difference (LMTD)assumesthatbothfluidshaveconstantspecificheatduring the heat transfer process. As shown in Fig. 4, the physical prop- erties ofsupercriticalCO2 varysignificantly withthe temperature around its pseudo-criticalpoint.Forexample,thespecific heat of CO2 reaches a maximum value near pseudo-critical temperature for all considered pressures. The peak value of specific heat de- creases as the pressure increases and the variations of the spe- cificheatwithtemperaturebecomesrelativelyflatatthetempera- turesawayfromthepseudo-criticalpoint.Thedensityshowssharp downwardtrendwithanincreaseintemperature. Atoneparticu- lar temperature, smalltemperaturevariation causesa sharp drop inthevalues,andthecurvesbecomenearlyverticalforthelower pressures.Therefore,theLMTDmethodisnotvalidfortheexperi- mentalconditionsconductedinthisstudy.

ToobtaintheactualmeantemperaturedifferenceinEq.(3),the UAiscalculatedbasedonitsdefinition:

UA= Atot

0

UdA= Qtot

0

dQ

T (5)

ToobtainthenumericallyintegratedresultofEq.(5),theheat transferprocessisequallydividedintoNsegmentswiththesame heattransferrate(

δ

Q).Ineachsegment,thetemperaturedifference isobtainedbasedontheenergybalance.Therefore,theUAcanbe numericallyintegratedas:

UA= N

i=1

δ

Q

Ti

(6)

(7)

A. Zendehboudi, Z. Ye, A. Hafner et al. International Journal of Heat and Mass Transfer 178 (2021) 121641

Fig. 6. Total and CO 2heat transfer coefficients versus CO 2mean temperature under different CO 2mass flow rates.

UsingtheUA,theactualmeantemperaturedifference(T)can bedetermined:

T=Qtot

UA (7)

whereQtotisequaltoQaveinthisstudy.

The heattransfer area(A)ofthebrazed plateheatexchangers canbecalculatedas[52]:

A=

φ

WLNp (8)

where

φ

istheareaenlargementfactorthatconsiderstheincrease ofarea duetothecorrugation ontheplates;W,LandNpare the width,port-to-portlengthandnumberoftheheatexchangeplates, respectively.Theareaenlargementfactorisdefinedas:

φ

(

1+

1+X2+4

1+X2/2

)

/6 (9)

where X=

π

b

p (10)

Similarly, due to the change of specific heat, the CO2 tem- peraturewouldnonlinearlyvary duringthe heattransfer process.

Therefore,toobtaintheCO2 temperatureatwhichthethermody- namicpropertiesaredefined, thecommonlyusedconceptofbulk temperature that is the average of inlet andoutlet temperatures [22,57] cannotfulfill therequirement.Instead,theconcept ofCO2 meantemperature(Tm)isadopted:

Tm= N

i=1

TCO2,i

N (11)

(8)

A. Zendehboudi, Z. Ye, A. Hafner et al. International Journal of Heat and Mass Transfer 178 (2021) 121641

Fig. 7. Total and CO 2heat transfer coefficients versus CO 2mean temperature under different water inlet temperatures.

ThetotalheattransfercoefficientcomprisestheCO2 andwater side heat transfer coefficientsand the wall thermalresistance. It canbealsoexpressedas:

1 htot = 1

hCO2+ 1 hwater+ t

kw

(12) wherehCO2andhwater aretheheattransfercoefficientsintheCO2 andwatersides;t isthethicknessoftheplate;kw isthethermal conductivity ofthe wall. hwater is calculatedby applyingthe cor- relation ofHuang etal.[41] becausethe plategeometryandthe rangeofReynoldsnumberaresimilartothoseofthestudiedheat exchangers.

Nuwater=0.2302Re0water.745Prwater0.4 (13)

hwater= Nuwaterkwater

D (14)

Thehydraulicdiameter(D)canbedefinedas:

D=2b

φ

(15)

wherebisthecorrugationdepthoftheplate.TheReynoldsnum- ber(Re)canbecalculatedas:

Re=

ρ

uD

μ

(16)

whereuistheflowvelocityoffluidandisdefinedas:

u= V bWNch

(17)

where

ρ

and

μ

arethedensityanddynamicviscosityofthefluid;

V isthe volumetricflow rate;Nch isthe numberof thechannels forfluid.

(9)

A. Zendehboudi, Z. Ye, A. Hafner et al. International Journal of Heat and Mass Transfer 178 (2021) 121641

Fig. 8. Total and CO 2heat transfer coefficients and CO 2mean temperature versus water mass flow rates.

The measured pressure drop (pmeas) of the heat exchang- ersconsistsofthefrictionalpressuredrop(pf),thegravitational pressure drop (pg) andthe pressure dropof themanifolds and ports(pmp)[48,50].Thus,thefrictionalpressuredropcanbede- finedas:

pf=

pmeas

pg

pmp (18)

Thegravitationalpressuredropisdeterminedby:

pg=g

ρ

mL (19)

where

ρ

misthedensityattheCO2meantemperature.Thepres- suredropofthemanifoldsandportsisdefinedas:

pmp=1.5G2port

2

ρ

m (20)

whereGportistheCO2massfluxatthecrosssectionoftheport.

BasedonthemethodproposedbyMoffat[58],theuncertainty analysisisconducted.Theuncertaintiesofhtot,hwater,hCO2andpf

are8.16%,4.59%,11.76%and2.73%,respectively.

4. Resultsanddiscussion 4.1. Heattransfer

4.1.1. EffectofCO2inletpressure

Fig. 5 shows the total and CO2 side heat transfer coefficients (htot and hCO2) versus the CO2 mean temperature under the in- letpressureof9.4MPaand10MPa.Theresultsare obtainedun- der theDHW operation mode atCO2 inlettemperature of97°C, CO2 massflowrateof0.0358kgs1,waterinlettemperatureof 13.1 °C and DHWmass flow rate of0.030 - 0.043kgs 1. The dashedrectanglesindicatethedatagroupsforeachgascoolerthat thedatapointsbelongto.ThedatapointswithdifferentCO2mean temperaturesare achievedbyadjusting theDHW massflow rate, andthelarger theDHW massflow ratethelower theCO2 mean temperature.

The averaged htot, hwater and hCO2 from all data are 1380.2, 6094.1and2035.0 W(m2K)−1,which suggeststhat thethermal resistanceattheCO2 sidebasicallydominatesthetotalheattrans-

(10)

A. Zendehboudi, Z. Ye, A. Hafner et al. International Journal of Heat and Mass Transfer 178 (2021) 121641

Fig. 9. Heat transfer rates and actual mean temperature differences versus water mass flow rate corresponding to the results of Fig. 8 .

fer. AsshowninFig.5(a),giventhedifferentheatingfunctionsof GC1 andGC3, the corresponding CO2 mean temperatures are di- vided into two groups. The reheating GC1has higher CO2 mean temperaturesandlowheattransfercoefficientsduetothelowspe- cific heat in this gas-like supercritical region. Whereas, the pre- heatingGC3showsan operationnearthepseudo-criticaltemper- ature (42.04°Cfor9.4MPa and45 °C for10MPa). Thedramatic increaseofspecificheatinthevicinityofthepseudo-criticalpoint leads to the higher heat transfer coefficients of GC3. Moreover, withtheincrease ofCO2 meantemperature,the heattransferco- efficientsincreaseandthendecrease,andthuspeakvaluesappear.

For GC3, atthe pressure of 9.4MPa, thepeak valuesof htot and hCO2 arehigherthanthoseatthepressureof10MPa.

Fig. 5(b) displays the results under the DHW+SH operation mode at CO2 inlet temperature of 80 °C, CO2 mass flow rate of 0.040kgs 1,DHW inlettemperatureof12.8°C,SH waterinlet temperatureof30°C,SHwatermassflowrateof0.1917kgs 1 and DHW mass flow rateof 0.0167 - 0.0417kgs 1. The heat

transfercoefficientsintheGC1andGC3show anincreasingtrend with the decrease of CO2 mean temperature. The reason is that thedecreaseofCO2meantemperatureisattributedtotheincrease ofDHWmassflow rate,andtheassociatedincreasing waterflow velocity enhances the water side heat transfer coefficient, which improvesthe total heattransfer coefficient. Besides,the variation ofthermodynamicpropertiesintheliquid-likesupercriticalregion isalso smallandaccordinglyhasan unimportant impact onGC3 under DHW+SH operation. As for GC2, the CO2 mean tempera- tures are closeto the pseudo-criticaltemperature(Tpc= 34.63 °C forP=8MPaandTpc=40°CforP=9MPa),andthepressuresig- nificantlyinfluencesthethermodynamicpropertiesincludingspe- cificheatandthermalconductivity.Forbothhtot andhCO2 inGC2, the maximumvalues at8 MPa are greater than those at9 MPa.

Inaddition,withtheincrease ofpressure,the temperaturecorre- spondingtothemaximalheattransfercoefficientinGC2increases becauseofrisingpseudo-criticaltemperature.

(11)

A. Zendehboudi, Z. Ye, A. Hafner et al. International Journal of Heat and Mass Transfer 178 (2021) 121641 Table 4

The effects of parameters on the averaged Reynolds number and heat transfer coefficients.

Variable Item Condition DHW operation Condition DHW + SH operation

GC1 GC3 GC1 GC2 GC3

CO 2pressure ( P in) Re m 9.4 MPa 3672.9 4979.8 8 MPa 4389.2 941.1 3855.6

10 MPa 3474.8 4350.9 9 MPa 4007.7 678.2 3320.8

Variation −5.4% −12.6% Variation −8.7% −27.9% −13.9%

h tot,ave 9.4 MPa 941.4 2058.7 8 MPa 859.6 1755.4 1594.5

10 MPa 977.8 1870.5 9 MPa 909.1 1187.4 1416.0

Variation 3.9% −9.1% Variation 5.8% −32.4% −11.2%

h CO2,ave 9.4 MPa 1163.5 2860.4 8 MPa 1097.5 2429.2 2173.8

10 MPa 1220.5 2521.1 9 MPa 1187.1 1465.9 1876.2

Variation 4.9% −11.9% Variation 8.2% −39.7% −13.7%

CO 2mass flow rate ( m c) Re m 0.036 kg s 1 3474.8 4350.9 0.028 kg s 1 2758.8 420.4 2277.3 0.040 kg s 1 3977.2 5343.6 0.040 kg s 1 4007.7 678.2 3320.8 Variation 14.5% 22.8% Variation 45.3% 61.3% 45.8%

h tot,ave 0.036 kg s 1 977.8 1870.5 0.028 kg s 1 827.9 721.5 1132.1

0.040 kg s 1 1003.5 2154.9 0.040 kg s 1 909.1 1187.4 1416.0 Variation 2.6% 15.2% Variation 9.8% 64.6% 25.1%

h CO2,ave 0.036 kg s 1 1220.5 2521.1 0.028 kg s 1 1072.6 818.1 1429.0

0.040 kg s 1 1245.7 2999.2 0.040 kg s 1 1187.1 1465.9 1876.2 Variation 2.1% 19.0% Variation 10.7% 79.2% 31.3%

DHW inlet temperature ( T5 ) Re m 13.1 °C 3672.9 4979.8 12.8 °C 4007.7 678.2 3320.8 16 °C 3615.8 5553.3 17.8 °C 4032.2 711.4 3462.5 Variation −1.6% 11.5% Variation 0.6% 4.9% 4.3%

h tot,ave 13.1 °C 941.4 2058.7 12.8 °C 909.1 1187.4 1416.0

16 °C 886.5 2160.8 17.8 °C 812.9 1227.4 1327.7

Variation −5.8% 5.0% Variation −10.6% 3.4% −6.2%

h CO2,ave 13.1 °C 1163.5 2860.4 12.8 °C 1187.1 1465.9 1876.2

16 °C 1077.4 3022.7 17.8 °C 1051.3 1523.1 1759.2 Variation −7.4% 5.7% Variation −11.4% 3.9% −6.2%

Theimpactofpressureontheheattransfercoefficientisdueto thevariationsofCO2thermodynamicpropertiescausedbychang- ingpressure.Thevariationsbecomemoredramaticwhenthepres- sureisclosertothecriticalpressure.AsseenfromFig.5,thevari- ationtrendoftheheattransfercoefficientissimilartothatofspe- cific heat under different operating pressures. The trend demon- stratesthat theheattransfercoefficientsare higherin theliquid- like region forlower pressures, while the values for lower pres- sure are lower in the gas-like region. The peak value of specific heat increases significantly near the critical point by decreasing operatingpressure;therefore,theheattransfercoefficienttendsto liftsharply inthisregionandthe heattransferis thebestat the pseudo-criticalpoint.

Toshowtheinfluenceofparametersquantitively,theresultsare summarizedinTable4.Rem,htot,aveandhCO2,avearetheaveragesof theCO2 Reynoldsnumberandtheheattransfercoefficientsbased on thedatapointsinFig.5,Fig.6andFig.7.Thecomparisons ig- noretheinfluenceofCO2meantemperatureandonlyfocusonthe numericalvalues.Withtheresultatthelowervalueofvariablesas thereferencevalue,thevariationsaredetermined.FromTable4,it can be observed thatwith theincrease ofpressure, theaveraged heat transfer coefficientsdecrease exceptinthe GC1, andthere- ductions reach up to 32.4%and 39.7% forhtot,ave andhCO2,ave, re- spectively.

4.1.2. EffectofCO2massflowrate

Fig. 6(a) showsthe results under DHW operation mode with differentCO2massflowratesatCO2inletpressureof10MPa,CO2 inlettemperatureof97°C,DHWinlettemperatureof13.1°C,and DHWmassflowrateof0.030-0.043kgs1.Itcanbeobserved thattheincreaseofCO2massflowrateleadstotheincreaseofhtot

andhCO2.ThehigherCO2massflowrategeneratestheincreaseof the Reynolds number and the diffusion rate, andthen enhances theheattransfercoefficients.

Fig.6(b)showstheresultsunderDHW+SHoperationmode at CO2inletpressureof9MPa,CO2 inlettemperatureof80°C,DHW inlettemperatureof12.8°C,SHwaterinlettemperatureof30°C,

and SH water mass flow rate of 0.1917 kgs 1. Increasing the CO2 massflowratesignificantlyimprovestheheattransfercoeffi- cients.ItcanbefoundfromTable4thattheinfluenceofCO2mass flowrateisthelargest.Inall conditions,the averagedheattrans- fer coefficients are enhanced with the increase of the CO2 mass flowrate.UndertheDHWandDHW+SHoperationmodes,theen- hancement ofheat transfer coefficientsin the GC1 is the lowest whilethe improvementis muchmore significantin theGC2and GC3.

4.1.3. Effectofwaterinlettemperature

Fig.7(a) depictstheheat transfercoefficientsunder DHWop- eration mode withdifferent DHW inlet temperatureatCO2 inlet pressureof9.4MPa,CO2inlettemperatureof97°C,andCO2mass flow rate of 0.0358 kgs 1. As shown, no significant influence ofthewaterinlettemperaturecanbefoundintheresultsofGC1.

However,becausethewaterinletisdirectlylinkedtoGC3,thein- fluence ismoreobvious andtheheat transfercoefficientsare in- creasedbytheincreaseofDHWinlettemperature.

Fig.7(b)showstheresultsundertheDHW+SHoperationmode at CO2 inlet pressure of 9 MPa, CO2 inlet temperatureof 80 °C, CO2 massflowrateof0.040kgs 1,SHwaterinlettemperature of30 °C, andSH water massflow rate of0.1917 kgs 1. Simi- larly,theeffectofwaterinlettemperatureislargerwhentheheat exchangerisclosetothewaterinlet.Theincreaseoftemperature from12.8°Cto17.8°Cresultsinanignorableimpactontheheat transfercoefficientsinthehightemperaturestate.Comparedwith theCO2 pressureandmassflowrate, thewaterinlettemperature hasarelativelysmalleffect.FromTable4,thevariationscausedby increaseofDHWwaterinlettemperaturearealllowerthan12%.

4.1.4. Effectofwatermassflowrate

Fig.8showstheeffectsofDHWandSHwatermassflowrates on theheat transfer coefficients, andthevariations ofCO2 mean temperatures with the change of water mass flow rates are de- picted aswell. Forthe DHWoperation inFig. 8(a),the CO2 inlet pressure,CO2 inlettemperature,CO2 massflowrateandDHWin-

(12)

A. Zendehboudi, Z. Ye, A. Hafner et al. International Journal of Heat and Mass Transfer 178 (2021) 121641

Fig. 10. The buoyancy forces in the three GCs.

let temperature are 9.4 MPa, 97 °C, 0.0358 kgs 1 and16 °C, respectively.AstheDHWmassflowrateincreases,theheattrans- fer coefficientsofGC1andGC3increase,andtheCO2 meantem- perature decreases. The CO2 mean temperature in GC3 is closer to the pseudo-critical point, which leads to larger heat transfer coefficients. Fig. 8(b) presents the situation under the SH oper- ation mode at CO2 inlet pressure of 9 MPa, CO2 inlet tempera- tureof76 °CandCO2 massflowrateof0.040kgs 1.TheCO2 meantemperaturesarenearlyconstantwiththechangeofSHwa- ter mass flow rate. It can be seen that when the SH waterinlet temperatureis25°C,theheattransfercoefficientsarehigherthan thoseat35°C,whichresultsfromthehigherspecific heatcaused by thelowerCO2 meantemperature. DifferentfromtheDHWop- eration mode,the increaseofSH watermassflow rateunderthe SHoperationmodeconducestothedecreasingtrendofheattrans- fercoefficients.Thisdiscrepancyisattributedtothedifferentvari- ationsof heattransfer rateandtemperature differenceunderthe DHWandSHoperationmodes.

Fig.9displaystheresultsrelatedtotheconditionsinFig.8.As canbeseeninFig.9(a),theheattransferratesofGC1andGC3rise withtheincrease ofDHWmassflow rate.However,thetempera- turedifferencesshowdifferenttrends.The increaseofDHWmass flowrateslightlyaffectsTforGC1butresultsinthedecreaseof TforGC3.AccordingtoEq.(3),thetotalheattransfercoefficients ofGC1andGC3areenhanced.

Based on Eq. (3), the decreasing trend of heat transfer coef- ficients under SH operation mode can be explained as well. In Fig. 9(b), with the increase of SH water mass flow rate, the ac- tual mean temperature difference presents the increasing trend, buttheincrease ofTattheSHwaterinlettemperatureof35°C is relatively small. In addition, the change of heat transfer rates ismarginal.Thus,thereductionofheattransfercoefficientsisthe consequence of the increase of actual mean temperature differ- ence.

4.1.5. Effectofbuoyancyforce

According to the literature, the heat transfer performance of thesupercriticalCO2 isalsosignificantlyaffectedbythebuoyance force in some conditions [59]. Based on the effects of buoyancy force on theflow andheat transfer, theflow ofsupercritical CO2

canbe dividedintoforcedandmixedconvections[60].Thebuoy- ancyforce hasanimportantinfluenceon theheattransferinthe

mixed convection, while in the forced convection, the influence is negligible. The large densitygradient caused by a large radial temperaturegradientisanessentialconditionwherethebuoyancy forcecanaffecttheheattransfer.

Forthe in-tubeflowing, whenthe followingequation issatis- fied,thebuoyancyforce cannotbe ignoredintheheattransferof supercriticalCO2 [61]:

Gr/Re2.7>105 (21)

WhereGristheGrashofnumberandcanbedefinedinthispa- peras:

Gr=

( ρ

w

ρ

m

) ρ

mgD3

μ

2m

(22)

Wheregistheaccelerationofgravityand

ρ

¯w isthedensityat theaveragedwalltemperature[62]:

ρ

¯w= Tm

Tw

ρ

dT

TmTw

(23)

However,becauseofthecomplexgeometryinthebrazedplate heat exchanger, this criterion cannot be applied. Moreover, the work considering the buoyancy effect in plateheat exchanger is rare[32],andwithourbestknowledge,thereisnopublicationthat suggeststhecriterionforbuoyancyeffectinplateheatexchanger.

Fig.10showsthebuoyancyforcesinthethreeGCs.Thelargest buoyancyforceexistsintheGC2,whichhasthemaximumnumber oftheheat exchangeplates andaccordinglythe largestflowarea andthe lowest CO2 flow velocity.The GC1has moreplates than GC3andthustheCO2 flowvelocitycould belowerinGC1,which issupposed toresultinthehigherbuoyancyforce effect.Butthe buoyancy forcesin GC1 and GC3are at a similar level. It is be- causethehightemperatureandlowdensityinGC1counteractthe influenceofplatenumberontheflowvelocity.

To further investigate the buoyancy force, the effects of CO2 pressure andCO2 mass flow are shownin Fig.11. The resultsin Fig.11are obtainedunder theconditions ofFig.5 andFig.6. As Fig.11(a)shows, theinfluence ofpressureon thebuoyancyforce isdifferentaccordingtothetemperature. Obviously,thebuoyancy force declineswiththe lower pressurewhen theCO2 meantem- perature is high in the GC1. On the contrary, when the temper- ature is relatively low in the GC3, the buoyancy force is slightly improvedbythedecreaseofpressure.IntheGC2,bothtwotypes

(13)

A. Zendehboudi, Z. Ye, A. Hafner et al. International Journal of Heat and Mass Transfer 178 (2021) 121641

Fig. 11. The effects of CO 2inlet pressure and CO 2mass flow rate on the buoyancy force.

ofeffectsofpressureoccur.Incomparison,theeffectofCO2mass flowrateisconsistentatalltemperatures.ThelowertheCO2mass flow rate the higher the buoyancy force because of the smaller flowvelocityandweakerturbulence.

To investigatethe effect ofbuoyancy force on the heat trans- fer,theNusseltnumberversusGr/Re2.7 isshowninFig.12.There- sultsinFig.12arealsoobtainedundertheconditionsofFig.5and Fig. 6. Except the GC3 at 8 MPa under the DHW+SH operation mode, the Nusselt number generally shows an increasing trend withtheincreaseofbuoyancyforce.Therefore,thebuoyancyforce has an influence onthe heat transfer ofsupercritical CO2 in this research, which wouldbe considered inthefollowing correlation development.

4.2. Heattransfercorrelationdevelopment

Inthepreviouspublications,thein-tubeheattransferofsuper- criticalCO2 during thecooling andheatingprocess has beenex- tensively studied [5]. However, the research on the supercritical heat transfer of CO2 inthe brazed plateheat exchanger has not beenreportedyet.Theheattransfercoefficientofsupercriticalflu- idsisdifficultto bepredictedaccuratelyduetothe drasticvaria- tionof thermodynamicsproperties[63].Moreover, thevalidity of publishedcorrelationsislimitedbytheexperimentaldata,andthe availabilityisreliableonlywithinacertainrange.

Fig.13showsthecomparisonofexperimentalNusseltnumbers and the calculated results based on the correlations from Bruch et al. [22], Liu et al. [57], Forooghi and Hooman [40], Lee et al.

(14)

A. Zendehboudi, Z. Ye, A. Hafner et al. International Journal of Heat and Mass Transfer 178 (2021) 121641

Fig. 12. The effect of buoyancy force on the Nusselt number.

[55] andKhanetal.[38].Table5showsthefivecorrelationsused forcomparisonandtheirapplicationconditions.Amongthesefive correlations, two are for supercritical CO2 in-tube flow, two are forsupercriticalfluidsinplateheat exchanger,andone isforsin- gle phase fluid in plate heat exchanger. The application ranges of Reynoldsnumber (ormass flux)of thesecorrelationspartially overlapthevaluesinourresearch.

It can be discovered that thepredictions ofBruch et al.’sand Liu etal.’scorrelations arebasically lower thanthe experimental values,andtherearemassivedatapointswheretherelativeerror islowerthan−60%oreven−90%.Itindicatesthatthecorrelations established basedontheresearchofin-tubefloware notsuitable forthesituationinthebrazed plateheat exchanger.Thecomplex geometry ofplateenhancesthe heat transfer performance. Many prediction points based on the correlations from Lee et al. and

Khanetal.haveanerrorlargerthan90%.Themeanabsoluterela- tiveerrorsofthecorrelationsfromBruchetal.,Liuetal.,Forooghi and Hooman, Lee et al. and Khan et al. are 71.6%, 67.9%, 41.1%, 495.3%and138.1%,respectively.ThecorrelationfromForooghiand Hoomanshowsthebestaccuracybutisstillnotsatisfactory.There- fore,thespecializedcorrelationsarenecessarytodescribetheheat transferofsupercriticalCO2 inthebrazedplateheatexchanger.

Consideringtheinfluenceofthermodynamicspropertiesatthe CO2 meantemperatureandthewalltemperatureandtheeffectof buoyance force, the correlationsare proposed basedon the least squaremethodaccordingtothebelowexpression[62]:

Nu=a1Ream2Pram3

ρ

w

ρ

m

a4

cp

cp,m

a5

Gr Re2m.7

a6

(24)

Referanser

RELATERTE DOKUMENTER

Wanderley and co-workers [20] studied vapor-liquid equilib- rium and mass transfer in MDEA – MEG – H 2 O among other sol- vents, promising for CO 2 capture in biogas upgrading.

The theoretical study compares a supercritical heat pump cycle using CO 2 as the work- ing fluid, a transcritical heat pump cycle using iso-butane as the working fluid and

As part of the thermal and flow measurement the following parameters are recorded: the hot fluid temperature at the inlet (T h ′ ) and outlet (T h ′′ ) of the exchanger, the

It also shows 73% of the gas cooling heat of hybrid CO 2 GCHP system will be rejected to ambient air, which can effectively reduce the borehole heat accumulation and avoid

D4.2.2017.03 Designing surplus heat recovery concepts Page 7 of 15 Table 2: Effect of increasing the value of different parameters on the heat transfer coefficient and pressure

Novel approaches for supplying heating and cooling by integrated CO 2 heat pump systems are presented; including: direct heat exchange with CO 2 , multiejectors, solutions to

The dissolution can be regarded as being purely mass transfer controlled, since the heat required for dissolution only brings about 1 °C temperature drop from the bath bulk to the

Figure 8: The sensitive analysis of the brass wall thermal conductivity and the wall roughness on the walls temperature distribution with boundary conditions #AD8 defined in Table