• No results found

Δ9-tetrahydrocannabinol (THC) is present in the body between smoking sessions in occasional non-daily cannabis users

N/A
N/A
Protected

Academic year: 2022

Share "Δ9-tetrahydrocannabinol (THC) is present in the body between smoking sessions in occasional non-daily cannabis users"

Copied!
5
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

D 9-tetrahydrocannabinol (THC) is present in the body between smoking sessions in occasional non-daily cannabis users

J. Mørland

a,b,

*, J.G. Bramness

a,c,d

aNorwegianInstituteofPublicHealth,POBox222Skøyen0213,N-0403Oslo,Norway

bInstituteofClinicalMedicine,UniversityofOslo,POBox1072,Blindern,N-0316Oslo,Norway

cNorwegianNationalAdvisoryUnitonConcurrentSubstanceAbuseandMentalHealthDisorders,InnlandetHospitalTrust,Ottestad,Norway

dInstituteofClinicalMedicine,UiT-TheArcticUniversityofNorway,Tromsø,Norway

ARTICLE INFO Articlehistory:

Received7October2019

Receivedinrevisedform4February2020 Accepted8February2020

Availableonline28February2020 Keywords:

Cannabis

Tetrahydrocannabinol Pharmacokinetics Accumulation

ABSTRACT

Background:THCcanbemeasuredinblooduptoamonthafterlastintakeinheavycannabisusers.The cognitivedeficitsduringabstinencehavebeenhypothesizedtobeatleastinpartduetoresidualTHCin brain.TowhichextentTHCaccumulationwilloccurafteroccasionalcannabisusehasgainedlimited attention.Weaimed topredictTHC-levelsbetweensmokingsessionsinnon-dailyaswellasdaily cannabisusersandtocomparethesepredictionswithpublishedTHClevels.

Methods:Predictionswerebasedonpharmacokineticprinciplesondrugaccumulationafterrepeated dosing,appliedtodifferentcannabissmokingpatterns,usingdatafromathree-compartmentmodelfor THCpharmacokineticsandresultsontheterminaleliminationhalf-lifeofTHCinhumans.Wesearched theliteratureforTHCmeasurementswhichcouldbecomparedwiththesepredictions.Wefoundnosuch resultsfromcontrolledstudiesoflong-termrepeatedcannabisconsumptionofknownTHCamounts.

Thirteenpublishedstudiescontained,however,enoughinformationoncannabisuseandresultsfrom THC-measurementstomaketentativecomparisonswiththepredictions.

Results:ThepredictionsofTHC-plasmalevelspresentafterdifferentcannabissmokingpatternsassuming terminaleliminationhalf-livesofTHCof21.5horlonger,hadsomesupportinpublishedTHClevels measured in individuals self-reporting their cannabis consumption. We found no consistent discrepanciesbetweenthepredictionsandreportedTHCplasmalevelsafternon-dailyordailycannabis use.ThepredictionsindicatethatTHCmightbepresentinplasmabetweensmokingsessionsaboveusual analyticallimitswhensmokingeverythirdandsecondday,andat lowerlevelsafteronceweekly smoking.

Conclusions:ThestudyindicatesthatTHCmightbepresentcontinuouslyeveninnon-dailysmokersat lowlevels,evenifthesmokingoccasionsareseparatedbyaweek.Thisisdifferentfromalcohol,where ethanolhasdisappearedafteraday.FromatoxicologicalpointofviewthepersistanceofTHCinthebrain, raisesquestionswhetherthisshouldbegivenmoreattentionaswithothertoxicologicalthinkingwhere long-termpresenceofbioactivesubstancesgivesrisetoconcern.Therearesomeuncertaintiesinthis analysis, and controlled studies on THC-accumulation accompanying different use patterns seem warranted.

©2020ElsevierB.V.Allrightsreserved.

1.Background

With rapidly changing legislation across the world on recreationaland medicinal use of cannabis, increased use can beexpected[1].Thereisalsoapublictendencytoviewcannabis as less dangerous than in the past [2] and such views might further lead to increased use [3]. Cannabis use can result in

various degrees of acute intoxication with cognitive and psychomotor impairment. Chronic use might be related to long-term effects on cognition, brain structure, psychiatric disordersandcannabisusedisorders[4,5].Thecognitivedeficits during early abstinence in chronic daily users have been hypothesizedtobeatleastinpartduetoresidualTHCinbrain [6,7]asTHCcanbemeasuredinbloodforuptoamonthafterlast intake insuch users[8,9].Thisprolonged THC-eliminationhas beenreportedrelatedtoyearsofpriorcannabisuse[9],andhas been suggested to represent gradual transfer into the blood streamfromstorageinadiposetissue[6,10].

* Correspondingauthorat:NorwegianInstituteofPublicHealth,Oslo,Norway.

E-mailaddress:jorg.morland@medisin.uio.no(J. Mørland).

http://dx.doi.org/10.1016/j.forsciint.2020.110188 0379-0738/©2020ElsevierB.V.Allrightsreserved.

ContentslistsavailableatScienceDirect

Forensic Science International

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a te / fo r s c i i n t

(2)

Most cannabis users are not daily smokers [11,12] and the questionwhetheroccasionalrecreationalsmokingcanleadtoTHC accumulationbetweensmokingsessionshasonlygainedlimited researchattention.MountingTHClevelsinbloodhavenotbeen expectedinoccasionalusersastherearenumerousobservationsof arapiddeclineofbloodTHCconcentrationsaftersmoking,with thedetection limit of usualanalytical methods reachedwithin 612h[6,13].Eliminationhalf-lives(T1/2)determinedfromblood THC concentration measurements during the hours following smokinghaveaccordinglybeenbelow2h[14–19].

The pharmacokinetics of THC is, however, complex and different multiple compartment models have been suggested [19,20]. Recently, Heuberger and co-workers [21] developed a more complete population pharmacokinetic model of THC, representing a three compartment model, based on detailed analysis of several previous unpublished and published [22]

experimental studies. Heuberger’s paper suggests that THC regardless of route of intake and intake frequency has a fast initialandintermediateT1/2,butanapparentterminalT1/2thatis about21.5h.OtherpreviousstudieshavealsoreportedT1/2inthe orderof1836h[15,23,24].Onestudywithbloodsamplingforan extendedperiodofatleast10daysafterTHCadministrationeven reportedameanterminalT1/2of4.3daysindailycannabisusers [25].

Whetherthereisashort(fewhours)orlong(days)T1/2ofTHC wouldgreatlyinfluencethepossibilityofTHCtobeingpresentin thebodyofrecreationalcannabisusersbetweencannabisintake episodes.

Inthepresentstudy,wefirstwantedtodevelopamodelthat couldpredictTHC-levelsinplasmapresentbetweenintakeswith certainpatternsofrepeatedrecreationalcannabisuse.Knowledge of drug half-life and dosing frequency gives the possibility to calculateextentofdrugaccumulation[26]afterrepeateddosing.

Recreationalnon-dailyuseofcannabisdoesnotoccurwithgreat regularity but estimates of the THC-levels present in blood betweenintakes were performedfor individuals withsmoking patternsofe.g.onceaweek,everythirdandeverysecondday.

Thesecondpurposeofthepresentstudywastocomparethe predictionsfromthepharmacokineticmodelwithpublisheddata fromuserswithlong-termrepeatedsmokingofcannabis,tothe extent that such data could be retrieved from the existing literature.

2.Methods

2.1.PredictionofplasmaTHClevelsafterdifferentrepeatedcannabis usepatterns

If a drug is eliminated accordingto first-orderkinetics, the amountofdruginthebodywillincreaseuntilasteadystate(a plateau level) is reached after a period corresponding to

approximately5timesT1/2.Atthisplateau,theamountofdrug dosedperintervalisequaltotheamountofdrugeliminatedduring thatinterval.Foranydrugwithmultipledosing,theaccumulated amount of the drug in the body at plateau conditions can be calculatedaccordingtotheexpression[26]:

AI¼ 1 1ekt

Kistheeliminationconstantofthedruginquestion(k¼0T1:693=2), and

t

isthedosinginterval.

AIistheaccumulationindex,i.e.theratiobetweentheamount ofdruginthebodyatplateauanygiventimeafterthelastdoseand theamountofdruginthebodyatthesametimeafterasingledose.

Afterdistributionequilibrium is attained, theAI would alsobe validforcirculatingdrugconcentrations.

To apply this general pharmacokinetic principle of drug accumulation toTHC aftercannabis use, a certain regularityof smoking a given dose was postulated. We did this for the prediction of THC concentrations after cannabis used once a week,2–3timesperweek(everythirdday),everysecondday,once everyday,andtwiceeveryday.Dailysmoking(onceortwice)was included among the predictions for the purpose of possible comparisonwithmorepublisheddata(seebelow).Thepharma- cokineticmodelofHeubergerandco-workers[21]indicatesthat thedistributionofTHCisfinalizedat12haftersmokingandthe terminal phase is reached at this time. Wethus calculated the expectedTHCconcentrationsinplasma12haftersmokinguntil thenextintake.Wedecidedtousesmokingofadoseof54mgTHC thestandarddoseinourcalculations.Thisallowedustousesome ofthepredictionscalculatedbyHeuberger’sgroup[21].Thisdose isprobablyhigherthanoftenusedbyoccasionalusers,about25 mgTHCandclosertothatacceptedbyexperiencedusers,3554 mg[15,21,27].Thus,weobtainedarepresentationofnearmaximal accumulationobtainablebydifferentsmokingpatterns.Basedon previousstudies[24,28]weassumedthattherewasnodifference interminalTHChalf-lifebetweenlightandheavycannabisusers.

InthepresentpredictionsweusedboththeTHCterminalhalf-life of21.5h[21]andthemeanvalueof4.3daysasfoundbyJohansson andco-workers[25].Thesehalf-livescoverroughlytherangeof published elimination half-lives of THC from studies with sampling periods longer than 1224 h. The results of the predictionsareshowninTable1.

2.2.PublisheddataonTHClevelsincannabisuserswithlong-term repeatedintake

Tocollectstudieswithdatathatcouldbecomparedwiththe calculatedpredictedTHClevels,wesearchedOvidMedlineand PubMedforrelevantstudies.Weusedthesearchterms“cannabis or cannabinoid or marijuana or THC” and “accumulation or excretion or disposition or half-life or pharmacokinetics or

Table1

Theeffectofdifferentdosingintervalsonaccumulationindex(AI)andcalculationsoftypicalpredictedTHCplasmaconcentrations(95%predictioninterval)[21],12hafter smoking54mgTHC,andatnextintake,assumingterminalT1/2of21.5hor4.3days,respectively.

T1/2=21.5h T1/2=4.3days

Patternofuse AccumulationIndex(AI) THCplasmaconcentrations(ng/ml) AccumulationIndex(AI) THCplasmaconcentrations(ng/ml)

12haftersmoking Atnextintake 12haftersmoking Atnextintake

Infrequent 1.00 1.2(0.6–3.0) 1.00 1.2(0.6–3.0)

Onceaweek 1.01 1.2(0.6–3.0) 0.01(0.0-0.02) 1.48 1.8(0.9–4.4) 0.7(0.3–1.6)

Everythirdday 1.11 1.3(0.7–3.3) 0.2(0.1-0.5) 2.61 3.1(1.6–7.8) 2.1(1.1–5.2)

Everysecondday 1.27 1.4(0.7–3.6) 0.4(0.2–1.1) 3.64 4.4(2.2–10.9) 3.5(1.7–8.6)

Oncedaily 1.87 2.2(1.1–5.6) 1.5(0.7–3.8) 6.71 8.1(4.0–20.1) 7.5(3.7–18.6)

Twicedaily 3.13 3.8(1.9–9.4) 3.8(1.9–9.4) 12.83 15.4(7.7–38.5) 15.4(7.7–38.5)

(3)

concentrationinblood/plasma/serum”, restrictingthesearch to humanstudiesintheEnglishlanguage.Fromtheretrievedpapers, weselectedthose,whichhadsomeinformationonthefrequencies ofuseofcannabisinthesubjectsandsomemeasureofTHC-levels inwholeblood(B),serum(S)orplasma(P).Wealsosearchedthe publications’referencelistsforadditionalpublications.Thesearch ledto13scientificpublicationswiththiskindofinformation.

Wefoundnocontrolledstudies ofTHC-levelsobtainedafter long-termrepeatedsmokingofcannabiswithknownamountsof THC.Weuseddatafromsomestudies,whereTHCconcentrations inbloodorplasmaweremeasuredinpeoplewhohadself-reported their consumption of cannabis in the preceding period. Other studies where THC was administered for pharmacodynamics/

kineticpurposestopeoplewithdifferentpriorcannabisconsump- tion,thebaselinelevelsrelatedtopreviousself-reportedcannabis intake,werealsousedforcomparisonwiththepredictionmodel.

TheresultsarepresentedinTable2.

3.Results

3.1.PredictionofplasmaTHClevelsafterdifferentrepeatedcannabis usepatterns

Table1showsthecalculatedaccumulationindices(AIs)andthe predictedTHC-plasmalevelsbetweenintakes aftercertainnon- dailycannabisusepatterns.Forcomparison,Table1 alsoshows dataforinfrequentsmokingandtwopatternsofdailysmoking.

The AIs increased with increasing frequency of use. The differencebetween use once a week and every third or every

seconddaywasabout10%or25%,respectivelywhenT1/2wasset to21.5h.Correspondingdifferenceswerearound70%or145%, respectivelywhenaT1/2of4.3dayswasapplied(column1and4, Table 1).ThesedifferenceswerereflectedinTHClevelspresent betweenintakesforthethreedifferentsmokingpatterns(oncea week,everythirdorsecondday).

Based ona T1/2of21.5 htheTHCplasmaconcentrationwas below1ng/ml24hafterthelastsmokingforallthreenon-daily smokingpatterns(notshowninTable1)anddecreasedtoplasma levelsbelow0,5ng/mlatnextintake(column3,Table1).Asmost routineanalyticalmethodsforplasmaTHChaveLOQsof0.5or1 ng/ml,nofindingofTHCintheperiodbetweenintakeswouldoften occur.Butevenfortheleastfrequentpattern(onceaweek),some THCwaspresentinplasma.

Based on a T1/2 of 4.3 days the THC plasma levels were substantiallyhigherandwouldinmostcasesexceptforsmoking onceaweek,beabovetheanalyticalLOQsduringthewholeperiod betweenintakes(column6,Table1).

3.2.ComparisonofpredictedandpublisheddataonTHClevelsin cannabisuserswithlong-termrepeatedintake

Table 2 summarizes data from 13 studies with data on both long-termrepeated cannabis consumptionand measure- mentsofTHC-levelsinwholeblood(B),serum(S)orplasma(P) afterdistributionequilibriumofthelastdosewasreached.The studiesarelistedaccordingtointakeofcannabis:onceaweek, everythirdday,everysecondday,onceadayorseveraltimesper day.

Table2

Datafrom13studiesmeasuringTHClevelsinblood/plasma/serumafterprecedinglong-termrepeatedcannabisuse.Abbreviationsabouttime:w:weeks,d:days,h:hours.

Abbreviationsonstatistics:me:mean,md:median,r:range,SE:standarderror,SD:standarddeviation,95CI:95%confidenceinterval.Abbreviationsaboutsamplematrix:S:

serum,P:plasma,B:wholeblood.

Reference Groupsize,amountandfrequency

ofcannabisuse

Timebetweenlastsmoking andbloodsampling

MeasuredTHC conc.ng/ml

THCconc.ginplasma ng/ml

Smokingonceaweek

Skopp&Pötsch,2008[41] N=6,upto1joint/w 36(24–48)hme(r) S:0(0–1.4)md(r) 0(0–1.4)md(r) Ramaekersetal.2016[39] N=5a,10-15occasions/3months,i.e.0.8-1.2

occasions/w

Notspecified S:0(0–1)md(r)a 0(0–1)md(r) Smokingeverythirdday

Hartmanetal.2015c[42] N=32,upto2–3occasions/w 2(0.3–4)dmd(r) P:0.9mdb 0.9md

Hartmanetal.2016c[43] N=19,upto2–3occasions/w 2(0.3–4)dmd(r) B:(0–6.3)(r) 0-9.7r Smokingeverysecondday

Skopp&Pötsch,2008[41] N=15,uptoonejoint/d,i.e.3–4joints/w(?) 36(24–48)hme(r) S:0.3(0–2.6)md(r) 0.3(0–2.6)md(r) Hjorthøyetal.2012[29] N=88,onaverage40.4(3.24SE)jointson13.8(0.76

SE)d/month

1dmd P:4.1(0.76)me(SE) 4.1(0.76)me(SE) Smokingoncedaily

Skopp&Pötsch,2008[41] N=16,morethan1joint/d 36(24–48)hme(r) S:1.3(0–6.4)md(r) 1.3(0–6.4)md(r) Toenessetal.2008c[15];Ramaekers

etal.2009c[44]

N=12,using340(86)timesme(SD)peryear,2 jointson7(4–25)md(r)occasionslastweek

Onenight(8h?)+4hafter smokingplacebo

S:2.8(3.4)me(SD) 2.8(3.4)me(SD) Smithetal.2018[30] N=16,using0.30(0.22)gme(SD)cannabisper

occasion,on1.3(0.8)me(SD)dailyoccasions

Atleast12h B:1.2(1.5)me(SD) 1.8(2.3)me(SD) Smokingmultipletimesdaily

Odelleta.2016[40] N=21,dailyusing4–6joints,or20(5–50)bongs,or2 (0.5–4)gheads,md(r)

25.5(12–31)hdmd(r) B:2(1–13)md(r) 3.1(1.5–20)md(r) Desrosiersetal.2014[27] N=14,using4.5(1.5–21)joints/d,md(r)forthelast

14(11–14)d,md(r)

22(19–41)hmd(r) P:4.8(3.3–6.3)me (95%CI)e

4.8(3.3–6.3)me (95CI) Schwopeetal.2011[45] N=10,using5(1–12)joints/d,md(r);forthelast11

(8–14)d,md(r)

65(39–116)hmd(r) P:1.6(0–7.3)md(r) 1.6(0–7.3)md(r) Bergamashietal.2013c[8];Karschner

etal.2016c[9]

N=28,using9(1–30)joints/d,md(r);forthelast14 (11–14)d,md(r)

Atleast24h P:2.7(0–8.7)fmd(r) 2.7(0–8.7)md(r) Smithetal.2018[30] N=10,using0,62(0.36)gme(SD)cannabisper

occasionon2.7(0.93)me(SD)dailyoccasions

Atleast12h B:2.3(2.9)me(SD) 3.5(4.5)me(SD)

aApproximatenumbersfromfig.1and4[39].

b Calculatedfromdataafterplacebosmoking,theirsupplementarytable5[42].

cThetwopaperspresentdifferentaspectsofthesamestudy.

d Timetofirstbloodsampleafter12hsincesmoking[40].

eDatafromsupplementarydatatable1e[27].

f Datafromday1,thedayafteradmissionday[8,9].

g Conversionfactorfrombloodtoplasma:x1.54[45,46];serumtoplasmaratioequals1.0.

(4)

TwostudiesinTable2reportedTHClevelsfromsmokingoncea week,representing11individuals.For5ofthesethetimebetween smokingandbloodsamplingwasunknown,fortheother6itwas between24and48h.Thehighestvaluewas1.4ng/ml,butinmost cases,theTHCconcentrationwasbelowtheLOQof1ng/ml.These resultswerecompatiblewiththepredictionsinTable1.

Two studies presented THC-levels from 32 people smoking everythird day or less often (Table 2). The time between last smokingandbloodsamplingwas2days(median,witharangeof 0.3–4days).ThemeasuredTHCplasmalevelsrangedfrom0to9.7 ng/ml.Thehighestvaluewassomewhathigherthanthehighest predictedTHC-level.

TwostudiesmeasuredTHClevelsfrom103individualssmoking everysecondday(Table2).Themediantimesincelastsmoking was24hormore.Thestudywiththemostdetaileddescriptionof cannabisconsumptionandmostparticipants[29]reportedamean THCplasmaconcentrationof 4.1 ng/mlfor theperiod between smoking occasionscompatible with the predictionsin Table 1, column5and6,i.e.thosebasedonaterminalTHCT1/2of4.3days.

Tendifferentstudiesonsmokerswithintakesonceormultiple timesdailywithtimesbetweenlastsmokingandbloodsampling from12to116hwerecollected(Table2).ThemedianormeanTHC plasmalevelswererangingfrom1.3–4.8 ng/ml,withindividual valuesrangingfrom0to20ng/ml.Thehighestindividualvalues recorded were compatible with the predictions presented in column5and6inTable1.

4.Discussion

The present predictions of THC-plasma levels present after differentcannabissmokingpatternsassumingterminalelimina- tionhalf-livesof THCof 21.5hor longer,had somesupportin publishedTHClevelsmeasuredinindividualsself-reportingtheir cannabis consumption. We found no consistent discrepancies betweenthepredictionsandreportedTHCplasmalevelsafternon- daily or daily cannabis use, supporting the reliability of the predictions.It is therefore reason to assume that THC will be presentinplasmaandorgansinequilibriumwithbloodase.g.the brain,betweensmokingsessionsinnon-dailyusers.

Inaccurate reporting of smoking frequency in the published studiescannot beexcluded. Deliberate over- orunderreporting may, however, be less of a problem than expected, as several studiescomparingself-reportandTHC-biometricshaveconcluded thatself-reportcanbequitereliable[30,31]

Itcouldbearguedthatsomeofthehighervaluesmeasured fittedwithpredictionsduetotheinclusionofTHCresultsfrom samplestakenbeforeadistributionperiodof812hafterlast smokinghadpassed.Thisseemshoweververyunlikelygiventhe informationin thedifferentpapers.Ontheotherhand,forall consumption patterns we observed some deviations as severalpublishedindividualTHC-levelswerelowerthanthose predicted. In some instances, the broad range of smoking frequenciesincludedinthegroupthuscontaininglessfrequent smokingthanthepatternusedtodefinethegroup,couldexplain this.

Anotherfactorthatwouldgiverisetolowermeasuredlevels thanthosepredictedwasintakeoflowerdosesthanthedose(54 mg) THC used in the predictions, although this dose was considered to represent a medium-strong marihuana cigarette [21].NoneofthestudiesinTable2reportedtheamountofTHC consumedperdose, occasionorday.In general,theknowledge about doses of THC smoked by different individuals is quite limited. A recent Spanish study estimated a “median joint” to consistof260mgmarihuanaandtocontain7mgTHC[12].The mediannumberofjointssmokedperoccasionwere3givingan intakeof 21mg peroccasion. Otherstudieshave estimatedan

averagemarihuanajointweighing320mg[11]ortobewithinthe 3500mgrange[32].Ameta-analysisfoundincreasingmeanTHC contentinherbalcannabisovertheyears,reachingabout10%in 2010[33].Thus,ajointof320mgwouldcontainabout32mgTHC.

Howeverallthesestudiesshowedlargevariationsinjointsizeand THCcontent,inadditionsmokersoftentitratetheabsorbeddose byadjustingthewaytheysmokeaccordingtotheinfluencethey experience during smoking [6], and considerable individual variationintheamountabsorbedmightbeexpected[13,14,27].

Asitispossiblethatthedoseusedinthepredictionswasinthe upperendoftheusualdoserange,thepredictedTHCplasmalevels mightprobablybesomewhathigher thanthoseusually experi- encedbynon-dailysmoking.Themostlikelylevelspredictedfor thosesmokingonceaweek(Table1)didgenerallynotexceed2ng/

mlduringtheperioduntilnextsmoking.THCconcentrationsin plasma below 2 ng/ml probablydo not inflict psychomotor or neurocognitiveimpairment,butconcentrationsfrom25ng/ml might[34].Therelations betweenpharmacodynamicand phar- macokineticparametersare,however,limited[28].Somestudies have shown a rough concentration effect relationship for THC levelsinplasma[34–37],whileothershavenot[13].Toleranceto certaineffects ofTHCasa possibleconsequenceofchronicuse havebeen suggestedin somestudies[38],but is not foundby others[39].Itmightthereforebedifficulttorelatecertaincognitive orpsychomotoreffectstothelevelsofTHCbeingpresentbetween smoking sessions for once a week smokers. The chances of persistent cognitive impairment would probably be higher for thosesmokingeverythirdorsecondday,withhigheraccumulated THClevels.Ontheotherhand,developmentoftolerancemight obscuresucheffects.

However,ifweassumethatTHCwillbepresentcontinuouslyin non-dailysmokers,evenifthesmokingoccasionsareseparatedby aweek,wefaceasituationquitedifferentfromthatpresentamong thosedrinkingalcoholonceaweekandwhereethanolhasleftthe bodyafteraday.Fromatoxicologicalpointofviewthepersistent presenceof a psychoactivesubstance (THC)in thebrain,raises questionswhetherthisshouldbegivenmoreattentionasisthe caseelsewhereintoxicologicalthinking.

Presently, itis probably somewhat speculativeto conclude thatTHChasaterminalhalf-lifeofdaysinallusers,whichcould resultin accumulationof THC andpossible chronicimpairing effectsinregularuserswhousecannabisonlyonceoracoupleof daysperweek.Thereare,however,asdiscussedabove,several indicationsthatthiscouldbethecase.AlsoroughestimatesofT

1/2ofTHCfromdatapresentedbyOdellandco-workers[40]and Bergamaschiandco-workers[8]indicatevaluesofmorethan4 daysandaround6days,respectively.Ourcurrentunderstanding ofthepharmacokineticsofTHCmaybelessthancomprehensive.

There is a great need for controlled studies clarifying the accumulationofTHCafterrepeatedcannabissmoking.Smoking frequency,inparticular,shouldbeaddressedinsuchstudies,as this is a critical variable for accumulation. This was recently indicatedinastudywherethefrequencyratherthanamountof cannabis used in the last month correlated better with subsequent blood THC measurements [30]. Because cannabis potencyanduseinmany partsof theworldis increasing,itis fundamental to evaluate the risk of possible neurocognitive impairmentofperiodslastingsubstantiallylongerthanthehours ofacuteinebriation.

DeclarationofCompetingInterest

JMhasreceivedremunerationfromtheNorwegianDepartment ofTransportation,fromNorwegiancourtsandpoliceforreportson THCpharmacokineticsandeffectsrelatedtodrivingbehaviour.JGB doesnothaveanyconflictsofintereststodeclare.

(5)

Acknowledgments

Thispaperwaswrittenwiththeuseofinternalfundingonly.

References

[1]J.G.Ramaekers,DrivingundertheinfluenceofCannabis:anincreasingpublic healthconcern,JAMA319(14)(2018)1433–1434.

[2]L.R.Pacek,P.M.Mauro,S.S.Martins,Perceivedriskofregularcannabisusein theUnitedStatesfrom2002 to 2012:differencesby sex,age,and race/

ethnicity,DrugAlcoholDepend.149(2015)232–244.

[3]Y.Shi,M.Lenzi,R.An,CannabisliberalizationandadolescentCannabisuse:a cross-nationalstudyin38countries,PLoSOne10(11)(2015)e0143562.

[4]N.D.Volkow,J.M.Swanson,A.E.Evins,L.E.DeLisi,M.H.Meier,R.Gonzalez, et al., Effects of cannabis useon human behavior, including cognition, motivation,andpsychosis:areview,JAMAPsychiatry73(3)(2016)292–297.

[5]Y.M.Terry-McElrath,P.M.O’Malley,L.D.Johnston,B.C.Bray,M.E.Patrick,J.E.

Schulenberg,Longitudinalpatternsofmarijuanauseacrossages18-50inaUS nationalsample:adescriptiveexaminationofpredictorsandhealthcorrelates ofrepeatedmeasureslatentclassmembership,DrugAlcoholDepend.171 (2017)70–83.

[6]M.A.Huestis,Humancannabinoidpharmacokinetics,Chem.Biodivers.4(8) (2007)1770–1804.

[7]W.M.Bosker,E.L.Karschner,D.Lee,R.S.Goodwin,J.Hirvonen,R.B.Innis,etal., PsychomotorfunctioninchronicdailyCannabissmokersduringsustained abstinence,PLoSOne8(1)(2013)e53127.

[8]M.M.Bergamaschi,E.L.Karschner,R.S.Goodwin,K.B.Scheidweiler,J.Hirvonen, R.H.Queiroz,etal.,Impactofprolongedcannabinoidexcretioninchronicdaily cannabissmokers’bloodonpersedruggeddrivinglaws,Clin.Chem.59(3) (2013)519–526.

[9]E.L.Karschner,M.J.Swortwood,J.Hirvonen,R.S.Goodwin,W.M.Bosker,J.G.

Ramaekers,etal.,Extendedplasmacannabinoidexcretioninchronicfrequent cannabissmokersduringsustainedabstinenceandcorrelationwithpsycho- motorperformance,DrugTest.Anal.8(7)(2016)682–689.

[10]E.Johansson,K.Noren,J.Sjovall,M.M.Halldin,Determinationofdelta1- tetrahydrocannabinolinhumanfatbiopsiesfrommarihuanausersbygas chromatography-massspectrometry,Biomed.Chromatogr.3(1)(1989)35–38.

[11]G.Ridgeway,B.Kilmer,Bayesianinferenceforthedistributionofgramsof marijuanainajoint,DrugAlcoholDepend.165(2016)175–180.

[12] C. CasajuanaKogel, M.M. Balcells-Olivero, H.Lopez-Pelayo, L. Miquel, L.

Teixido,J.Colom,etal.,Thestandardjointunit,DrugAlcoholDepend.176 (2017)109–116.

[13]S.Hartley,N.Simon,A.Larabi,I.Vaugier,F.Barbot,M.A.Quera-Salva,etal., EffectofsmokedCannabisonvigilanceandaccidentriskusingsimulated drivinginoccasionalandchronicusersandthepharmacokinetic-pharmaco- dynamicrelationship,Clin.Chem.65(5)(2019)684–693.

[14]G.F. Kauert, J.G. Ramaekers, E. Schneider, M.R. Moeller, S.W. Toennes, Pharmacokineticproperties ofdelta9-tetrahydrocannabinolin serumand oralfluid,J.Anal.Toxicol.31(5)(2007)288–293.

[15]S.W.Toennes,J.G. Ramaekers,E.L.Theunissen, M.R. Moeller, G.F.Kauert, Comparisonofcannabinoid pharmacokineticpropertiesinoccasionaland heavyuserssmokingamarijuanaorplacebojoint,J.Anal.Toxicol.32(7) (2008)470–477.

[16]P.Kelly, R.T.Jones, Metabolism oftetrahydrocannabinol in frequentand infrequentmarijuanausers,J.Anal.Toxicol.16(4)(1992)228–235.

[17]C.C.Hunault,J.C.vanEijkeren,T.T.Mensinga,I.deVries,M.E.Leenders,J.

Meulenbelt,DispositionofsmokedcannabiswithhighDelta(9)-tetrahydro- cannabinolcontent:akineticmodel,Toxicol.Appl.Pharmacol.246(3)(2010) 148–153.

[18]A.Strougo,L.Zuurman,C.Roy,J.L.Pinquier,J.M.vanGerven,A.F.Cohen,etal., Modellingoftheconcentration–effectrelationshipofTHConcentralnervous systemparametersandheartrateinsightintoitsmechanismsofactionanda toolforclinicalresearchanddevelopmentofcannabinoids,J.Psychopharma- col.(Oxford,England)22(7)(2008)717–726.

[19]A.Marsot,C.Audebert,L.Attolini,B.Lacarelle,J.Micallef,O.Blin,Population pharmacokineticsmodelof THCused bypulmonary route in occasional cannabissmokers,J.Pharmacol.Toxicol.Methods85(2017)49–54.

[20]F.Grotenhermen,Pharmacokineticsandpharmacodynamicsofcannabinoids, Clin.Pharmacokinet.42(4)(2003)327–360.

[21] J.A.Heuberger,Z.Guan,O.O.Oyetayo,L.Klumpers,P.D.Morrison,T.L.Beumer, etal.,PopulationpharmacokineticmodelofTHCintegratesoral,intravenous, andpulmonarydosingandcharacterizesshort-andlong-termpharmacoki- netics,Clin.Pharmacokinet.54(2)(2015)209–219.

[22]A.Ohlsson,J.E.Lindgren,A.Wahlen,S.Agurell,L.E.Hollister,H.K.Gillespie, Singledosekineticsofdeuteriumlabelleddelta1-tetrahydrocannabinolin heavyandlightcannabisusers,Biomed.MassSpectrom.9(1)(1982)6–10.

[23]M.E.Wall, B.M.Sadler, D. Brine,H. Taylor, M.Perez-Reyes, Metabolism, disposition,andkineticsofdelta-9-tetrahydrocannabinolinmenandwomen, Clin.Pharmacol.Ther.34(3)(1983)352–363.

[24]C.A.Hunt,R.T.Jones,Toleranceanddispositionoftetrahydrocannabinolin man,J.Pharmacol.Exp.Ther.215(1)(1980)35–44.

[25]E.Johansson,M.M.Halldin,S.Agurell,L.E.Hollister,H.K.Gillespie,Terminal eliminationplasmahalf-lifeofdelta1-tetrahydrocannabinol(delta1-THC)in heavyusersofmarijuana,Eur.J.Clin.Pharmacol.37(3)(1989)273–277.

[26]M.Rowland,ClinicalPharmacokineticsandPharmacodynamics,Williams&

Wilkins,Philadelphia,2010.

[27]N.A.Desrosiers, S.K.Himes, K.B.Scheidweiler,M. Concheiro-Guisan,D.A.

Gorelick,M.A.Huestis,PhaseIandIIcannabinoiddispositioninbloodand plasmaofoccasionaland frequentsmokersfollowing controlledsmoked cannabis,Clin.Chem.60(4)(2014)631–643.

[28]S.Agurell,M.Halldin,J.E.Lindgren,A.Ohlsson,M.Widman,H.Gillespie,etal., Pharmacokineticsandmetabolismofdelta1-tetrahydrocannabinolandother cannabinoidswithemphasisonman,Pharmacol.Rev.38(1)(1986)21–43.

[29]C.R.Hjorthoj,A.Fohlmann,A.M.Larsen,M.Arendt,M.Nordentoft,Correlations andagreementbetweendelta-9-tetrahydrocannabinol(THC)inbloodplasma andtimeline follow-back(TLFB)-assistedself-reporteduseof cannabisof patients with cannabis usedisorder and psychoticillness attending the CapOpusrandomizedclinicaltrial,Addiction(Abingdon,England)107(6) (2012)1123–1131.

[30]M.J.Smith,E.C.Alden,A.A.Herrold,A.Roberts,D.Stern,J.Jones,etal.,Recent self-reportedCannabisuseis associated with thebiometricsof Delta-9- Tetrahydrocannabinol,J.Stud.AlcoholDrugs79(3)(2018)441–446.

[31]C.R.Hjorthoj,A.R.Hjorthoj,M.Nordentoft,ValidityofTimelineFollow-Backfor self-reporteduseofcannabisandotherillicitsubstances–systematicreview andmeta-analysis,Addict.Behav.37(3)(2012)225–233.

[32]B.Kilmer,R.Pacula,Estimatingthesizeoftheglobaldrugmarketademand- sideapproach,in:P.Reuter,F.Trautmann(Eds.),AReportonGlobalIllicitDrug Markets1998–2007,EuropeanCommission,Bruxelles,2009.

[33]F.Cascini,C. Aiello,G.Di Tanna,Increasingdelta-9-tetrahydrocannabinol (Delta-9-THC)contentinherbalcannabisovertime:systematicreviewand meta-analysis,Curr.DrugAbuseRev.5(1)(2012)32–40.

[34]J.G.Ramaekers,M.R.Moeller,P.vanRuitenbeek,E.L.Theunissen,E.Schneider, G. Kauert, Cognition and motor control as a function of Delta9-THC concentrationinserumandoralfluid:limitsofimpairment,DrugAlcohol Depend.85(2)(2006)114–122.

[35]C.C.Hunault,T.T.Mensinga,I.deVries,H.H.Kelholt-Dijkman,J.Hoek,M.

Kruidenier,etal.,Delta-9-tetrahydrocannabinol(THC)serumconcentrations andpharmacologicaleffectsinmalesaftersmokingacombinationoftobacco andcannabiscontainingupto69mgTHC,Psychopharmacology201(2)(2008) 171–181.

[36]F.Grotenhermen,G.Leson,G.Berghaus,O.H.Drummer,H.P.Kruger,M.Longo, etal.,Developinglimitsfordrivingundercannabis,Addiction102(12)(2007) 1910–1917.

[37]H.Z.Khiabani,J.G.Bramness,A.Bjorneboe,J.Morland,Relationshipbetween THCconcentrationinbloodandimpairmentinapprehendeddrivers,Traffic Inj.Prev.7(2)(2006)111–116.

[38]M. Colizzi, S. Bhattacharyya, Cannabis use and the development of tolerance:asystematicreviewofhumanevidence,Neurosci.Biobehav.Rev.

93(2018)1–25.

[39]J.G.Ramaekers,J.H.vanWel,D.B.Spronk,S.W.Toennes,K.P.Kuypers,E.L.

Theunissen, et al.,Cannabisand tolerance: acutedrug impairmentas a functionofcannabisusehistory,Sci.Rep.6(2016)26843.

[40]M.S.Odell,M.Y.Frei,D.Gerostamoulos,M.Chu,D.I.Lubman,Residualcannabis levelsinblood,urineandoralfluidfollowingheavycannabisuse,ForensicSci.

Int.249(2015)173–180.

[41]G.Skopp,L.Potsch,Cannabinoidconcentrationsinspotserumsamples24-48 hoursafterdiscontinuationofcannabissmoking,J.Anal.Toxicol.32(2)(2008) 160–164.

[42]R.L.Hartman,T.L.Brown,G.Milavetz,A.Spurgin,D.A.Gorelick,G.Gaffney, et al., Controlled Cannabis vaporizer administration: blood and plasma cannabinoidswithandwithoutalcohol,Clin.Chem.61(6)(2015)850–869.

[43]R.L.Hartman,T.L.Brown,G.Milavetz,A.Spurgin,D.A.Gorelick,G.R.Gaffney, etal.,EffectofbloodcollectiontimeonmeasuredDelta9-Tetrahydrocannabi- nolconcentrations:implicationsfordrivinginterpretationanddrugpolicy, Clin.Chem.62(2)(2016)367–377.

[44]J.G. Ramaekers, G. Kauert, E.L. Theunissen, S.W. Toennes, M.R. Moeller, Neurocognitiveperformanceduring acuteTHCintoxicationin heavyand occasionalcannabisusers,J.Psychopharmacol.23(3)(2009)266–277.

[45]D.M.Schwope,E.L.Karschner,D.A.Gorelick,M.A.Huestis,Identificationof recent cannabis use: whole-blood and plasma free and glucuronidated cannabinoidpharmacokineticsfollowingcontrolledsmokedcannabisadmin- istration,Clin.Chem.57(10)(2011)1406–1414.

[46]R.L.Hartman,M.A.Huestis,Cannabiseffectsondrivingskills,Clin.Chem.59 (3)(2013)478–492.

Referanser

RELATERTE DOKUMENTER

Table I summarizes the two data sets collected. As seen in Figure 2, the engine load changes drastically throughout the ferry crossing operating profile. Thus, the sensor measure-

We presented the results of two separate measurement campaigns of the ultra wideband implant channel on living porcine subjects. To the best of our knowledge, this

Data from studies conducted in 1990-1997 on seasonal changes in diet, distribution and variation in body condition of harp seals were applied to estimate the total consumption

We present data on the relation between betaine and plasma tHcy in 90 patients with cardiovascular disease before and during long-term intervention with folate, cobalamin, and

A screening of 13 plasma markers re fl ecting different in fl ammatory pathways was performed in SCZ (n = 401) and BD patients (n = 242) after subdividing each group into Cannabis

Table 2 shows mean differences in plasma tHcy concentration between quartiles of food group and nutrient intake among non-users and users of vitamin supplements, after adjustment

There are also differences in types of compartments studied and in metabolites followed: human elim t 1/2 are mainly whole body based (i.e. based on blood plasma or

Application to human serum, plasma, and whole blood samples The developed online SPE-UHPLC-MS/MS method was suc- cessfully applied to determine PFASs in samples of whole blood,